

Firepower System Remediation API Guide
Cisco Systems, Inc.

www.cisco.com

Cisco has more than 200 offices worldwide.
Addresses, phone numbers, and fax numbers
are listed on the Cisco website at
www.cisco.com/go/offices.

http://www.cisco.com
http://www.cisco.com/go/offices

Version 6.0
November 9, 2015
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE
WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE
ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE
INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF
YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO
REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of
California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved.
Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS
ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR
INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING
OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses
and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in
the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative
content is unintentional and coincidental.

© 2015 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

C H A P T E R 1

Understanding the Remediation
Subsystem

The Firepower System® remediation API allows you to create remediations that your Firepower
Management Center can automatically launch when conditions on your network violate the associated
correlation policy. A remediation is the response your software program executes to mitigate the
detected condition. For example, you can block traffic at a router on the source or destination IP address,
or initiate a host Nmap scan to assess the host status. If multiple rules in a policy trigger, the Firepower
Management Center can launch responses for each rule. A remediation module is the package of files
you install on the Firepower Management Center to perform the response. A remediation module can
incorporate several remediation types as shown in the graphic below.

In the example shown here, one of the system-provided remediation modules, the Cisco PIX router
module, performs two remediation types: it either blocks packets by source IP address or blocks them
by destination IP address.

If a remediation module targets multiple devices on your network (routers, hosts, and so forth), you
configure your remediation module to perform multiple instances, one per device, when the correlation
policy triggers. An instance is an instantiation of the remediation module, with one or more remediation
types that correspond to functions in the remediation module code, and with a set of variables needed
to run on the target device. For each instance, you specify the remediation type or types it executes and
the instance-specific information such as the device’s IP address and password for the remediation to
access the target device on your network.

The Firepower System's domains feature allows you to implement multitenancy within your deployment
by segmenting user access to managed devices, configurations, and events. For systems that have more
than one domain, users can create remediations for different domain levels. A remediation is not visible
to ancestor or parallel domains from the one in which it was created. While a user in a child domain can
view a remediation created in their ancestor domain, they cannot modify or delete it. A remediation
created at the root domain can be viewed and used by all child domains.
1-1
Firepower System Remediation API Guide

Chapter Understanding the Remediation Subsystem
Prerequisites
Prerequisites
Before using the remediation API for custom remediations, you should be familiar with information in the
following categories:

 Firepower System, page 1-2

 Programming Requirements and Support, page 1-2

 Cisco-Provided Remediation Modules, page 1-3

Firepower System
To understand the information in this guide, you should be familiar with the features and nomenclature of
the Firepower System, and the functions of certain components:

 the Firepower Management Center role in the Firepower System architecture

 correlation policy management module on the Firepower Management Center

 remediation management module on the Firepower Management Center

See the Firepower System User Guide for further information.

Programming Requirements and Support
You must be able to code your custom remediation in Perl or shell script, or as a precompiled,
statically-linked C program (with the exception of links to routines in glibc).

In addition, you must be able to produce a configuration file in XML for each remediation module. This
file is called module.template. See the system-provided remediation modules for samples of this file. For
module locations on the Firepower Management Center, see Understanding the Remediation Subsystem
File Structure, page 4-4.

For each instance you add, the Firepower Management Center generates an instance-specific XML
configuration file called instance.conf. Your code must parse this file each time a remediation instance
executes.

The following table lists the packages available on the Firepower Management Center as resources for
writing and executing your remediation program.
1-2
Firepower System Remediation API Guide

Chapter Understanding the Remediation Subsystem
The Remediation Subsystem
Cisco-Provided Remediation Modules
The following table describes the predefined remediation modules included with the Firepower
Management Center. You should use these modules for reference when designing your remediation
programs.

The system-provided modules are already installed on the Firepower Management Center and include
both the remediation executable (in Perl and C) and completed module.template configuration file for
each module. For information on the easy steps to deploy system-provided remediation modules, see
the Firepower System User Guide.

The Remediation Subsystem
The remediation subsystem consists of the following components:

 the Firepower Management Center’s web interface, which you use to set up correlation policies and
associate them with remediations, and to track the status of remediation processing

 the remediation API, which enables you to define the data that will be provided to your remediation
modules

 the remediation daemon, which passed data to the remediation modules at run time and collects
execution status information

 remediation modules, which perform specific responses to correlation policy violations

Table 1-1 Additional Packages

Additional Packages Location

GNU bash, version 3.2.33(1)-release /bin/bash

tcsh 6.17.00 /bin/tcsh

glibc 2.7 /lib/libc-2.7.s
o

perl v5.10.1 /usr/bin/perl

Net::Telnet N/A

Net::SSH::Perl N/A

XML::Smart N/A

Table 1-2 Cisco-Provided Remediation Modules

Module Name Function

Cisco IOS Null Route if you are running Cisco routers that use Cisco IOS® Version 12.0 or higher,
allows you to dynamically block traffic sent to an IP address or network that
violates a correlation policy

Cisco PIX Shun if you are running Cisco PIX® Firewall Version 6.0 or higher, allows you to
dynamically block traffic sent from an IP address that violates a correlation
policy

Nmap Scanning allows you to actively scan specific targets to determine operating systems
and servers running on those hosts

Set Attribute Value allows you to set a host attribute on a host where a correlation event occurs
1-3
Firepower System Remediation API Guide

Chapter Understanding the Remediation Subsystem
Understanding Remediation Subsystem Architecture
Understanding Remediation Subsystem Architecture
The remediation subsystem has a two-part architecture that is diagrammed in the figure below. The
architecture consists of:

 infrastructure components such as the web interface and the remediation daemon which support all
remediation modules. The infrastructure components allow you to create and manage all the
remediation modules on your Firepower Management Center. The remediation daemon manages the
execution of the remediations. See Remediation Subsystem Components, page 1-4 for more details.

 the individual remediation modules which you develop to respond to specific correlation policy
violations. See Remediation Module Architecture, page 1-5 for more details.

Remediation Subsystem Components
The following diagram illustrates the main functions of the remediation subsystem and their interactions.

You create remediations in order to respond to rule violations on your network in an automated mode.
The Firepower Management Center web interface allows you to define and activate your correlation
policies and associate them with remediations. When a policy violation occurs, the remediation
subsystem passes the name of the remediation and the event data specified in the module.template
configuration file to the remediation daemon.
1-4
Firepower System Remediation API Guide

Chapter Understanding the Remediation Subsystem
Using the Remediation Subsystem
The remediation daemon launches the remediation and passes the correlation event data and
instance-specific parameters to your remediation program. It also accepts return codes from the
remediation program. The Firepower Management Center uses the return codes for status displays.

The remediation program launches a set of instances of the remediation when the associated policy rule
triggers. Each instance targets a particular network device. You create instances on the Instance Detail
page of the Firepower Management Center web interface. For each instance you provide the necessary
instance-specific configuration details such as IP address and password of the target device.

Remediation Module Architecture
Each remediation module that you install on your Firepower Management Center includes one or more
remediation types. You assign one or more remediation types to each instance. For information on
configuring remediations as responses to policy violations, see the Configuring Remediations chapter in
the Firepower System User Guide.

Remediation modules include the following components:

 the remediation program, included in the remediation module package at installation. See Planning
and Packaging Your Remediation Module, page 2-1.

 a required XML module.template file, also included in the remediation module package at
installation. This file provides module-level information about your module and its data requirements
that the remediation subsystem references each time it launches one of the remediation module’s
instances. See Communicating with the Remediation Subsystem, page 3-1.

 one XML instance.conf file per instance. The Firepower Management Center auto-generates this
file each time you configure a new instance of your remediation module.

Using the Remediation Subsystem
You deploy remediations by adding them as responses to specific rules in correlation policies on your
Firepower Management Center. You define the associations of correlation policies and remediations
using the Firepower Management Center web interface.

To deploy a remediation module, you must:

1. Identify the condition you want to mitigate and the actions that appropriately resolve that condition
in your environment. These actions are the main functions your custom remediation program must
implement.

If you can use a Cisco-provided remediation module, skip directly to step 6.Install the module on the
Firepower Management Center using the web interface as described in Installing Your Module,
page 2-13., page 1-6.

2. If you need to produce a custom remediation module, familiarize yourself with the data elements
obtainable from the remediation subsystem. See Data Available from the Remediation Subsystem,
page 2-1.

3. If you develop a custom remediation module you must also create a module template file to be
included in your module package. See Communicating with the Remediation Subsystem, page 3-1
for the format and syntax of the file.

4. Write your remediation program so that it addresses all the functions necessary for the desired
remediations. You can write your remediation module programs in bash, tsch, Perl or C. Develop your
program using the technical guidance in Notes for Remediation Program Developers, page 4-3.

5. Package your remediation module as described in Packaging Your Module, page 2-12.
1-5
Firepower System Remediation API Guide

Chapter Understanding the Remediation Subsystem
Remediation Resources
6. Install the module on the Firepower Management Center using the web interface as described in
Installing Your Module, page 2-13.

7. Ensure that the individual remediation types in your remediation module are assigned as responses
to the correct correlation rules in your active correlation policies. See the Firepower System User
Guide for procedure details.

Remediation Resources
In addition to this document, other resources you can use to create your remediation modules include:

 a remediation SDK with sample program code in C or Perl that generates syslog alerts and
demonstrates how a module can interact with your network. See Working with the Remediation SDK,
page 4-1 chapter of this document for detailed information. The SDK can be downloaded from the
Support site.

 the module.template schema (module.template.xsd), which is located on the Firepower
Management Center at /etc/sf/remediation/module.template.xsd.

The following table describes some of the topics explained in the documentation and where to look for
more information.

Table 1-3 Remediation Resources

To learn more about... See ...

the sample remediation module and the
general procedure for creating, installing, and
configuring one

Working with the Remediation SDK, page 4-1

writing your remediation program Planning and Packaging Your Remediation Module,
page 2-1

creating the module.template file Communicating with the Remediation Subsystem,
page 3-1

packaging your remediation module so you
can install it on the Firepower Management
Center

Packaging Your Module, page 2-12

installing your remediation module Installing Your Module, page 2-13

configuring your remediations as responses
to security policy violations

the Configuring Remediations chapter in the Firepower
System User Guide
1-6
Firepower System Remediation API Guide

https://support.sourcefire.com/downloads
https://support.sourcefire.com/downloads

C H A P T E R 2

Planning and Packaging Your Remediation
Module

Planning the development of a custom remediation module consists of the tasks listed in the following
table, which indicates where to find information and guidance on each task area.

Data Available from the Remediation Subsystem
Custom remediation modules can receive two kinds of data from the remediation subsystem:

 event data, which includes a variety of data about the correlation policy that was violated and about
the original triggering event that caused the policy violation

 instance configuration data, which includes values entered in the web interface when an instance of
a remediation is configured

These two types of data incorporate both the data about the network traffic or change that triggered the
rules in the violated policy, and the configured instance of the remediation that runs in response to that
policy violation. See “Correlation Policies” and “Configuring Remediations” in the Firepower System User
Guide for more information about creating, configuring and using correlation policies and remediations.

See the following sections for more information:

 Event Data, page 2-2 describes how event data is provided to your remediation module and lists the
correlation event data available to your module.

 Instance Configuration Data, page 2-8 explains how instance.config files are made available to
your remediation module and describes the types of data they may include.

Table 2-1 Remediation Module PlanningTasks

For guidance on ... Look in...

performing a functional analysis and the
importance of understanding the remediation
subsystem concept of operations

Overview of the Development and Installation
Process, page 4-2

reviewing the data available from the
remediation subsystem

Data Available from the Remediation Subsystem,
page 2-1

using the return code function of the remediation
subsystem

Data Returned by Modules, page 2-12

coordinating your software development and
generating the module.template file

Communicating with the Remediation Subsystem,
page 3-1

packaging the remediation module and installing
it

Packaging and Installing Your Module, page 2-12
2-1
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
Event Data
Event data is one type of information available to your remediation module. Event is information about
intrusion, correlation, and other event types that the Firepower Management Center generates when
rules in a correlation policy trigger. You specify the event data fields to be sent for each remediation type
in your module using the pe_item element in the module.template file.

When the remediation daemon sends event data to your remediation module, it passes the name of the
remediation first, followed by the pe_item fields in the order in which they appear in module.template.

The remediation daemon handles any undefined pe_item fields from the database differently depending
on whether they field is marked as optional or required in module.template. See Handling Undefined Data
Elements, page 4-6.

For details on specifying event data for remediations, see Defining Remediation Types, page 3-20. When
specifying the pe_item element, you must use the field names provided in the tables below.

The following table describes data available about the original event that triggered the correlation policy
violation. Note that some fields in this table are event specific. These fields are set to zero when not
applicable for the specific type of triggering event.

Table 2 Triggering Event Data

Name Description Field Type Bytes

Transport Protocol The transport protocol (TCP, UDP, IP, ICMP) of the packet
that triggered the intrusion or discovery event that caused
the policy violation.

ip_protocol uint8_t 1

Network Protocol The network protocol (for example, ethernet) of the
packet that triggered the intrusion or discovery event that
caused the policy violation.

net_protocol uint16_t 2

Triggering Event
Type

A numeric identifier for the type of event that triggered
the correlation event. Values are:

1 = intrusion
2 = network discovery, connection, or connection
summary
3 = user awareness
4 = white list

event_type uint8_t 1

Triggering Event
ID

An internal identifier for the event that triggered the
correlation event. Set only for intrusion events. Set to 0
for other event types.

event_id uint32_t 4

Triggering Event
Time

Content varies by event type:

for intrusion, network discovery, connection, and user
awareness events: UNIX timestamp of the triggering
event

for connection summaries: correlation event time (that is,
policy_tv_sec)

for white list events: set to 0

tv_sec uint32_t 4

Triggering Event
Time (usec)

The microsecond increment of the event time. Set to 0 if
granularity is not available.

tv_usec uint32_t 4

Triggering Event
Description

A text description of the original event that triggered the
correlation event. Content varies by event type.

description char * Max
1024
2-2
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
Triggering Event
Sensor ID

The internal identifier of the sensor where the triggering
event occurred.

Primarily for Cisco internal use, not typically used for
remediations.

sensor_id uint32_t 4

Triggering Event
Generator ID

Content varies by event type:

for intrusion events: the generator ID (GID) for the event.
See the Firepower System User Guide for a complete list
of GIDs.

for network discovery and connection events: the
network discovery event type.

for connection summaries: set to 4 for all.

for user awareness events: the user awareness event
type.

for white list events: set to 0.

Primarily for Cisco internal use and not typically used for
remediations.

sig_gen uint32_t 4

Table 2 Triggering Event Data (continued)

Name Description Field Type Bytes
2-3
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
Triggering Event
Signature ID

Content varies by event type:

for intrusion events: the signature ID (SID) for the event.
May not match the SID displayed in the user interface.

for network discovery and connection events: network
discovery event subtype.

for connection summaries: set to 17 for all.

for user awareness events: user awareness event
subtype

for white list events: set to 0.

Primarily for Cisco internal use and not typically used for
remediations.

sig_id uint32_t 4

Table 2 Triggering Event Data (continued)

Name Description Field Type Bytes
2-4
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
The following table describes the data available about each correlation event. Note that some of the data
elements are not populated for certain event types.

Impact Flags Impact flag value of the event. The low-order eight bits
indicate the impact level. Values are:

0x01 (bit 0) - Source or destination host is in a network
monitored by the system.

0x02 (bit 1) - Source or destination host exists in the
network map.

0x04 (bit 2) - Source or destination host is running a
server on the port in the event (if TCP or UDP) or uses the
IP protocol.

0x08 (bit 3) - There is a vulnerability mapped to the
operating system of the source or destination host in the
event.

0x10 (bit 4) - There is a vulnerability mapped to the
server detected in the event.

0x20 (bit 5) - The event caused the managed device to
drop the session (used only when the device is running in
inline, switched, or routed deployment). Corresponds to
blocked status in the Firepower System web interface.

0x40 (bit 6) - The rule that generated this event contains
rule metadata setting the impact flag to red. The source
or destination host is potentially compromised by a virus,
trojan, or other piece of malicious software.

0x80 (bit 7) - There is a vulnerability mapped to the client
detected in the event. (version 5.0+ only)

The following impact level values map to specific
priorities on the Firepower Management Center. An X
indicates the value can be 0 or 1:

gray (0, unknown): 00X00000

red (1, vulnerable): XXXX1XXX, XXX1XXXX, X1XXXXXX,

1XXXXXXX (version 5.0+ only)

orange (2, potentially vulnerable): 00X0011X

yellow (3, currently not vulnerable): 00X0001X

blue (4, unknown target): 00X00001

impact_flags uint32_t 4

Table 2 Triggering Event Data (continued)

Name Description Field Type Bytes
2-5
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
The following table defines the mask values for the correlation event message fields. These values are
used in the correlation event message to indicate which of the fields that follow the mask are valid.

Table 3 Correlation Event Data

Name Description Field Type Bytes

Correlation Event
Time

UNIX timestamp of when the correlation event
was generated.

policy_tv_sec uint32_t 4

Correlation Event
ID

The internal identification number of the event
generated by the sensor. Set only for intrusion
events.

Primarily for Cisco internal use and not typically
used for remediations.

policy_event_id uint32_t 4

Correlation
Appliance ID

The internal identification number of the
Firepower Management Center that generated the
correlation event.

Primarily for Cisco internal use and not typically
used for remediations.

policy_sensor_id uint32_t 4

Correlation Policy
ID

The internal identification number of the of the
correlation policy that was violated by the
triggering event.

Primarily for Cisco internal use and not typically
used for remediations.

policy_id uint32_t 4

Correlation Rule
ID

The internal identification number of the
correlation rule that triggered the correlation
event.

Primarily for Cisco internal use and not typically
used for remediations.

rule_id uint32_t 4

Correlation Rule
Priority

The priority assigned to the rule for the correlation
policy that generated the event. The rule may have
a different priority in another policy.
Value: 0 - 5 (0 = no priority)

priority uint32_t 4

Event-
Defined Mask

A bit field in the correlation event message that
indicates which of the fields that follow the mask
are valid. See Table 2-4Event Defined Values,
page 2-6 for the values.

Primarily for Cisco internal use and not typically
used for remediations.

defined_mask uint32_t 4

Table 2-4 Event Defined Values

Correlation Event Field Mask Value

Event Impact Flags 0x00000001

IP Protocol 0x00000002

Network Protocol 0x00000004

Source IP 0x00000008

Source Host Type 0x00000010
2-6
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
The following table describes the data available about the source host involved in the intrusion event, or
the only host involved in any other discovery event that caused the correlation policy violation. Note that
only the source IP address is guaranteed to be populated.

The following table describes the data available about the source host’s server, or only server identified
in the event that caused the correlation event. Note that only the transport protocol is guaranteed to be
populated

Source VLAN ID 0x00000020

Source Fingerprint ID 0x00000040

Source Criticality 0x00000080

Source Port 0x00000100

Source Server 0x00000200

Destination IP 0x00000400

Destination Host Type 0x00000800

Destination VLAN ID 0x00001000

Destination Fingerprint ID 0x00002000

Destination Criticality 0x00004000

Destination Port 0x00008000

Destination Server 0x00010000

Source User 0x00020000

Destination User 0x00040000

Table 2-4 Event Defined Values (continued)

Correlation Event Field Mask Value

Table 5 Source Host Data

Name Description Field Type Bytes

IP Address The IP address of the source host in the event that
triggered the policy violation. For a discovery
event, the host or initiator host’s IP address.

src_ip_addr uint32_t 4

Host Type ID The host’s recognized type (for example, router,
bridge); discovery events only.

src_host_type uint8_t 1

VLAN ID The host’s VLAN ID; discovery events only. scr_vlan_id uint16_t 2

OS Vendor The vendor of the host’s identified operating
system; discovery events only.

src_os_vendor char* max 255

OS Product The host’s identified operating system; discovery
events only.

src_os_product char* max 255

OS Version The version number of the host’s identified
operating system; discovery events only.

src_os_version char* max 255

Host Criticality A user-defined value in host and connection
events.

src_criticality uint16_t 2
2-7
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
The following table describes the data available about the destination host. This data is only available for
intrusion events.

The following table describes the data available about the destination host’s server, or the only server
identified in the event that caused the correlation event. Note that only the transport protocol is
guaranteed to be populated.

Instance Configuration Data
When a user configures a new instance of your module, they provide data requested in your
module.template document. The values provided by the user are then written into the instance.conf
document for use by your remediation program.

For each configured instance of a remediation, the remediation subsystem places an instance.conf
document in a directory with the same name as the instance. This directory is created in the directory
where your module was uploaded and installed. For example, if your module is called Firewall, it is

Table 6 Source Server Data

Name Description Field Type Bytes

Port Port on which the identified server is running. For
intrusion events, port is populated only if the
protocol is TCP or UDP.

src_port uint16_t 2

Server Server (for example, HTTP, SMTP) identified in the
event that caused the policy violation.

src_service char max 255

Table 7 Destination Host Data

Name Description Field Type Bytes

IP Address The IP address of the destination host in the event
that triggered the policy violation.

dest_ip_addr uint32_t 4

Host Type ID The destination host’s recognized type (for
example, router, bridge).

dest_host_type uint8_t 1

VLAN ID The destination host’s VLAN ID. dest_vlan_id uint16_t 2

OS Vendor The vendor of the host’s identified operating
system; discovery events only.

dest_os_vendor char* max 255

OS Product The host’s identified operating system; discovery
events only.

dest_os_product char* max 255

OS Version The version number of the host’s identified
operating system; discovery events only.

dest_os_version char* max 255

Host Criticality A user-defined value in; discovery host and
connection events.

dest_criticality uint16_t 2

Table 8 Destination Server Data

Name Description Field Type Bytes

Destination Port Port on which the identified server is running. In
the case of intrusion events, the port is populated
only if the protocol is identified as TCP or UDP.

dest_port uint16_t 2

Destination Server Server (for example, HTTP, SMTP) identified in the
event that caused the policy violation.

dest_service char max 255
2-8
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
uploaded into a directory called firewall. If you then configure an instance called block_tokyo, the
remediation subsystem creates a directory called block_tokyo in your firewall directory and places the
instance.conf there. The directory path appears as follows:

/var/sf/remediation/firewall/block_tokyo/instance.config
See Packaging Your Module, page 2-12 for more information on the directories where your module files
reside.

Your module must be able to open, read, parse, and close the instance.conf file.

Each instance.conf document contains a top level element called instance. The instance element has
two child elements: config and remediation. The following table describes the attributes and elements
available to the instance element.

For more information about the data provided in the config and remediation elements, see the
following:

 The config Element, page 2-9

 The remediation Element, page 2-11

The config Element
The config element contains the data entered into the fields rendered on the web interface in response
to the config_template element in that remediation module’s module.template document. These fields
are translated back into the elements used to specify them in the module.template document, and further
specified using the name provided as an attribute of the element rather than a child element. They can
include the following types of fields:

 boolean

 string

 integer

 password

 host

 netmask

 network

 ipaddress

 enumeration

 list

Table 2-9 instance Attributes and Child Elements

Name Type Description

name attribute Ties the data in the document to the named, configured instance and
reflects the name of the instance specified by the configuring user.

config element Contains the data entered into the instance configuration fields on the
web interface at configuration.

remediation element Contains the data entered into the web interface when configuring the
remediation for an instance.
2-9
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
See Defining the Configuration Template, page 3-4 for more details on how these fields are specified in
the module.template file.

For example, if the module.template document contains the following config_template element
definition:

<config_template>
<ipaddress>

<name>host_ip</name>
<display_name>Host IP</display_name>

</ipaddress>
<string>

<name>user_name</name>
<display_name>Username</display_name>
<constraints>

<pcre>\S+</pcre>
</constraints>

</string>
<password>

<name>login_password</name>
<display_name>Login Password</display_name>

</password>
</config_template>

The Instance Configuration screen for that element contains the following three fields:

 Host IP, which takes an IP address value.

 Username, which takes a string value that may not contain white space characters.

 Login Password, which takes a string value identified as a password.

Suppose a user configures an instance, named AdminInstance, of the remediation module and provides
the following values:

The instance.conf will contain the following:

<instance name=”AdminInstance”>
<config>

<ipaddress name=”host_ip”>192.1.1.1</ipaddress>
<string name=”user_name”>adminuser</string>
<password name=”login_password”>3admin3</password>

</config>
Note that the above example does not include </instance>. This is because the instance.conf
document for this example instance would go on to include the remediation element discussed next in
this section. If you do not require additional remediation configuration in your module, the instance.conf
returned for that module does not include remediation elements.

Table 2-10 Sample Values

Field Value

Host IP 192.1.1.1

Username adminuser

Login Password 3admin3
2-10
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Available from the Remediation Subsystem
The remediation Element
The instance element contains a remediation element for each remediation configured for that instance.
Each remediation element has, as an attribute, the name of the remediation instance (entered into the
web interface at the time the instance is configured) and the type of the remediation, which was initially
provided by the remediation_type element in the module.template document. For more information
about the module.template file, see Communicating with the Remediation Subsystem, page 3-1.

In addition, remediation elements can contain config elements. These function in the same way as
config elements that are child elements of instance, but use data originally specified in the
config_template element that is a child of remediation_type in the module.template document. The
following describes these attributes and elements.

For example, suppose the module.template document in the example provided in The config Element,
page 2-9 continues with the following:

<remediation_type name="acl_insert">
<display_name>ACL Insertion</display_name>
<policy_event_data>

<pe_item>src_ip_addr</pe_item>
<pe_item>src_port</pe_item>
<pe_item>src_protocol</pe_item>
<pe_item>dest_ip_addr</pe_item>
<pe_item>dest_port</pe_item>
<pe_item>dest_protocol</pe_item>

</policy_event_data>
<config_template>

<integer>
<name>acl_num</name>
<display_name>ACL Number</display_name>

</integer>
</config_template>
</remediation_type>

The Instance Detail page that allows you to add remediations to a created instance contains the
remediation type “ACL Insertion”. Adding “ACL Insertion” to the instance takes the user to a page that
includes a name field, which populates the name attribute value for that remediation element in the
instance.conf, and a field labelled ACL Number, which accepts an integer value.

Suppose a user adds this remediation to the AdminInstance instance and provides the following values:

Table 2-11 remediation Attributes and Child Elements

Name Type Description

name attribute Ties the data in the document to the named, configured remediation and reflects
the name specified by the configuring user.

type attribute Provides the type of remediation configured in this instance.

config element Contains the data entered into the remediation configuration fields on the web
interface at configuration.
2-11
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Data Returned by Modules
The instance.conf document written when the user saved the example configuration values would, after
the section provided in the example in The config Element, page 2-9, continue as follows:

<remediation name=”AdminRemediation” type=”acl_insert”>
<config>

<integer=”acl_num”>55</integer>
</config>
</remediation>

Note that if no more remediations were added to the instance, the instance.conf should be terminated
with </instance> at this point.

Data Returned by Modules
Remediation modules must return exit status codes, known as return codes, to the Firepower
Management Center. The Table View of Remediations in the Firepower Management Center web
interface displays a result message for each remediation launched. The return code from the remediation
program determines the result message displayed.

Return codes must be integers in the 0 to 255 range inclusive, as defined in the following table.

See Defining Exit Statuses, page 3-22 for the list of predefined codes and for directions on creating
custom codes.

Packaging and Installing Your Module
The remediation API requires that you package your remediation modules. The files that make up your
module must be provided in a gzipped tar file.

See the following sections for more information:

 Packaging Your Module, page 2-12 provides helpful tips for packaging your binaries and
module.template files for upload and installation.

 Installing Your Module, page 2-13 explains how to install your remediation module on the Firepower
Management Center.

Packaging Your Module
When packaging your remediation files for installation, keep in mind the following:

Table 2-12 Sample Values

Field Value

Remediation Name AdminRemediation

ACL Number 55

Table 2-13 Return Code Ranges

Range Use

0 - 128 Reserved for Cisco predefined return codes

129 - 255 Available for custom remediations
2-12
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Packaging and Installing Your Module
 Remediation modules must be packaged in a gzipped tarball (.tar.gz or .tgz) before you install
them.

 When you install the module, the package is extracted into
/var/sf/remediation/remediation_directory where remediation_directory is a combination of
the name attribute of the module’s module element and the data in the version element.

For example, one of the default remediation modules shipped with the Firepower Management
Center is the Cisco PIX Shun module. That module resides in /var/sf/remediation/cisco_pix_1.0.

 When extracted, your remediation module’s module.template document must reside in the top level
of the directory created to contain that module package.

 As instances of remediations are created, they are saved in a directory created in your module
directory and named for the instance.

For example, instances of the Cisco PIX Shun module might reside in
/var/sf/remediation/cisco_pix_1.0/PIX_01 and /var/sf/remediation/cisco_pix_1.0/PIX_02.

For example, you upload and install a module that is packaged in firewall.tgz and is named in the
module.template as firewall with a version value of 1.0. The system installs the module in the following
directory: /var/sf/remediation/firewall_1.0. That directory contains your module.template file and
your program binary. When you add an instance to the remediation module and name it block_tokyo, the
system creates the following directory:

/var/sf/remediation/firewall_1.0/block_tokyo
and places the instance.conf file for block_tokyo in it.

Installing Your Module
Once you have correctly packaged your remediation module, use the Modules page to install it.

To install a new module on the Remediation API:

1. Select Policies > Actions > Modules.

The Installed Remediation Modules page appears.

2. Click Browse to navigate to the location where you saved the tar.gz file that contains the custom
remediation module.

3. Click Install.

The custom remediation module installs.

4. Select Policies > Actions > Modules.

The Installed Remediation Modules table lists the module just installed. The Module Name, Version,
and Description columns match the information defined in the module.template file.

5. Add instances of your new module and associate remediations to each instance, as described in the
Firepower System User Guide.

You can use the Modules page to view the remediation modules installed on the Firepower Management
Center. The list displays custom remediation modules and Cisco-provided ones. You can also delete your
custom modules.

To view or delete a module from the Remediation API:

1. Select Policies > Actions > Modules.
2-13
Firepower System Remediation API Guide

Chapter Planning and Packaging Your Remediation Module
Packaging and Installing Your Module
The Installed Remediation Modules page appears.

2. Perform one of the following actions:

 Click the View icon to view the module.

The Module Detail page appears.

 Click the Delete icon next to the module you want to delete. You cannot delete default modules
provided by Cisco.

The remediation module is deleted from the Remediation API.
2-14
Firepower System Remediation API Guide

C H A P T E R 3

Communicating with the Remediation
Subsystem

Your remediation module must receive information from the Firepower Management Center remediation
subsystem to successfully perform its function. You configure the information that your module receives
in an XML file called module.template. Without it, the remediation subsystem cannot interact with your
remediation module.

The module.template XML file allows you to specify:

 a set of module-level declarations such as the name and version of your remediation module, a short
descriptive text, and the name of the binary file for your remediation program

 the information the module requires from the user when the user configures remediation instances
in the Firepower Management Center user interface

 the specific remediation actions, known as remediation types, that the module can perform and the
correlation event data each remediation type requires

 any custom return codes and exit status messages that your remediation program returns to the
Firepower Management Center

Before writing a module.template for your remediation module, you should understand the
module.template schema (module.template.xsd). The schema defines the elements (or tags used to
contain data) and attributes (or data used to modify the data contained in an element) you can use to
provide information to the remediation subsystem. The module.template schema is located on the DC at
/etc/sf/remediation/module.template.vsd.

The top-level element in module.template is module, in which you specify the name of the remediation
module using the name attribute. The name attribute is required and accepts a string value between 1 and
64 alphabetic characters.

Caution: You cannot use white space in the module’s name attribute value. In addition, you cannot use
punctuation marks except for underscore (_) or dash (-).
3-1
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Global Configuration
Some XML editors can read the module.template schema and automatically generate a module.template
file with a namespace and schema declaration, with the top level element and child elements and
attributes. If you choose not to use such an editor, you must include the child elements manually.

Caution: If you set your XML editor to auto-generate the namespace and schema location, you must
delete those lines before including the final version of module.template in your installation package.

The following example illustrates the module element with only the name attribute defined.

<module name="example_module">
<global_config>

<display_name/>
<version/>
<binary/>

</global_config>
<remediation_type name="">

<display_name/>
</remediation_type>
</module>

See the following sections for details about writing the rest of module.template:

 Defining the Global Configuration, page 3-2 explains how to use the global_config element to
define the name that appears for your module on the Modules page, as well as the module’s version,
binary location, and its description.

 Defining the Configuration Template, page 3-4 explains how to use the config_template element to
define the configuration information that your module requires the user to specify from the web
interface.

 Defining the Global Configuration, page 3-2 explains how to use the remediation_type element to
define the remediations the module can launch and the correlation event data that each remediation
requires.

 Defining Exit Statuses, page 3-22 explains how to use the exit_status element define the custom
exit statuses your module returns to the remediation subsystem.

Defining the Global Configuration
The first required section of module.template uses the global_config element to define global
configuration information. These attributes include the module’s name and description, which appear in
the list of remediation modules displayed on the Modules page of the Firepower Management Center
user interface. The global information also includes the module’s version and the location of the
executable program that runs when a remediation is triggered.

The following portion of the module.template schema diagram illustrates the child elements of the
global_config element.
3-2
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Global Configuration
The following table describes the child elements available to the global_config element.

Consider the following XML code, which illustrates the global configuration portion of a module.template
file.

Table 3-1 global_config Child Elements

Name Description Required?
display_name Specifies the name that appears for this remediation

module on the Modules page. The display name can
contain only alphanumeric characters and white spaces
and must be between 1 and 127 characters long. It must
be unique across remediation modules.

yes

version Specifies the version of the remediation module. This
value appears on the Modules page. The value for the
version element must begin and end with numeric
characters, but may contain period (.) characters.

Note: The combination of the name attribute of the
module element and the data in the version element
must be unique across remediation modules.

yes

binary Specifies the UNIX filename of the binary that makes up
your remediation module.

yes

description Provides a description of the remediation module and its
available remediations. The description element
appears on the Modules page. Descriptions with more
than 255 characters are truncated.

yes

run_as_root Sets a flag that allows the remediation module to run as
root on the Cisco appliance where it is installed.

Caution: Cisco recommends that you use this element
only if absolutely necessary.

no

encode_values Sets a flag that HTML-encodes user input. This allows
users to enter input that might otherwise be
unintentionally interpreted by the XML processor.

Note: If you use this element, your remediation module
must handle HTML decoding as part of its input
handling.

no
3-3
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
<global_config>
<display_name>My Firewall</display_name>
<binary>firewall_block.pl</binary>
<description>Dynamically apply firewall rules to my firewall.</description>
<version>1.0</version>
<run_as_root/>
</global_config>

In this example, the remediation module is represented by the name My Firewall in the web interface. It
runs version 1.0 of a program called firewall_block.pl, which you install using the Firepower
Management Center (see Packaging and Installing Your Module, page 2-12 for more information). The
program dynamically applies firewall rules to a specific firewall and runs as root on the Firepower
Management Center.

Defining the Configuration Template
The config_template child element of the module element specifies the types of information the user
must provide when configuring the instances that this remediation module executes (see Instance
Configuration Data, page 2-8). The user provides the information specified in this element via the
Firepower Management Center user interface. Each module element may contain only one direct child
config_template element and this element applies to all instances that are configured.

Note, however, that each remediation_type element in module.template can also contain a child
config_template element. The config_template child element under remediation_type allows you to
define information that the user must provide for each of the different remediation types. So a user will
have to configure general instance-level fields using the config_template element in the module portion,
and then, optionally, an additional set of config_template fields specific to the remediation type being
executed by the instance. For more information, see Defining Remediation Types, page 3-20.

The following diagram illustrates the child elements available to the config_template element.
3-4
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The config_template element allows you to render several basic field types in the web interface. You
choose which config_template child elements to use depending on the data you need to collect from
the user for the remediation module. All child elements of config_template are optional and can be used
as many times as needed within a config_template element. Fields are rendered on the web interface
in the order in which they are included in the config_template element.

See the following sections for more information on the child elements that represent the fields you can
use to collect configuration information on the instance configuration and remediation configuration
pages in the web interface:

 The boolean Element, page 3-6

 The integer Element, page 3-7

 The string Element, page 3-8

 The password Element, page 3-9

 The ipaddress Element, page 3-11

 The netmask Element, page 3-12

 The host Element, page 3-13

 The network Element, page 3-14
3-5
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
 The enumeration Element, page 3-15

 The list Element, page 3-16

The boolean Element
Each boolean element you use in a config_template represents a true/false choice, which appears as a
set of radio buttons labeled On or Off, users can make in the web interface. If you set the element’s
required attribute to false, an additional radio button is available, labeled Not Selected.

The following portion of the module.template schema diagram illustrates the boolean element’s child
elements.

When configuring child elements for an occurrence of a boolean element, you may only use each
available child element once. The following table describes the child elements available to the boolean
element.

The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Enabled?” that provides user with two choices: On or Off. The choice defaults to true, that
is, the radio button labeled On is preselected.

<boolean>
<name>process_enabled</name>
<display_name>Enabled?</display_name>
<default_value>true</default_value>
</boolean>

Table 2 boolean Attributes and Child Elements

Name Type Description Required?

required attribute Indicates whether specifying a value in the field is optional.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must select either On or Off. If you set the
value of the attribute to false, the web interface indicates that the
choice is optional.

no

name element Provides context to the remediation module for the value entered
in the field. Names may not contain white space and may only
contain alphanumeric characters and the underscore (_) and dash
(-) character. Names should be unique within a module.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user

does not specify a value, the remediation program uses this value
by default.

no
3-6
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The integer Element
Each integer element you use in a config_template represents a field in the web interface that accepts
an integer value.

The following diagram illustrates the child and grandchild elements of the integer element.

The following table describes the child elements available to the integer element.

Table 3 integer Attributes, Child Elements, and Grandchild Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of the
attribute to false, the web interface indicates that providing a value
is optional.

no

name element Provides context to the remediation module for the value entered in
the field. Names may not contain white space and may only contain
alphanumeric characters and the underscore (_) and dash (-)
character.Names should be unique within a module.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user

does not specify a value, the remediation program uses this value
by default.

no

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no

constraints element Constrains the values that the user can enter in this field to fall
between specified minimum and maximum values, inclusive.

The constraints element has two child elements: min and max.
Each is an optional, single-occurrence child element that accepts
an integer value.

no
3-7
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Rate”, which accepts an integer value between 0 and 500 but defaults to 430.

<integer>
<name>rate</name>
<display_name>Rate</display_name>
<default_value>430</default_value>
<constraints>

<min>0</min>
<max>500</max>

</constraints>
</integer>

The string Element
Each string element you use in a config_template represents a field in the web interface that accepts
a string value.

The following diagram illustrates the child elements of the string element instance.

The following table describes child elements available to the string element.

Table 4 string Attributes, Child Elements, and Grandchild Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its value
to true), users must provide a value. If you set the value of the
attribute to false, the web interface indicates that providing a value
is optional.

no

name element Provides context to the remediation module for the value entered in
the field. Names may not contain white space and may only contain
alphanumeric characters and the underscore (_) and dash (-)
character.Names should be unique within a module.

yes

display_name element Specifies the web interface label for this field. yes
3-8
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Username”, which accepts a string value that is at least eight characters long and does
not use white spaces.

<string>
<name>user_name</name>
<display_name>Username</display_name>
<constraints>

<min_length>8</min_length>
<pcre>\S+</pcre>

</constraints
</string>

The password Element
Each password element you use in a config_template represents a field in the web interface that accepts
a string comprised of alphanumeric characters.

The following diagram illustrates the child and grandchild elements of the password element instance.

default_value element Specifies the default value for this field.If the web interface user does
not specify a value, the remediation program uses this value by
default.

no

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no

constraints element Constrains the values that the user can enter in this field.

The constraints element has three child elements: min_length,
max_length and pcre. The min_length and max_length elements are
optional, single-occurrence child elements that accept integer values
and specify a range for the acceptable length of string values. The
pcre element is optional; use it to specify a Perl-compatible regular
expression that provides additional constraints.

no

Table 4 string Attributes, Child Elements, and Grandchild Elements (continued)

Name Type Description Required?
3-9
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following table describes the child elements available to the password element.

Table 5 password Attributes, Child Elements, and Grandchild Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of
the attribute to false, the web interface indicates that providing
a value is optional.

no

name element Provides context to the remediation module for the value entered
in the field. Names may not contain white space and may only
contain alphanumeric characters and the underscore (_) and dash
(-) character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user

does not specify a value, the remediation program uses this value
by default.

no

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no

constraints element Constrains the values that the user can enter in this field.

The constraints element has three child elements: min_length,
max_length and pcre. The min_length and max_length elements
are optional, single-occurrence child elements that accept
integer values and specify a range for the acceptable length of
password values. The pcre element is optional; use it to specify a
Perl-compatible regular expression that provides additional
constraints.

no
3-10
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Login Password”, which accepts an alphanumeric string between 6 and 12 characters
long.

<password>
<name>login_password</name>
<display_name>Login Password</display_name>
<constraints>

<min_length>6</min_length>
<max_length>12</max_length>

</constraints>
</password>

The ipaddress Element
Each ipaddress element you use in a config_template represents a field in the web interface that
accepts a single IP address. IP addresses may be entered in the form of a fully formed dotted quad (for
example, 1.1.1.1).

The following diagram illustrates the child elements of the ipaddress element.

When configuring child elements for an occurrence of an ipaddress element, you may only use each
available child element once. The following table describes the child elements available to the ipaddress
element.

Table 6 ipaddress Attributes and Child Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of the
attribute to false, the web interface indicates that providing a value
is optional.

no

name element Provides context to the remediation module for the value entered in
the field. Names may not contain white space and may only contain
alphanumeric characters and the underscore (_) and dash (-)
character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. no
example element Provides an example of the input that the remediation module

expects to receive.

Note: This value is not displayed in the web interface.

no
3-11
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Mail Server,” which accepts a single IP address.

<ipaddress>
<name>mail_server</name>
<display_name>Mail Server</display_name>
</ipaddress>

The netmask Element
Each netmask element you use in a config_template represents a field in the web interface that accepts
netmask values. Netmask values can be denoted by a dotted quad (255.255.255.255) or a CIDR mask
(/8).

The diagram illustrates the child elements of the netmask element.

When configuring child elements for an occurrence of a netmask element, you may only use each
available child element once. The following table describes the child elements available to the netmask
element.

Table 7 netmask Attributes and Child Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its value
to true), users must provide a value. If you set the value of the
attribute to false, the web interface indicates that providing a value
is optional.

no

name element Provides context to the remediation module for the value entered in
the field. Names may not contain white space and may only contain
alphanumeric characters and the underscore (_) and dash (-)
character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user does

not specify a value, the remediation program uses this value by
default.

no

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no
3-12
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Netmask”, which accepts netmask values denoted by a dotted quad or CIDR mask and
defaults to 255.255.255.255.

<netmask>
<name>netmask</name>
<display_name>Netmask</display_name>
<default_value>255.255.255.0</default_value>
</netmask>

The host Element
Each host element you use in a config_template represents a field in the web interface that accepts a
single IP address or string.

The following diagram illustrates the child elements of the host element.

When configuring child elements for an occurrence of a host element, you may only use each available
child element once. The following table describes the child elements and attributes available to the host
element.

Table 8 host Attributes and Child Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of
the attribute to false, the web interface indicates that providing a
value is optional.

no

name element Provides context to the remediation module for the value entered
in the field. Names may not contain white space and may only
contain alphanumeric characters and the underscore (_) and dash
(-) character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field.If the web interface user

does not specify a value, the remediation program uses this value
by default.

no

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no
3-13
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Host Name”, which accepts an IP address or string. The web interface also provides
example text of “192.10.1.3.”

<host>
<name>hostname</name>
<display_name>Host Name</display_name>
<example>192.10.1.3</example>
</host>

The network Element
Each network element you use within a config_template represents a field in the web interface. A
network field accepts an IP address (assumed to be a single IP address, that is, an IP address with /32
netmask) or a CIDR block.

The following diagram illustrates the child elements of the network element.

When configuring child elements for an occurrence of a network element, you may only use each
available child element once. The following table describes the child elements and attributes available to
the network element.

Table 9 network Attributes and Child Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of
the attribute to false, the web interface indicates that providing a
value is optional.

no

name element Provides context to the remediation module for the value entered
in the field. Names may not contain white space and may only
contain alphanumeric characters and the underscore (_) and dash
(-) character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user

does not specify a value, the remediation program uses this value
by default.

no

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no
3-14
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Monitored Network”, which accepts either a /32 IP address or an IP address and netmask
value, and which has a default value of 192.168.1.0/24.

<network>
<name>monitored_network</name>
<display_name>Monitored Network</display_name>
<default_value>192.168.1.0/24</default_value>
</network>

The enumeration Element
Each enumeration element you use in a config_template represents a drop-down list of strings
displayed in the web interface. Users can select a single value from this list.

The following diagram illustrates the child and grandchild elements of the enumeration element.

The following table describes the child elements and attributes available to the enumeration element.

Table 10 enumeration Attributes, Child Elements, and Grandchild Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of the
attribute to false, the web interface indicates that providing a value
is optional.

no

name element Provides context to the remediation module for the value entered in
the field. Names may not contain white space and may only contain
alphanumeric characters and the underscore (_) and dash (-)
character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user

does not specify a value, the remediation program uses this value by
default.

no
3-15
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following portion of a config_template element definition indicates that the web interface displays
a field labeled “Day”, which allows users to select one of the values provided (Monday, Tuesday,
Wednesday, Thursday, and Friday).

<enumeration>
<name>day</name>
<display_name>Day</display_name>
<constraints>

<value>Monday</value>
<value>Tuesday</value>
<value>Wednesday</value>
<value>Thursday</value>
<value>Friday/value>

</constraints>
</enumeration>

The list Element
Each list element you use in a config_template represents a field in the web interface that allows users
to enter a list of values, one per line, whose type is specified by the required item_type child element.

The following diagram illustrates the child and grandchild elements of the list element.

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no

constraints element Specifies the values that the user can enter in this field.

The constraints element has one required child element, value,
that accepts a string that represents one choice for the users. Use
multiple value elements to provide multiple choices to the user.

yes

Table 10 enumeration Attributes, Child Elements, and Grandchild Elements (continued)

Name Type Description Required?
3-16
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following table describes the child elements available to the list element.

Table 11 list Attribute and Child Elements

Name Type Description Required?

required attribute Indicates whether users must provide a value in the field.

This attribute defaults to true. You are not required to use this
attribute. Therefore, if you do not use it (or if you explicitly set its
value to true), users must provide a value. If you set the value of
the attribute to false, the web interface indicates that providing a
value is optional.

no

name element Provides context to the remediation module for the value entered
in the field. Names may not contain white space and may only
contain alphanumeric characters and the underscore (_) and dash
(-) character. Names should be unique within modules.

yes

display_name element Specifies the web interface label for this field. yes
default_value element Specifies the default value for this field. If the web interface user

does not specify a value, the remediation program uses this value
by default.

no
3-17
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
The following list describes the child elements available to the item_type element, which are similar to
the child elements of the config_template element; the only difference is that item_type child elements
do not use the required attribute. Each instance of the item_type element can use only one child
element:

 boolean_li indicates that the list accepts multiple Boolean values (see The boolean Element,
page 3-6).

 integer_li indicates that the list accepts multiple integer values (see The integer Element,
page 3-7).

 string_li indicates that the list accepts multiple string values (see The string Element, page 3-8).

 password_li indicates that the list accepts multiple password values (see The password Element,
page 3-9).

 ipaddress_li indicates that the list accepts multiple ipaddress values (see The ipaddress Element,
page 3-11).

 network_li indicates that the list accepts multiple network values (see The network Element,
page 3-14).

 netmask_li indicates that the list accepts multiple netmask values (see The netmask Element,
page 3-12).

 host_li indicates that the list accepts multiple host values (see The host Element, page 3-13).

 enumeration_li indicates that the list accepts multiple values as defined by the value child elements
of the enumeration_li element’s constraints child element (see The enumeration Element,
page 3-15).

The following portion of a config_template element definition indicates that the web interface should
allow the user to provide a list of integers between zero and 500 inclusive, one per line, in a field labeled
“Integer List”.

<list>
<name>list_integer</name>
<display_name>Integer List</display_name>
<example>Constrained value [0-500]</example>
<item_type>

<integer_li>
<constraints>

<min>0</min>
<max>500</max>

</constraints>
</integer_li>

</item_type>

example element Provides an example of the input that the remediation module
expects to receive.

Note: This value is not displayed in the web interface.

no

item_type element Specifies the type of value that can appear in this field. The value
type is specified by a child element. Valid child elements are listed
below.

no

Table 11 list Attribute and Child Elements (continued)

Name Type Description Required?
3-18
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining the Configuration Template
</list>

Sample Configuration Template
This section provides a sample config_template element definition, which governs both the web
interface appearance and the types of information the remediation module must receive from the user.

<config_template>
<ipaddress>

<name>host_ip</name>
<display_name>Host IP</display_name>

</ipaddress>
<string>

<name>user_name</name>
<display_name>Username</display_name>

</string>
<password>

<name>login_password</name>
<display_name>Connection Password</display_name>

</password>
<password>

<name>root_password</name>
<display_name>Enable Password</display_name>

</password>
</config_template>

The above template renders four fields on the web interface. The following table describes each field.

The following screen illustrates how these fields appear on the web interface. You must provide the data
requested by these fields to configure the remediation module from the web interface.

Table 3-12 Fields Created by the Sample ConfigurationTemplate

Field Description

Host IP Accepts an IP address that the remediation module identifies as host_ip.

Username Accepts a string that the remediation module identifies as user_name.

Connection Password Accepts an alphanumeric password string that the remediation module
identifies as login_password.

Enable Password Accepts an alphanumeric password string that the remediation module
identifies as root_password.
3-19
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining Remediation Types
Defining Remediation Types
Remediation types describe the actions, or remediations, taken by the device that is governed by the
remediation module. Each remediation_type element you use in module.template represents one of
those remediations. Remediations are triggered by correlation event data from the remediation
subsystem. For more information see Event Data, page 2-2.

The following diagram illustrates the child elements of the remediation_type element.

The following table describes the attributes and child elements available to the remediation_type
element.
3-20
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining Remediation Types
The following portion of a module.template file illustrates several remediation_type element
definitions.

<remediation_type name="block_src">
<display_name>Block Source</display_name>
<policy_event_data>

<pe_item>src_ip_addr</pe_item>
<pe_item>src_port</pe_item>
<pe_item>src_protocol</pe_item>

</policy_event_data>
</remediation_type>
<remediation_type name="block_dest">
<display_name>Block Destination</display_name>
<policy_event_data>

<pe_item>dest_ip_addr</pe_item>
<pe_item>dest_port</pe_item>
<pe_item>dest_protocol</pe_item>

</policy_event_data>
</remediation_type>
<remediation_type name="acl_insert">
<display_name>ACL Insertion</display_name>
<policy_event_data>

<pe_item>src_ip_addr</pe_item>
<pe_item>src_port</pe_item>
<pe_item>src_protocol</pe_item>
<pe_item>dest_ip_addr</pe_item>
<pe_item>dest_port</pe_item>
<pe_item>dest_protocol</pe_item>

</policy_event_data>
<config_template>

<integer>
<name>acl_num</name>

Table 13 remediation_type Attributes and Child Elements

Name Type Description Required?
name attribute Provides context to the remediation module for the remediation

type.

This attribute is required and accepts a string between 1 and 64
characters, inclusive. Names may not contain white space and may
only contain alphanumeric characters and the underscore (_) and
dash (-) character. remediation_type names must be unique within
each module.

yes

display_name element Labels the remediation type on the web interface. yes
policy_event_data element Specifies the correlation event data that the remediation module

needs to receive from the remediation subsystem.

The policy_event_data has one child element, pe_item, that
represents a specific correlation event data item. Use multiple
pe_item elements to provide multiple correlation event data items.
For more information on appropriate correlation event data values,
see Event Data, page 2-2.

no

config_template element Specifies the information the user must provide when configuring an
instance of this remediation module. For more information, see
Defining the Configuration Template, page 3-4.

no
3-21
Firepower System Remediation API Guide

Chapter Communicating with the Remediation Subsystem
Defining Exit Statuses
<display_name>ACL Number</display_name>
</integer>

</config_template>
</remediation_type>

The example above contains 3 remediation types: block_src, block_dest, and acl_insert. Each of
these requires specific correlation event (pe_item) data. The acl_insert remediation type also requires
configuration data, which is specified in its config_template child element; users must provide an ACL
number when they configure instances of that type.

Defining Exit Statuses
The remediation subsystem expects to receive an exit status, or return code, in the form of an integer
from your remediation module.

Cisco provides a set of predefined exit status messages your remediation module can return. You can
return predefined exit statuses, which correspond to integer values between 1 and 128, inclusive. The
following lists and describes these predefined exit status codes.

Alternatively, your module may return integers between 129 and 254, inclusive, as custom exit statuses.
If your remediation module returns custom exit statuses, you must define the set of exit statuses it can
return. Each exit_status element you use in module.template represents a custom exit status that your
remediation module can return. For more information, see Data Returned by Modules, page 2-12.

The exit_status element accepts a string that describes a return code. In addition, the element requires
an attribute, value, that accepts a unique integer between 129 and 255. This attribute associates
remediation module return codes with their descriptions, which the user can see in remediation status
event views.

The following example illustrates valid custom exit_status elements.

<exit_status value="138">syslog error</exit_status>
<exit_status value="139">unknown error</exit_status>

Table 3-14 Predefined Exit Statuses

Exit Status Description

0 Successful completion of remediation.

1 Error in the input provided to the remediation module.

2 Error in the remediation module configuration.

3 Error logging into the remote device or server.

4 Unable to gain required privileges on remote device or server.

5 Timeout logging into remote device or server.

6 Timeout executing remote commands or servers.

7 The remote device or server was unreachable.

8 The remediation was attempted but failed.

10 A white-list match was found.

11 Failed to execute remediation program

20 Unknown/unexpected error.
3-22
Firepower System Remediation API Guide

C H A P T E R 4

Working with the Remediation SDK
Understanding the Remediation SDK

In addition to deploying Cisco-provided remediation modules, you can install and run your own custom
remediations to automate responses to violations of associated correlation policies. Cisco provides a
software developer kit (SDK) that you can download from the Support Site to help you get started.

Purpose of the SDK
Using the SDK and the information in this chapter of the Cisco Remediation API Guide, you can:

 Practice deploying a simple remediation module to gain familiarity with the process. Installation,
configuration, and removal are easy.

 Inspect the source code of a remediation program to see one way to use the API to interact with the
remediation subsystem and perform multiple remediation functions.

Caution: The syslog module in the SDK is not intended for production use.

Please note that you can use the Cisco-provided modules already loaded on the Firepower Management
Centeras a reference resource while you develop. All of these modules are accessible at
/var/sf/remediation_modules on the Firepower Management Center. Each installed module has a .tgz
package in this directory. For information on the modules, see Cisco-Provided Remediation Modules,
page 1-3.

Description of the SDK
The remediation SDK has a syslog alert remediation module in two versions, Perl and C. To use it, you
need a syslog server running and receiving remote traffic.

The module provides two remediation types:

 Simple_Notification - generates syslog alerts with the source IP address, source port (if available),
and IP protocol (if available) for the triggering event.

 Complete_Notification - generates a syslog alert with the same fields as the simple notification,
and also includes the destination IP address, destination port, and a severity indicator for the
triggering event.

As with all remediation modules, you enter a small amount of configuration in the web interface to add
instances of the module. Each instance targets a particular device on your network (in this case a syslog
server) and runs the remediation for the instance. To run the Complete_Notification remediation type,
you select a syslog facility level not required for the Simple_Notification remediation type.

See the following table for a list of the Perl version files.
4-1
Firepower System Remediation API Guide

Chapter Working with the Remediation SDK
Overview of the Development and Installation Process
See the following table for a list of the C version files.

Downloading the SDK
To download the remediation SDK:

1. Access the support website at https://support.sourcefire.com/downloads.

2. Select a software version, then under Product Category, select Software. The download link for the
remediation SDK is in the api portion of the page.

3. Unpack the .zip file in a convenient folder on your client machine.

Overview of the Development and Installation Process
The steps below form a checklist of tasks that need to be performed to create, install, and configure a
custom remediation module. Some of the steps involve procedural and descriptive details that are
explained in cross-referenced sections of the Remediation API Guide or the Firepower System User
Guide.

To develop, install, and configure a custom remediation module, you must:

1. Identify the condition you want to mitigate and the actions that appropriately resolve the detected
condition in your environment.

2. Familiarize yourself with data elements that can be obtained from the remediation subsystem. See
Data Available from the Remediation Subsystem, page 2-1 for definitions of all available fields that
the Firepower Management Center can provide for your remediation.

You should also understand the return code functionality built into the remediation subsystem. See
Defining Exit Statuses, page 3-22 for information.

Table 4-1 Sample Perl Module

Included Files Description

syslog.pl The program that executes the syslog alert when the correlation policy associated
it with is violated.

module.template Module configuration file. Defines required event data, required information to
collect in the web interface when users create instances, and other essential setup
parameters.

Makefile Sample makefile to package the files in a remediation module for installation on the
Firepower Management Center.

Table 4-2 Sample C Module

Included Files Description

syslogc.c The program that executes the syslog alert when the correlation policy associated
it with is violated.

module.template Module configuration file. Defines required event data, required information to
collect in the web interface when users create instances, and other essential setup
parameters.
4-2
Firepower System Remediation API Guide

https://support.sourcefire.com/downloads

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
3. Generate a high-level design that identifies all the remediation actions (remediation types) that your
program needs to address.

4. Write your remediation program so that it addresses all the functions necessary for the desired
remediations. Remediation module programs may be written in bash, tsch, Perl or C. Develop your
program using the technical guidance provided in Notes for Remediation Program Developers,
page 4-3.

5. Create the module template file for your remediation module. For an understanding of the data
elements and syntax of the module template, see the chapter Communicating with the Remediation
Subsystem, page 3-1.

You can save time by editing an existing module.template file to start with.

6. Package your remediation module as described in Packaging Your Module, page 2-12.

7. Install the module on the Firepower Management Center using the Policy and Response component
as described in Installing Your Module, page 2-13. You will load the package on the Firepower
Management Center and proceed as if you were configuring one of the Cisco-provided modules.

8. Ensure that the individual remediation types in your remediation module are assigned as responses
to the correct correlation rules in your defined correlation policies. See the Firepower System User
Guide for procedure details.

Notes for Remediation Program Developers
When you have defined the required scope and functionality of your remediation program and understood
the data elements available for your remediation actions, you can write the remediation program.

Remediation module programs may be written in bash, tsch, Perl or C.

The following table indicates where to find information on topics of interest.

Table 4-3 Programmer Notes

To learn more about... Look in...

the file structure and workflow environment of the
remediation subsystem

Understanding the Remediation Subsystem File
Structure, page 4-4

implementing multiple remediation types in a
remediation program

Implementing Remediation Types in a
Remediation Program, page 4-4

the remediation subsystem file structure Understanding the Remediation Subsystem File
Structure, page 4-4

the interactions of the remediation program and the
Firepower Management Center remediation
subsystem

Understanding the Remediation Program
Workflow, page 4-5

the order in which parameters are passed from the
Firepower Management Center to the remediation
module

The Order of Command Line Parameters,
page 4-5

how the remediation daemon handles undefined
data elements

Handling Undefined Data Elements, page 4-6

return codes from the remediation program Handling Return Codes, page 4-6
4-3
Firepower System Remediation API Guide

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
Implementing Remediation Types in a Remediation Program
The remediation daemon on the Firepower Management Center specifies the remediation name as the
first argument on the command line when it launches the remediation program. The code snippet below
from the SDK Perl program, syslog.pl, shows one way your program can branch to the appropriate
remediation function. The program runs either SimpleNotification() or CompleteNotification(),
based on the content of $remediation_config, which is set by the first field from the remediation
daemon. The sample also shows the use of return codes which are discussed in Handling Return Codes,
page 4-6.

Call the appropriate function for the remediation type
my $rval = 0;
if($remediation_config->{type} eq "Simple_Notification")
{
$rval = SimpleNotification($instance_config, $remediation_config,
\@pe_event_data);
}
elsif($remediation_config->{type} eq "Complete_Notification")
{
$rval= CompleteNotification($instance_config,$remediation_config,
\@pe_event_data);
}
else
{
warn "Invalid remediation type. Check your instance.conf\n";
exit(CONFIG_ERR);
}
exit($rval);

You declare the names of all remediation types in the module.template file, and associate remediation
types with each instance as you add the instance via the web interface. The remediation type that is
executed by the instance is recorded in the instance.config file which is stored in the instance.config
subdirectory described in Understanding the Remediation Subsystem File Structure, page 4-4.

Understanding the Remediation Subsystem File Structure
The root directory of each remediation module is derived from the remediation module name and version
number, both of which are declared in the module.template file. See The config Element, page 2-9 for
details on the elements of module.template.

If you install a module packaged in syslog.tgz with the name syslog and version 1.0 in module.template,
the system puts the module in the following directory: /var/sf/remediation/syslog_1.0. That directory
contains the module.template file and the remediation program binary for the module.

When you add an instance of the remediation and name the instance log_tokyo, the system creates the
following directory:

/var/sf/remediation/syslog_1.0/log_tokyo

runtime modes for the remediation program Important Global Configuration Elements,
page 4-6

alternative encoding of user input Important Global Configuration Elements,
page 4-6

Table 4-3 Programmer Notes (continued)

To learn more about... Look in...
4-4
Firepower System Remediation API Guide

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
and places a file named instance.conf in it. The instance.conf file, which is in XML format, contains
the configuration information for the log_tokyo instance.

The following Linux command sequence illustrates the directory structure described above.

cd /var/sf/remediations
ls
NMap_perl_2.0 SetAttrib_1.0 cisco_pix_1.0
cisco_ios_router_1.0 syslog_perl_0.1
cd syslog_perl_0.1
ls
log_chicago log_tokyo module.template syslog.pl
cd log_tokyo
ls
instance.conf

Note that the instance.conf file contains the name of the remediation type that the log_tokyo instance
runs. In the above example, the user who added the log_tokyo instance could have configured it to run
either remediation type defined for the syslog remediation module: Simple_Notification or
Complete_Notification.

For details on the elements in the instance.conf XML file, see Instance Configuration Data, page 2-8.

Understanding the Remediation Program Workflow
When the Firepower Management Center executes a remediation instance, the remediation daemon
launches the remediation program from the instance subdirectory and supplies data from the
instance.conf file to the remediation program as command line arguments.

An example will illustrate the process. If a policy violation launches a syslog instance named log_tokyo,
which calls the remediation named Simple_Notification with a source IP address of 1.1.1.1 and a
destination IP address of 2.2.2.2, the Firepower Management Center sets the working directory to
/var/sf/remediations/Syslog_1.0/log_tokyo (that is, the instance.conf subdirectory) and executes
the remediation binary, syslog.pl. The daemon’s command line syntax will be as follows:

../syslog.pl Simple_Notification 1.1.1.1 2.2.2.2
Note in particular that the syslog.pl executable is in the parent directory of the instance.conf
subdirectory.

When the command runs in this way, the syslog.pl binary can load the information in instance.conf file
because it is in the current directory. If the binary needs to load any modules or other files in the parent
directory (/var/sf/remediations/Syslog_1.0 in this case), the code must explicitly load them from the
parent directory; that is, it must provide a path starting with "../". Otherwise the binary will not be able
to find the files that it needs.

In Perl, you can also deal with this issue using the lib() function as follows:

use lib("../");
Your program must be able to open, read, parse, and close the instance.conf file.

The Order of Command Line Parameters
When the remediation daemon passes event data to your remediation module, it passes the name of the
remediation followed by the correlation event data in the order in which the fields are specified in
module.template. In module.template, each field to be passed to your module is declared using the
<pe_item> tag.
4-5
Firepower System Remediation API Guide

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
If a pe_item is set to optional in module.template and is undefined (meaning there is no value for the
specific pe_item), the remediation daemon passes “undefined” or null to your module. If pe_item is set
to required in module.template but is undefined, the remediation daemon logs a message to the
remediation log stating that no value is available, and does not execute your remediation module binary.
You can view the remediation log in the web interface where it is called the Table View of Remediations.
See the Firepower System User Guide for details on how to access and use this view.

Handling Undefined Data Elements
The remediation daemon handles undefined data items differently, depending on whether an item is
marked as optional or required in module.template. Undefined means that the Firepower Management
Center database has no value for the item. The daemon’s processing is as follows:

 If the undefined pe_item is set to optional in module.template, the daemon passes “undefined” or
null to your module.

 If the undefined pe_item is set to required in module.template, the daemon does not execute the
remediation and logs a message to the remediation log stating that no value is available.

Handling Return Codes
The Firepower Management Center waits for a return code for each instance and records the code in the
remediation log. For information on predefined and custom return codes, see Defining Exit Statuses,
page 3-22.

The Table View of Remediations in the web interface of the Firepower Management Center displays the
results of each launched remediation. See the Firepower System User Guide for information on accessing
and using the Table View of Remediations.

Important Global Configuration Elements
You can enable the remediation API features described in the table below by setting their corresponding
elements in the module.template file. For configuration details, see Defining the Global Configuration,
page 3-2.

Table 4-4 Features Enabled in Global Configurations of module.template

To enable this feature... Set this module.template parameter ...

run remediation program as
root

run_as_root

Warning: Cisco recommends that you use this element only if absolutely
necessary.

HTML-encoding of user input encode_values

Note: If you use this element, your remediation module must handle
HTML decoding as part of its input handling.
4-6
Firepower System Remediation API Guide

	Version 6.0 November 9, 2015
	Prerequisites
	Firepower System
	Programming Requirements and Support
	Cisco-Provided Remediation Modules

	The Remediation Subsystem
	Understanding Remediation Subsystem Architecture
	Remediation Subsystem Components
	Remediation Module Architecture

	Using the Remediation Subsystem
	Remediation Resources
	Data Available from the Remediation Subsystem
	Event Data
	Instance Configuration Data
	The config Element
	The remediation Element

	Data Returned by Modules
	Packaging and Installing Your Module
	Packaging Your Module
	Installing Your Module

	Defining the Global Configuration
	Defining the Configuration Template
	The boolean Element
	The integer Element
	The string Element
	The password Element
	The ipaddress Element
	The netmask Element
	The host Element
	The network Element
	The enumeration Element
	The list Element
	Sample Configuration Template

	Defining Remediation Types
	Defining Exit Statuses
	Understanding the Remediation SDK
	Purpose of the SDK
	Description of the SDK
	Downloading the SDK

	Overview of the Development and Installation Process
	Notes for Remediation Program Developers
	Implementing Remediation Types in a Remediation Program
	Understanding the Remediation Subsystem File Structure
	Understanding the Remediation Program Workflow
	The Order of Command Line Parameters
	Handling Undefined Data Elements
	Handling Return Codes
	Important Global Configuration Elements

