

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 26

White Paper

IOS XE Virtual Service Development Guide

The Cisco Enterprise routing portfolio consists of multiple products targeted at

different segments of the network. Even though these appear to be very different

products at first glance, they all share a common architecture and operating system.

Cisco IOS XE is the common architecture unifying the 4000 Series Integrated

Services Routers, 1000 Series Aggregation Services Routers and the 1000 Series

Cloud Services Router.

All of these network elements share a common architecture with a platform specific

data plane and a common control plane. At their core these are based on an open-

source Linux architecture. One common aspect to Linux environments is their ability to

host both virtual machines (KVM) and Linux Containers (LXC) guest applications in a

protected environment. This capability has always been available for Cisco developed

applications in IOS XE

platforms. These

applications were required

to carry a digital signature

from Cisco identifying them

as genuine before they

could be installed.

That all changes after IOS

XE release 3.17 in

November 2015. With that

release Cisco introduces a

configuration option

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 26

allowing customers to bypass the required digital signature when installing new KVM

applications1.

IOS-XE Virtual Service Architecture
IOS-XE routing platforms all share a common software architecture. This means that

the architecture and code base is the same for the 4000 Series ISR in the branch,

1000 Series ASR at the headend, and the Cloud Services Router in the cloud.

Features and applications are consistent across all three.

Where these platforms differ is in the Data Plane. Platforms implement IOS-XE Data

Plane software in the way that makes the most sense for their deployment. An ASR1K

will use a Quantum Flow Processor ASIC, an ISR4K implements the same

functionality in an off-the-shelf CPU, and a CSR uses multiple threads in a virtual

environment. Packet forwarding and features are consistent across the portfolio, but

isn’t important for virtual service hosting.

When it comes to virtual service hosting, all IOS-XE platforms share exactly the same

architecture. IOS-XE runs a Linux environment outside of the Data Plane. Within this

environment reside the control plane processes as well as all other processes

necessary for the proper functioning of the box. However, even in the busiest router, it

is very rare that the control plane of the system is very active at all. There might be

brief periods of activity, such as initially building a large routing table, but for the most

part the control plane is idle while the data plane does the work of moving packets

through the system.

That leaves a significant amount of CPU time available to do other things. Since IOS-

XE is a Linux environment, hosting applications in containers or virtual machines is a

very straightforward concept. Using standard open-source tools like vman, libvirt and

1 At the time of this writing, only KVM applications are allowed without a Cisco digital signature. In the future

there may be options for LXC or even Docker container support based on customer interest.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 26

qemu, IOS-XE provides a hosting environment familiar to developers in the Linux

world.

APPLICATION HOSTING COMPARISON

Today there exists a spectrum of choices in the application hosting world. These

range from very tight coupling and dependencies between the guest application and

the host and very loose coupling in the form of virtualization. Many of these are

options in networking platforms today including from Cisco.

 Native Process: This option consists of running an application natively within

the Linux operating system. Applications can be added with standard package

management tools like RPM and YUM. While some platforms do support this

option, the potential security concerns and the requirements for the application

developer to maintain compatibility with any IOS-XE changes make this

unattractive. It is not an option on IOS-XE platforms.

 Linux Containers (LXC): LXC is a lightweight virtualization technology that

provides some separation and protection between the guest application and the

host system. However, common resources like the kernel and core

components are shared between the two. This means that component

compatibility must always be maintained between the two. This requirement

makes LXC unattractive for application developers even though it does offer

some performance advantages over other virtualization options. LXC hosting is

available to signed Cisco applications on IOS-XE platforms, but is not available

to non-Cisco applications.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 26

 Docker: Docker is an emerging virtualization technology which solves some of

the compatibility issues associated with LXC. While Docker containers are not

currently supported in IOS-XE, it is being looked at as a possible addition if

there is sufficient interest.

 Kernel Virtual Machine (KVM): KVM is the standard virtualization technology

within Linux. Guest applications maintain their own kernel and completely

separate resources from the host. This separation provides additional levels of

security while increasing flexibility for application developers. This is the only

hosting option available to non-Cisco applications on IOS-XE platforms.

 VMWare: Technically this category could include other commercial hypervisors

such as HyperV or Xen. These are generally heavier weight and targeted at

data center applications. These are supported on server blades such as the

UCS E-Series, but are generally too heavyweight for hosting applications within

IOS-XE platforms. Support for Linux hosts is generally lacking while some also

include licensing fees.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 26

Architectural Overview

IOS-XE VIRTUALIZATION COMPONENTS

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 26

Table 1. Platform Capabilities

Platform Intel X86
Processor

CPU for
KVM

System
Memory

Memory for
KVM

Storage for KVM2

ISR4451
Intel Gladden
4 core 2GHz

3 cores
(equivalent) 4-16GB 0-12GB

NIM-SSD(200GB, 400GB),
NIM-HD(500GB, 1TB)

ISR4431
Intel Gladden
4 core 1GHz

3 cores
(equivalent) 4-16GB 0-12GB

NIM-SSD(200GB, 400GB),
NIM-HD(500GB, 1TB)

ISR 4351
Intel Rangeley
8 core 2.4GHz

3 cores
(equivalent) 4-16GB 0-12GB MSATA(50GB, 200GB), NIM-SSD, NIM-HD

ISR 4331
Intel Rangeley
8 core 2.0GHz

3 cores
(equivalent) 4-16GB 0-12GB MSATA(50GB, 200GB), NIM-SSD, NIM-HD

ISR 4321
Intel Rangeley
4 core 2.4GHz

1 core
(equivalent) 4-12GB 0-8GB MSATA(50GB, 200GB), NIM-SSD, NIM-HD

ASR 1001-X

ASR 1002-X

ASR 1000 RP2

CSR 1000v Various

2 NIM-SSD, NIM-HD and MSATA capacities subject to change. Refer to Cisco.com for the latest options.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 7 of 26

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 8 of 26

Building Your First Service Container Application
Building applications is hard. Really hard.

Fortunately there’s almost no additional work to building a Service Container

application beyond what it takes to build the application itself. If you’re taking

advantage of open-source or previously developed applications built for other KVM

deployments building a Service Container application is a simple matter of packaging.

The industry standard package for a virtual machine is known as an Open Virtual

Appliance or OVA. In reality OVA is a packaging standard that says nothing about the

contents of the package. For those familiar with common Unix tools, an OVA file is

actually a TAR archive with all of the files necessary to deploy a virtual machine on a

target hypervisor.

Because hypervisors vary greatly, the contents of an OVA file need to be customized

to provide exactly what the hypervisor requires. An OVA designed for a VMWare

system is going to include different contents than an OVA intended for HyperV or Xen.

Even within KVM the requirements for an OVA package can vary from one system to

another.

All OVA files will have some common requirements. At a minimum they will need a

binary file or files for any disks, hard drives or CD/DVD drives, available to the virtual

machine. The OVA will also need to include a description of what the virtual machine

hardware configuration looks like. This is often an XML or formatted text file that

describes the number of CPUs, amount of DRAM and interfaces such as Ethernet or

serial ports available to the virtual machine.

Cisco Service Container OVA packages are relatively simple. There are only a few

required files listed in the table below. Most of these are simple text files that can be

created in a few minutes. The most complex file is the virtual disk image. This

represents the binary read-only (ISO) or read-write (QCOW2 or RAW) disk image for

the virtual machine.

For reference, this OVA package is the same format used for Cisco IOX applications.

To create the actual OVA file, simply use the Linux tar application, or a compatible

packaging program on other operating systems, to generate a TAR archive with the

.ova file name extension.

CRITICAL OVA CONTENTS

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 9 of 26

Category Description Usage Origin

package.yaml
Virtual Machine definition

defined in YAML format.

Used by Virtualization Manager to

provision the virtual service

Provided by s/w developer for

virtual service.

*.mf

Manifest file that contains

SHA1 hash for each file in the

OVA

Used by Virtualization Manager to

verify the integrity of the files in

OVA

Automatically generated by

script or created using tools

such as openssl.

*.ver

Simplified compatibility check

with Virtualization

Infrastructure

Used by Virtualization Manager to

perform simple compatibility

check.

Simple text file provided by s/w

developer.

*.img HDD image files (qcow2, raw)

Used to package pre-installed

images or pre-allocated empty

storage for usage by virtual

machine.

Provided by s/w developer.

*.ISO ISO image files
Used to pass CDROM images or

root file systems
Provided by s/w developer.

VIRTUAL SERVICE DEFINITION FILE

When a virtual service is installed into an IOS XE system, the host needs to know

exactly what the service requires. In the KVM world, this is typically provided by a

specially formatted XML file which passes parameters to the libvirt process. This file

describes things such as CPU, memory and storage requirements, network interfaces,

pointers to disk images and any serial console options. The libvirt process is

extremely sensitive to the formatting of this XML file and is constantly evolving the

capabilities of this file making the XML file very specific to the version of libvirt used

and very sensitive to typos in the XML formatting. This is great for the open source

community, but it’s lousy for predictibality when writing applications for wide

distribution in network devices.

For that reason, Cisco developed a YAML formated definition file. YAML is a human-

friendly standard format that is significantly easier to deal with than libvirt format XML.

Behind the scenes, the IOS XE processes responsible for installing an application are

actually parsing this YAML file into a libvirt XML file taking care of all of the formatting

and context specific to the version used in the system. The YAML format used for IOS

XE virtual services is identical to that used for IOX applications as well as future open

virtualization services from Cisco.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 10 of 26

YAML Virtual Service Definition File

 manifest-version: <manifest version>

info:

 name: <application name>

 description: <application description string>

 version: <application version>

 author-name: <application author/vendor>

 author-link: <application author/vendor

website>

app:

 apptype: <vm/app type>

 resources:

 cpu: <cpu share %>

 memory: <memory in megs>

 vcpu: <no. of vcpus>

 disk:

 - target dev: <disk name>

 file: <image name>

 upgrade-model: <ha-sync | local>

 share-model: <core>

 capacity: <disk capacity in megs>

 - ...

 interfaces:

 - target-dev: <interface name>

 type: <management>

 - ...

 serial:

 - serial

 - console

 - syslog

 - tracelog

 startup:

 runtime: <kvm>

 boot-dev: <boot device>

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 11 of 26

Description of Fields in the YAML Virtual Service Definition File

manifest-version: The version of the descriptor file which may be different from the

version specified in the package version file.

info section

This section contains the fields that define the "application" running in the virtual

service. The application a is program or group of programs that are designed for the

end user and runs within the virtual service. Current supported version is "1.0".

name: Application name

version: Application version

description: A string describing the application

author-name: Application author name

author-link: Application author website for reference

app section

apptype: Only 'vm' is supported.

resources section

This section contains all the fields that describe the virtual service. Use "show virtual-

service" in IOS-XE exec mode to determine the current resource quota on the system.

memory: Amount of RAM in KB allocated to the virtual service. The sum of all

memory of active virtual services cannot exceed the amount specified in the

quota.

vcpu: Number of vcpus assigned to the virtual service. This field is only valid

for KVM. Defaults to 1 if not specified.

cpu: Percent of system CPU share assigned to the virtual service (minimum

guarantee). The sum of all cpu shares of active virtual services cannot exceed

the amount specified in the quota.

disk section

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 12 of 26

This section is used to specify the disk resources for the virtual service. Up to three

disk devices can be specified. For each disk, either a disk image file or the capacity

has to be specified.

target-dev: Name used for the disk device.

file: Disk image file could either be iso, qcow2 or raw format.

capacity: Size of disk to allocate in MB.

upgrade-model: ha-sync - Sync this disk with the standby route processors.

This is not supported for iso or boot devices.

 local - Does not get synced to the standby route processor.

 (defaults to local if upgrade model not specified)

interface section

Two type of interfaces are supported, virtualPortGroup and the management interface.

The virtualPortGroup interface will act as the default gateway to the guest's interface.

The management interface will need to be in the same subnet as the guest interface,

but will not act as the gateway. The order in which these interfaces are defined is also

maintained in the guest.

target-dev: Name used for interface device.

alias: Alias name of interface device (optional).

type: The Interface type is set to 'management' to specify that management

interface. If not specified, the virtualPortGroup will be used (optional).

serial section

console: Guest ttyS0 will be the console (optional).

aux: Guest ttyS1 will be the aux port (optional).

syslog: Guest ttyS2 will be used for syslog events (optional).

logger: Guest ttyS3 will be used for debug log events (optional).

The guest tty serial port numbers will always remain in sequential order,

regardless of which serial port is configured in the YAML descriptor file.

startup section

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 13 of 26

runtime: Only 'kvm' is currently supported.

boot-dev: Reference to the disk boot device. Can be 'cdrom' or 'hd'. Only one

boot device is currently allowed.

Example YAML Virtual Service Definition Files

Bootable harddisk image in OVA, one Virtual Port Group interface and one

management interface:

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 14 of 26

KVM Linux test distribution descriptor file

manifest-version: 1.0

info:

 name: kvm_linux

 description: "KVM Linux Test Distro"

 version: 1.0

 author-name: Cisco Systems, Inc.

 author-link: "http://www.cisco.com"

app:

 apptype: vm

 resources:

 cpu: 6

 memory: 262144

 vcpu: 1

 disk:

 - target-dev: hda

 file: linux.img

 interfaces:

 - target-dev: net1

 - target-dev: net2

 type: management

 serial:

 - console

 - aux

 - syslog

 - tracelog

 startup:

 runtime: kvm

 boot-dev: hd

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 15 of 26

Bootable iso image and harddisk image in OVA, carve additional 2GB harddisk, two
VirtualPortGroup interfaces:

manifest-version: 1.0

info:

 name: kvm_linux_2

 description: "KVM Linux Test Distro"

 version: 1.0

 author-name: Cisco Systems, Inc.

 author-link: "http://www.cisco.com"

app:

 # Indicate app type

 apptype: vm

 resources:

 cpu: 6

 memory: 262144

 vcpu: 1

 disk:

 - target dev: hdc

 file: linux.iso

 - target dev: sda

 file: kvm_storage_4000MB.img

 upgrade-model: ha-sync

 - target dev: sdb

 capacity: 2000

 interfaces:

 - target-dev: net1

 - target-dev: net2

 serial:

 - serial

 - console

 - syslog

 - tracelog

 # Specify runtime and startup

 startup:

 runtime: kvm

 boot-dev: cdrom

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 16 of 26

DEVELOPER WORKFLOW

Working with Virtual Services is almost identical to working with KVM virtual

machines. There are just a few additional components needed in the packaging

process. The development workflow and common development tools used for KVM

can still be used when developing, or modifying existing applications, for the Virtual

Service Environment.

Several open source tools exist that make the final packaging process easier. If this is

your first time developing a KVM application, these will come in very handy. If you

have experience working in the VMWare world, some of these concepts will be

familiar but different when moving to a Linux environment. There is no requirement to

use these tools when developing Virtual Services for IOS XE platforms. They’re

mentioned here simply to give new developers a head start.

Tool Uses Example

virt-manager GUI Linux VM Manager for crafting
KVMs.

GUI

qemu-img Converting disk image formats. qemu-img convert -p -c -f raw -O qcow2
<raw.img> <qcow2.img>

openssl Generates the manifest file. qemu-img convert -p -c -f raw -O qcow2
<raw.img> <qcow2.img>

tar Packages the files into an OVA. tar -cvf VM.ova vm.qcow2 *.yaml vm.mf
create_ova.sh Cisco script for packing an OVA in one

step.
create_ova.sh [<options>] <directory>

Working with the Cisco Packaging Script

Cisco provides a simple script (create_ova.sh) to help developers with packaging a

virtual service compatible OVA. Use of this script is entirely optional and will generally

be more useful for high-volume developers. This script takes the raw files for the

application, generates the manifest file and builds the OVA tar package.

Usage:

create_ova.sh [<options>] <directory>

Options:

 -mts or -max_total_size - (default 600) Specify the maximum directory size before compression is

considered.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 17 of 26

 -mfs or -max_file_size - (default 10) If max_total_size is exceeded, compress each file larger than

this threshold.

Together -mts and -mfs provide a heuristic to calculate whether or not to compress large files. If

total directory size exceeds -max_total_size, compress files greater than -max_file_size.

Specifying '-max_total_size 0' will force compression on all files greater than -max_file_size Setting

-max_total_size to a very high value will avoid compression

Examples:

 create_ova.sh Test - Create unsigned OVA package, compress files if necessary using Directory

'Test'

 create_ova.sh -mts 500 -mfs 20 Test - Create unsigned OVA package, compress files greater

than 20M if total directory size of 'Test' is greater than 500M

The OVA package will be created inside the specified directory. Example procedure for creating

OVA package shown below:

mkdir test

cp linux.img test

echo 1.7 > test/test.ver

Note: edit test/package.yaml and add required yaml parameters for virtual service

create_ova.sh test

If an existing ova is untared and repackaged, be sure none of the files are compressed before

running the packing script or the resulting manifest file will prevent the ova package from being

used on the router.

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 18 of 26

Service Container Deployment

Phase Trigger Actions Virtual Service Instance State

Pre-Installation 1. Gather and prepare system resources

2. Establish internal communication

infrastructures.

 Host is ready to accept new

virtual service.

Installation VMan received a

request to install a

virtual service

package.

1. Unzip and unpack the virtual service

definition from its OVA package.

2. For signed application, perform SHA2 code

signing check using the artifacts in the OVA

(.cert, .mf) and a hidden Cisco public key.

3. Validates the machine definition specified in

the OVA and performs preliminary resource

check (for warnings).

4. Parses the machine definition and creates

internal objects for manageability.

5. Process tiered resource profiles requests.

 Validated that package is

Cisco signed.

 Validated integrity of OVA

content.

 Validated and parsed machine

definition and binds it to a

virtual service “instance name”

Configuration VMan received a

request to configure

instance of the virtual

service.

1. Perform validation and necessary network

provisioning for configured guest IP address

(if applicable)

2. Perform resource check and reservation for

selected profile.

 Virtual service is configured

Activation VMan received a

request to activate

1. Carves our storage resource from host

system as per need.

2. Commit CPU, Memory, Storage and

Networking resources as needed.

3. Update the machine definition XML and

request libvirt to start virtual machine.

4. Service to console, aux, logging and tracing

ports as needed.

 Virtual service is activated.

Post Activation 1. Perform monitoring services

2. Process lifecycle control services

DEPLOYING A KVM VIRTUAL SERVICE IN AN IOS-XE ROUTER

In this document we’re going to cover the end-user interactions for installing and managing

virtual services using the command line interface. There are other graphical management tools

available today and in the future that will take advantage of APIs provided by the system.

These are generally outside the scope of this document targeted at developers. Just be aware

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 19 of 26

that options such as Prime Infrastructure and Cisco Fog Director are options for dealing with

virtual services in addition to the command line.

This section uses an example KVM virtual machine to demonstrates bringing up of a generic guest OS

within the host OS.

Step #1: Copy the package to target

Step #2 : Install the package

(conf)
interface virtualportgroup 0
 ip address 10.0.0.1 255.255.255.0
virtual-service <name>

vnic gateway virtualportgroup 0
 guest ip address 10.0.0.2

Install
Service

(package)

Configure
Service

(VM instance)

Start Service
(VM instance)

Monitor
Service

Deactivate and
Un-Install

Service

(conf)virtual-service <name>
activate

virtual-service name
<name> uninstall

virtual-service install name
<name> package <uri:.ova>

show virtual-service list
show virtual-service detail name <name>

(conf)virtual-service <name>
activate

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 20 of 26

Step #3 : Configure the service

Step #4: Start the service

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 21 of 26

Step #5: Monitor the service

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 22 of 26

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 23 of 26

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 24 of 26

Step #6: Console into the service

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 25 of 26

© 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 26 of 26

For More Information

Read more about the Cisco IP Phone 7905G, or contact your local account representative.

Read more about the Cisco End-of-Life Policy.

Subscribe to receive end-of-life/end-of-sale information.

Printed in USA CXX-XXXXXX-XX 10/11

http://www.cisco.com/en/US/products/hw/phones/ps379/ps1851/index.html
http://www.cisco.com/en/US/products/prod_end_of_life.html
http://www.cisco.com/cgi-bin/Support/FieldNoticeTool/field-notice

