

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 19

Tutorial

The Total Newbie’s Introduction to Heat
Orchestration in OpenStack

OpenStack is undeniably becoming part of the mainstream cloud computing world. It
is emerging as the new standard for private clouds, and justifiably so. OpenStack is
powerful, flexible, and is continuously developed. But best of all, it has a very rich API
layer. You can do some really interesting things with those APIs, including automating
the deployment of a whole stack of infrastructure.

This tutorial is designed to introduce a new user with very basic OpenStack knowledge to the Heat orchestration

engine. I will start from very simple elements and work up to a full stack. I will walk through the process in a

(hopefully) logical manner, and use lots of examples and screen captures. No special skills are required, but you

should at least know how to navigate around the Horizon dashboard.

But first, some background info.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 19

Automated delivery has its limits
As enterprises drive more and more into cloud and on-demand computing, there comes a natural gap in
deployment. What used to take weeks with a manual request for a virtual machine can become radically reduced
through a simple service catalog and automated deployment. But simply standing up a new virtual machine with an
OS alone rarely provides any business value. There is still the often-tedious task of putting the new VM in context:
that is to say, adding on a network and some application software, as well as assigning a public IP. These tasks
are often completed as manual “post provisioning steps.”

IT departments have attempted to solve this issue in many ways. The simplest tactic is to maintain an inventory of
images or templates such as a Windows image with SQL Server installed. This solution has the virtue of being
simple, but over time creates its own problems. Individual templates need to be patched, in some cases licenses
applied, and can quickly fall out of date. In addition, it is not long before a huge library of image templates need be
maintained. Moreover, a single server is seldom adequate for an application. So the problem becomes
compounded.

What is orchestration, and why you should care
The solution lies in orchestration. Quite simply, orchestration is the ability to automate the deployment and
configuration of infrastructure. More than just standing up virtual servers, it also manages scripts used to add VMs
to networks, stands up multiple servers together as a “stack,” and even installs application software.

To put in a practical context, let’s say I want to stand up a simple stack consisting of a web server and a database
server. I want the database server to have external storage, I want the web server to have a floating IP so that I
can access it externally, and I want to do this as easily as possible, with minimal manual entry.

This is not a new problem, and as might be expected there are a variety of potential solutions. Configuration
management solutions such as Puppet and Chef allow users to automate configurations through collections of
scripts called “manifests” (Puppet) or “recipes” (Chef). Virtualization vendors such as VMware rely on cumbersome
Run Book Automation tools (itself a separate application) to automate configuration. Some solutions have even
compounded the complexity by running a master orchestrator on top of other orchestration tools, creating the so-
called “orchestrator of orchestrators.” Unsurprisingly, these solutions are not widely adopted.

What has been widely adopted is the solution provided by Amazon Web Services. AWS addressed this problem by
developing “cloud formation” templates for their users. It has the great advantage of being a declarative script,
residing in simple (and easily managed) text files.

OpenStack provides a module called Heat for orchestration, which is based on the AWS Cloud Formation
template. As with other Amazon APIs, OpenStack can even consume and understand AWS Cloud Formation
templates. More importantly, users can develop their own templates in Heat, which are simpler and arguably more
powerful.

Orchestration is not configuration management
Before we go any further, the question often arises around these lines: “We have already started using
Puppet/Chef to do some configurations. Can’t we use it?” The answer is yes, but Heat is not Puppet/Chef, and
orchestration is not configuration management. While there is certainly some overlap, Heat really shines when it
comes to configuring the infrastructure (instances, volumes, floating IPs, etc.) stacks on which applications run.
Puppet/Chef really shine when it comes to configuring and updating applications running on that infrastructure. In
fact, the stated goal of the team that developed Heat was to avoid competing with configuration management tools.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 19

Figure 1. Orchestration vs. Config management. Source - http://www.zerobanana.com/archive/2014/05/08#heat-
configuration-management

	

Orchestration through Heat and configuration management through Puppet or Chef work very well together, and
there is no reason not to use both if you have them.

	

HOT or not
There are two ways to create a template that Heat understands. Both work just fine but are not always
interchangeable. “CFN” stands for “CloudFormation” and is a format used in AWS. Heat natively understands this
format, simplifying application portability between AWS and OpenStack. CFN templates are usually (but not
always) written in JSON language.

The next is called HOT (Heat Orchestration Template). HOT templates are often (but not always) written in YAML
format. YAML stands for “Yet Another Markup Language,” and is refreshingly easy to read and understand by non-
programmers. The simplicity makes HOT templates accessible to system admins, architects, and other non-
coders. Unlike CFN, HOT is not backward compatible with AWS. However, it is OpenStack native and meant to
replace CFN over time.

NOTE:	 For	 a	 simple	 example	 of	 calling	 an	 external	 resource	 like	 Puppet	 or	 Chef	 inside	 a	
Heat	 template,	 see	 the	 blog	 post	 by	 my	 colleague	 Vallard	 Benincosa	
https://communities.cisco.com/community/technology/datacenter/cloud-‐
solutions/openstack/cisco-‐openstack-‐private-‐cloud/blog/2015/06/29/openstack-‐heat-‐
orchestration-‐with-‐user-‐data.	 	 He	 is	 using	 the	 resource	 “user	 data”	 to	 represent	 a	
configuration	 management	 tool	 like	 Puppet	 or	 Chef.	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 19

Understanding the rules
Some basic terminology is in order to help navigate the YAML structure. Here are the fundamentals:

Stack	 – This is what we are creating: a collection of VMs and their associated configuration. But in Heat, “Stack”

has a very specific meaning. It refers to a collection of resources. Resources could be instances (VMs), networks,
security groups, and even auto-scaling rules.

Template	 –Templates are the design-time definition of the resources that will make up the stack. For example,

if you want to have two instances connected on a private network, you will need to define a template for each
instance as well as the network. A template is made up of four different sections:

● Resources: These are the details of your specific stack. These are the objects that will be created or

modified when the template runs.	 Resources could be Instances, Volumes, Security Groups, Floating IPs,
or any number of objects in OpenStack.	

● Properties: These are specifics of your template. For example, you might want to specify your CentOS

instance in m1.small flavor. Properties may be hard coded in the template, or may be prompted as
Parameters.

● Parameters: These are Properties values that must be passed when running the Heat template. In HOT

format, they appear before the Resources section and are mapped to Properties.

● Output: This is what is passed back to the user. It may be displayed in the dashboard, or revealed in
command line heat	 stack-‐list or heat	 stack-‐show. In this tutorial, we will focus on Horizon instead
of command line, and not use output.

To get even deeper under the covers, Heat is architecturally composed of the sections (all installed on the
Controller nodes): heat-‐api, heat-‐api-‐cfn, and heat-‐engine. That’s all you need to know.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 19

Crawl: Hello World	
The following is a very basic template found on the OpenStack documentation page. It will define a single instance.

source	 http://docs.openstack.org/developer/heat/template_guide/hot_guide.html	 	

	

You will note that under the section called resources, I have called for just one type of resource: a server. I know
it is a server because the type tells me it is an OpenStack Nova Server (OS::Nova::Server). I have given it a
name: “my_instance”.

I want my_instance to have certain properties:

● I want this instance to be based on a certain image that I have in my OpenStack glance repository (my
image is called “centos.6-4x86-64.20120402”), and

● I want it to be a certain size or flavor (in this case “m1.small”).

● I also want to control access to this instance by injecting a key_name (I used “Skunkworks_Key”).

If you wanted to run this same template, you need only change the resource properties to match your local
environment.

How to actually run HOT
When it comes to running a Heat template, you have a few options. One is to save it as a file (use the ‘yaml’
extension such as SimpleStack.yaml). This way you can call the Heat engine from the command line tools or even
REST calls, or from the Horizon dashboard. This is the preferred method, especially for larger templates. For
smaller templates, one can just paste the code directly into Horizon. If you were to take this basic Heat template
and copy it into the Horizon dashboard, it would look something like this:

	

heat_template_version:	 2013-‐05-‐23	
	
description:	 Simple	 template	 to	 deploy	 a	 single	 compute	 instance	
	
resources:	
	 	 my_instance:	
	 	 	 	 type:	 OS::Nova::Server	
	 	 	 	 properties:	
	 	 	 	 	 	 key_name:	 Skunkworks_Key	
	 	 	 	 	 	 image:	 centos.6-‐4.x86-‐64.20120402	
	 	 	 	 	 	 flavor:	 m1.small	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 19

Figure 2. Running a template through the dashboard by pasting code

This is what it looks like when the script is being run:

Figure 3. Running the script in Horizon

After the stack is stood up, you can see it in the Horizon dashboard view.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 7 of 19

Figure 4. Topology view. Not much there in this example.

Figure 5. Resource view. Only one instance in this very simple example

Asking for input
The above example works fine, but I have hardcoded the values, which is not so useful. To make the template
more dynamic so it can re-used for different images, I will add prompts to the parameters. The basic structure stays
the same, but the template now expects the user to add some data.

	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 8 of 19

	
Notice that the parameters are defined first: It is expecting a string (text) to provide the name of the key-pair, the
image desired, and the flavor. The second part of the template is almost identical to the first example, except I
have replaced the hard-coded parameter values with “{	 get_param:	 paramName	 }.”

Notice that the flavor parameter is different from the others. I have used constraints to define a list of
acceptable flavors for this template. Whoever runs this template will get a pick list of values instead of being forced
to type in the values freehand. Also note that the options appear in the order described in the template, not
alphabetically.

Running this template into the dashboard will give me a different experience:

heat_template_version:	 2013-‐05-‐23	
	
description:	 Simple	 template	 to	 deploy	 a	 single	 compute	 instance	
	
parameters:	
	 	 key_name:	
	 	 	 	 type:	 string	
	 	 	 	 label:	 Key	 Name	
	 	 	 	 description:	 Name	 of	 key-‐pair	 to	 be	 used	 for	 compute	 instance	
	 	 image_id:	
	 	 	 	 type:	 string	
	 	 	 	 label:	 Image	 ID	
	 	 	 	 description:	 Image	 to	 be	 used	 for	 compute	 instance	
	 	 instance_type:	
	 	 	 	 type:	 string	
	 	 	 	 label:	 Instance	 Type	
	 	 	 	 description:	 Type	 of	 instance	 (flavor)	 to	 be	 used	

constraints:	
	 	 	 	 	 	 -‐	 allowed_values:	 [m1.tiny,	 m1.medium,	 m1.small]	
	 	 	 	 	 	 	 	 description:	 Value	 must	 be	 one	 of	 m1.tiny,	 m1.small	 or	 m1.medium.	
	
resources:	
	 	 my_instance:	
	 	 	 	 type:	 OS::Nova::Server	
	 	 	 	 properties:	
	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	
	 	 	 	 	 	 image:	 {	 get_param:	 image_id	 }	

	 	 	 	 	 	 flavor:	 {	 get_param:	 instance_type	 }	 	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 9 of 19

Figure 6. Parameter values are entered in Horizon at runtime

	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 10 of 19

Walk: Assembling a real stack	
So far, I have only used Heat to stand up a single server. In truth I could accomplish the same task quite simply
through the Horizon dashboard, or via CLI or REST commands. Heat really comes into value when standing up
multiple servers, adding some storage, and assigning Floating IPs. In other words, creating a stack.

I’ll build on the previous template to add more servers. It’s as simple as copying previous content and changing the
name. In my case, I will create two instances as web and database servers.

	

	

heat_template_version:	 2013-‐05-‐23	

description:	 Simple	 template	 to	 deploy	 a	 two	 compute	 instances	

	

parameters:	

	 	 key_name:	

	 	 	 	 type:	 string	

	 	 	 	 label:	 Key	 Name	

	 	 	 	 description:	 Name	 of	 key-‐pair	 to	 be	 used	 for	 compute	 instance	

	

resources:	

	 	 my_web_instance:	

	 	 	 	 type:	 OS::Nova::Server	

	 	 	 	 properties:	

	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	

	 	 	 	 	 	 image:	 Cirros.0.3.1.raw	

	 	 	 	 	 	 flavor:	 m1.small	

	 	 	 	 	 	 networks:	

	 	 	 	 	 	 	 	 -‐	 network:	 demo1-‐1029	

	

	 	 my_DB_Instance:	

	 	 	 	 type:	 OS::Nova::Server	

	 	 	 	 properties:	

	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	

	 	 	 	 	 	 image:	 Cirros.0.3.1.raw	

	 	 	 	 	 	 flavor:	 m1.medium	

	 	 	 	 	 	 networks:	

-‐ network:	 demo1-‐1029	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 11 of 19

In this case, I have copied and pasted the YAML code and just changed the name of the resource. I chose clear
names (“my_web_instance”) and kept the key name as a prompt. Note that I have also added a network

property. In my case, the image only has one virtual NIC and so only one network is required. If my image had
multiple networks and I wanted to add another, or even define ports and security groups, I could do it here.

Pump up the Volume
Building on the above, let’s add a Volume to the database server. A Volume is a new resource type in our Heat
template (remember that the other resource type is OS::Nova::Server). The new resource type is
OS::Cinder::VolumeAttachment. A quick look at the OpenStack Heat reference tells me the parameters required for
a resource of this type (here is the link:
http://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Cinder::VolumeAttachment). The
challenge is that I will need the UUID of the server to attach, as well as the ID of the Volume.

	
To get the Volume ID, I can always find it either through command line tools or even the Horizon dashboard. I can
then make the Volume ID a prompt just like the key name.

	

Figure 7. Get the ID of the Volume called Stash in the dashboard

	

It’s	 not	 intuitive,	 but	 the	 function	 to	 attach	 one	 resource	 to	 another	 resource	 is	 considered	
a	 ‘resource’	 in	 Heat.	 	 So	 it	 follows	 the	 same	 document	 alignment	 as	 creating	 a	 new	
Instance	 in	 the	 Heat	 template.	 	 Did	 I	 confuse	 you	 yet?	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 12 of 19

The next challenge is getting the UUID of the server we are creating. Since it is not yet created, I can’t look it up
like the Volume ID. Fortunately, Heat includes some nifty functions to reference other items in the template. Similar
to the “get_parame” function we used to prompt the user for info, Heat provides a “get_resource” function. This
function will return the unique ID of a resource. Since I need the UUID of “my_DB_Instance,” I will add the following
code:

{	 get_resource:	 my_DB_Instance	 }	

Armed with that ID, I can run the following HOT template:

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 13 of 19

	

heat_template_version:	 2013-‐05-‐23	

	

description:	 Simple	 template	 to	 deploy	 a	 two	 compute	 instances,	 create	 volume	
and	 attach	 it	

	

parameters:	

	 	 key_name:	

	 	 	 	 type:	 string	

	 	 	 	 label:	 Key	 Name	

	 	 	 	 description:	 Name	 of	 key-‐pair	 to	 be	 used	 for	 compute	 instance	

	 	 DB_Volume:	

	 	 	 	 type:	 string	

	 	 	 	 label:	 DB_Volume	

	 	 	 	 description:	 This	 is	 the	 unique	 ID	 of	 the	 Volume.	 	 I	 got	 it	 from	 the	 Horizon	
dashboard	 properties	 tab	

	

resources:	

	 	 my_web_instance:	

	 	 	 	 type:	 OS::Nova::Server	

	 	 	 	 properties:	

	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	

	 	 	 	 	 	 image:	 Cirros.0.3.1.raw	

	 	 	 	 	 	 flavor:	 m1.small	

	 	 	 	 	 	 networks:	

	 	 	 	 	 	 	 	 -‐	 network:	 demo1-‐1029	

	 	 my_DB_Instance:	

	 	 	 	 type:	 OS::Nova::Server	

	 	 	 	 properties:	

	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	

	 	 	 	 	 	 image:	 Cirros.0.3.1.raw	

	 	 	 	 	 	 flavor:	 m1.medium	

	 	 	 	 	 	 networks:	

	 	 	 	 	 	 	 	 -‐	 network:	 demo1-‐1029	

	 	 DB_Volume_att:	

	 	 	 	 	 type:	 	 OS::Cinder::VolumeAttachment	

	 	 	 	 	 properties:	

	 	 	 	 	 	 	 	 instance_uuid:	 {	 get_resource:	 my_DB_Instance	 }	

	 	 	 	 	 	 	 	 volume_id:	 {	 get_param:	 DB_Volume	 }	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 14 of 19

When I run the above template, I get two new instances, and attach one of them to my existing volume. In Horizon
it looks like this:

	

Figure 8. Cinder volume attached to my_DB_Instance server

It’s not intuitive, but the function to attach a resource is considered a ‘resource’ in Heat. So it follows the same
document alignment as creating a new Instance in the Heat template. It appears as a resource in Horizon’s stack
view. Note that “DB_Volume_att” has no hyperlink under the Resources column.

	

Figure 9. Horizon view of attachment as a resource

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 15 of 19

Run: Creating new resources on the fly	
Now lets take it up a notch. Instead of attaching existing volumes, I want to create a new one. Another quick check
on the documentation
(http://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Cinder::VolumeType) tells me creating a
new volume is easy. The only property required is the size of the volume (representing gigabytes). And I already
know that the “get_resource” function will give me the new Volume’s ID. So I will add the following code to my
template:

	
I have created a new Volume (just like we create new Instances) and passed the new Volume’s ID to the
“VolumeAttachment” method. Note that these are actually two additional resource types: one to create the Volume,
the other to attach it to an instance.

I can do the same thing for attaching a floating IP to my web server. The format is exactly the same, but the
resource types are different.

Now I can dynamically create servers, new floating IPs, and Volumes, and put them together to form a simple
stack. Here is the final HOT template:

DB_Volume:	

	 	 	 	 	 type:	 	 OS::Cinder::Volume	

	 	 	 	 	 properties:	

	 	 	 	 	 	 	 	 size:	 20	

	

	 	 DB_Volume_att:	

	 	 	 	 	 type:	 	 OS::Cinder::VolumeAttachment	

	 	 	 	 	 properties:	
	 	 	 	 	 	 	 	 instance_uuid:	 {	 get_resource:	 my_DB_Instance	 }	
	 	 	 	 	 	 	 	 volume_id:	 {	 get_resource:	 DB_Volume	 }	

web_floating_IP:	

	 	 	 	 	 type:	 OS::Nova::FloatingIP	

	 	 	 	 	 properties:	 	

	 	 	 	 	 	 	 	 pool:	 demo1	

	

	 	 web_floating_IP_att:	

	 	 	 	 	 type:	 OS::Nova::FloatingIPAssociation	

	 	 	 	 	 properties:	

	 	 	 	 	 	 	 	 floating_ip:	 	 {	 get_resource:	 web_floating_IP	 }	

	 	 	 	 	 	 	 	 server_id:	 {	 get_resource:	 my_web_instance	 }	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 16 of 19

 heat_template_version:	 2013-‐05-‐23	
description:	 Simple	 template	 to	 deploy	 a	 two	 compute	 instances,	 create	 volume	 and	
attach	 it.	 	 Also	 creates	 new	 floating	 IP	 and	 attaches	 to	 web	 server	

	

parameters:	

	 	 key_name:	

	 	 	 	 type:	 string	

	 	 	 	 label:	 Key	 Name	

	 	 	 	 description:	 Name	 of	 key-‐pair	 to	 be	 used	 for	 compute	 instance	

	

resources:	

	 	 my_web_instance:	

	 	 	 	 type:	 OS::Nova::Server	

	 	 	 	 properties:	

	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	

	 	 	 	 	 	 image:	 Cirros.0.3.1.raw	

	 	 	 	 	 	 flavor:	 m1.small	

	 	 	 	 	 	 networks:	

	 	 	 	 	 	 	 	 -‐	 network:	 demo1-‐1029	

	

	 	 web_floating_IP:	

	 	 	 	 	 type:	 OS::Nova::FloatingIP	

	 	 	 	 	 properties:	 	

	 	 	 	 	 	 	 	 pool:	 demo1	

	

	 	 web_floating_IP_att:	

	 	 	 	 	 type:	 OS::Nova::FloatingIPAssociation	

	 	 	 	 	 properties:	

	 	 	 	 	 	 	 	 floating_ip:	 	 {	 get_resource:	 web_floating_IP	 }	

	 	 	 	 	 	 	 	 server_id:	 {	 get_resource:	 my_web_instance	 }	

	

	 	 my_DB_Instance:	

	 	 	 	 type:	 OS::Nova::Server	

	 	 	 	 properties:	

	 	 	 	 	 	 key_name:	 {	 get_param:	 key_name	 }	

	 	 	 	 	 	 image:	 Cirros.0.3.1.raw	

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 17 of 19

	 	 	 	 	 	 flavor:	 m1.medium	

	 	 	 	 	 	 networks:	

	 	 	 	 	 	 	 	 -‐	 network:	 demo1-‐1029	

	

	 	 DB_Volume:	

	 	 	 	 	 type:	 	 OS::Cinder::Volume	

	 	 	 	 	 properties:	

	 	 	 	 	 	 	 	 size:	 20	

	

	 	 DB_Volume_att:	

	 	 	 	 	 type:	 	 OS::Cinder::VolumeAttachment	

	 	 	 	 	 properties:	

	 	 	 	 	 	 	 	 instance_uuid:	 {	 get_resource:	 my_DB_Instance	 }	

	 	 	 	 	 	 	 	 volume_id:	 {	 get_resource:	 DB_Volume	 }	

	

When I run this HOT template, I get the following view in Horizon:

	

Figure 10. The graphical stack view

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 18 of 19

	

Figure 11. The full stack resource view in Horizon

Note that this is a fairly limited stack. I have not added the security group rules, or called external scripts
(user_data) to install and configure software. So there is lots of room to improve. The goal of this paper was to
provide an introduction to Heat. Hopefully, with this basic knowledge a new user can continue to explore and
experiment to build out their Heat skills.

Where to go for more help
There are a lot of great resources out there. The OpenStack Foundation provides some very good documentation.
In particular, I recommend the Foundation template and the resource guide.

● OpenStack Foundation: http://docs.openstack.org/developer/heat/template_guide/index.html

● Guide to resource types. This is a great place to find the HOT code needed to perform actions like creating
and attaching resources. http://docs.openstack.org/developer/heat/template_guide/openstack.html#

In addition, there are lots of tutorials and blogs on the Internet and in user groups online.

Good luck, and happy orchestrating.

For More Information
Visit our website to read more Cisco OpenStack Private Cloud features and benefits.
To access technical tutorials about this product, visit our Community page

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 19 of 19

Printed in USA CXX-XXXXXX-XX 10/11

