
CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
First Published: 2020-02-05

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

© 1994–2020 Cisco Systems, Inc. All rights reserved.

www.cisco.com/go/trademarks
www.cisco.com/go/trademarks

C O N T E N T S

Preface xxiiiP R E F A C E

Change History xxiii

About This Guide xxiii

Audience xxiii

Related Documents xxiv

Communications, Services, and Additional Information xxiv

Field Notice xxiv

Documentation Feedback xxv

Conventions xxv

Introduction 1C H A P T E R 1

Introduction to CTI 1

CTI-Enabled Applications 1

Screen Pop 1

Agent State Control 2

Third-Party Call Control 2

Events and Requests Within CTI Environment 2

Asynchronous Events 2

Request-Response Paradigm 3

Overview of CTI OS 4

Advantages of CTI OS as a CTI Development Interface 4

Key Benefits of CTI OS for CTI Application Developers 5

Illustrative Code Fragments 5

CTI OS Client Interface Library Architecture 7C H A P T E R 2

Object Server Architecture 7

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
iii

Client Interface Library Architecture 7

Connection Layer 8

Service Layer 8

Object Interface Layer 9

Custom Application 9

CIL Object Model Object Interfaces 9

Session Object 10

Session Modes 10

Agent Object 10

Call Object 10

SkillGroup Object 11

Object Creation 11

Reference Counting 11

Call Object Lifetime 11

Agent Object Lifetime 12

SkillGroup Object Lifetime 12

Methods That Call AddRef() 12

Where to Go from Here 18

CIL Coding Conventions 19C H A P T E R 3

CTI OS CIL Data Types 19

Asynchronous Program Execution 20

CIL Error Codes 21

COM Error Codes 25

Generic Interfaces 26

Arguments 26

GetValue Method to Access Properties and Parameters 27

SetValue Method to Set Object Properties and Request Parameters 27

UniqueObjectID Variable-Length String 28

UniqueObjectID to Obtain Pointer or Reference 29

Button Enablement Masks 30

Visual Basic.NET Example 30

Building Your Custom CTI Application 33C H A P T E R 4

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
iv

Contents

System Requirements for Building Custom Applications 33

Environment Set Up for .NET 34

Microsoft Visual Studio 34

Add CTI OS Toolkit Components to Add Reference Dialog Box 34

Add Cisco CTI OS ActiveX Controls to Toolbox 35

Integration Between Your Application and CTI OS via CIL 35

Integration Planning and Design 36

Language and Interface 36

CTI Application Testing 37

Test Plan Development 37

Test Environment 38

Developer Sample Applications 38

CTI OS ActiveX Controls 39

Build Simple Softphone with ActiveX Controls 39

Hook for Screenpops 41

CTI OS SessionResolver 42

VB .NET Code Sample to Retrieve Common Session 42

COM CIL. in Visual Studio 43

COM CIL. 43

Add COM Support to Your Application 44

Important Note About COM Method Syntax 44

Use CIL Dynamic Link Libraries 44

Create COM Object at Run Time 45

COM Events in C++ 45

Additional Information 46

C++ CIL and Static Libraries 46

Header Files and Libraries 46

Configure Project Settings for Compiling and Linking 47

Event Subscription in C++ 51

Removal of STLPort Requirement 52

Additional Information 52

Java CIL Libraries 52

Additional Information 52

.NET CIL Libraries 53

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
v

Contents

Additional Information 53

CTI OS Server Connection 53

Connect to CTI OS Server 54

Session Object Lifetime (C++ Only) 54

Set Event Listener and Subscribe to Events 54

Set Connection Parameters for Session 55

Connect Session to CTI OS Server 55

Connection Failures 55

Connection Failure Events 56

Connection Attempt Error Codes in Java and .NET CIL 56

Configure Agent to Automatically Log In After Failover 57

Stop Failover Procedure 57

Connection Mode 57

Set Connection Mode in OnConnection() Event Handler 57

Agent Mode 57

Select Agent Mode 58

Monitor Mode 58

Monitor Mode Filters 59

Select Monitor Mode 61

Deal with Failover in Monitor Mode 61

Settings Download 62

Disconnect from CTI OS Server Before Shutdown 63

Agent Login and Logout 64

Log In an Agent 64

Duplicate Login Attempts 65

Overview of Duplicate Login Attempts 65

Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts 66

Agent Login with Incorrect Credentials 67

Get Registry Configuration Values to Desktop Application 67

Detect Duplicate Login Attempt in Desktop Application 68

Handle Duplicate Login Attempts in Desktop Application 69

Log Out an Agent 69

Typical Logout Procedure 70

Calls 72

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
vi

Contents

Multiple Call Handling 72

Current Call 72

Get Call Object from Session 72

Set Current Call for Session 73

Call Wrapup 73

Logout and NotReady Reason Codes 73

Applications and OnButtonEnablementChange() Event 74

In the OnButtonEnablementChange() Event 74

Not Ready Bitmasks in OnButtonEnablementChange() Event 74

OnButtonEnablementChange() Event in Supervisor Desktop Applications 76

Making Requests 76

Multiple Duplicate Requests 76

Events 77

Event Order 77

Coding Considerations for CIL Event Handling 77

OnCallEnd() Event Monitoring 78

Agent Statistics 78

Overview of Agent Statistics 78

Set Up Agent Application to Receive Agent Statistics 78

Set Up Monitor Mode Application to Receive Agent Statistics 79

Agent Statistics Access 82

Overview of Agent Statistics Access 82

eOnNewAgentStatisticsEvent() in Message Filter (JAVA) 82

OnAgentStatistics() Event in Message Filter (C++ COM and VB) 82

Get Agent Statistics Through Agent Instance 82

Agent Statistics Configuration 83

Agent Statistics Computed by Sample CTI OS Desktop 83

Skill Group Statistics 83

Overview of Skill Group Statistics 83

Set Up Monitor Mode Application to Receive Skill Group Statistics 84

Skill Group Statistics Access 86

Overview of Skill Groups Statistics Access 86

eOnNewSkillGroupStatisticsEvent() in Message Filter (JAVA) 86

eOnNewSkillGroupStatisticsEvent() in Message Filter (C++ COM and VB) 86

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
vii

Contents

Skill Group Statistics Sent to Desktop Application 86

Skill Group Statistics Computed by Sample CTI OS Desktop 86

Silent Monitoring 87

CTI OS Based Silent Monitoring 88

Create a Silent Monitor Object 88

Session Mode 88

Silent Monitor Session 89

Silent Monitor Manager Shutdown 91

CTI OS Silent Monitor Management in Monitor Mode 91

Unified CM-Based Silent Monitoring in Your Application 92

CCM-Based Silent Monitor Overview 92

CTI OS Monitor Mode Applications 92

CCM-Based Silent Monitor Request 92

Current Agent Being Silently Monitored 94

CCM-Based Silent Monitor Request End 94

Determine if CCM-Based Silent Monitoring Is Enabled 95

Agent Greeting 96

Deployment of Custom CTI OS Applications 96

Application Deployment Using ActiveX Controls 96

Application Deployment Using COM (but Not ActiveX Controls) 101

Application Deployment Using C++ CIL 101

Application Deployment Using .NET CIL 101

Custom Application and CTI OS Security 102

Supervisor Applications 102

General Flow 102

Monitored and Unmonitored Events 103

Supervisor Application Flow to Request and Monitor Team 103

OnNewAgentTeamMember Events 104

OnNewAgentTeamMember Events and Supervisors 105

OnMonitoredAgentStateChange Events 105

OnMonitoredAgentInfo Event 106

Time in State 106

OnSkillInfo Event 106

Agent Team Information Displayed in Grid Format 106

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
viii

Contents

Supervisor Application Flow to Monitor an Agent 108

OnSupervisorButtonChange 111

Monitored Call Events 111

Supervisor Application Makes Agent Ready or Logs Agent Out 111

Supervisor Application Flow to Monitor a Call 112

MonitoredCallEvents 112

Barging into Calls 113

Intercepting Calls 114

Monitored Call Data 114

Sample Code in CTI OS Toolkit 115

.NET Samples 115

CTI Toolkit Combo Desktop.NET 115

CtiOs Data Grid.NET 116

All Agents Sample.NET 117

All Calls Sample.NET 117

Java CIL Samples 117

Win32 Samples 117

CTI OS ActiveX Controls 119C H A P T E R 5

CTI OS ActiveX Controls 119

Property Pages 121

Button Controls and Grid Controls 121

Button Controls 126

Grid Controls 126

Supervisor Status Bar 127

CTI OS ActiveX Control Descriptions 127

AgentGreetingCtl 127

RecordGreetingCtl 127

AgentStateCtl 127

Related Methods 129

Related Events 130

AgentSelectCtl 131

Methods 132

AgentStatisticsCtl 138

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
ix

Contents

Methods 138

AlternateCtl 142

AnswerCtl 143

BadLineCtl 143

CallAppearanceCtl 143

Related Methods 144

Related Events 144

Methods 144

ChatCtl 148

Methods 149

ConferenceCtl 151

EmergencyAssistCtl 153

HoldCtl 153

MakeCallCtl 154

ReconnectCtl 155

SkillgroupStatisticsCtl 155

Methods 155

StatusBarCtl 159

SupervisorOnlyCtl 160

RecordCtl 161

TransferCtl 161

The Silent Monitor StandAlone ActiveX Control 163

Connect 163

Disconnect 164

StartMonitoring 164

StopMonitoring 164

SilentMonitor Com Object Events 164

Deployment 165

Sample Usage in Visual Basic 6.0 165

Event Interfaces and Events 167C H A P T E R 6

Event Interfaces and Events 167

Event Publication Model 168

ISessionEvents Interface 168

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
x

Contents

OnConnection 169

OnConnectionClosed 169

OnConnectionFailure 169

OnConnectionRejected 170

OnCTIOSFailure 170

OnCurrentAgentReset 172

OnCurrentCallChanged 172

OnFailure Event 173

OnGlobalSettingsDownloadConf 173

OnHeartbeat 182

OnMissingHeartbeat 183

OnMonitorModeEstablished 183

OnSnapshotDeviceConf 184

OnSnapshotSkillGroupList 185

OnTranslationRoute 185

ICallEvents Interface 187

OnAgentPrecallEvent 187

OnAgentPrecallAbortEvent 189

OnAlternateCallConf 190

OnAnswerCallConf 191

OnCallBegin 192

OnCallCleared 194

OnCallConnectionCleared 195

OnCallConferenced 196

OnCallDataUpdate 199

OnCallDelivered 201

OnCallDequeuedEvent 203

OnCallDiverted 204

OnCallEnd 205

OnCallEstablished 206

OnCallFailed 208

OnCallHeld 209

OnCallOriginated 209

OnCallQueuedEvent 211

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xi

Contents

OnCallReachedNetworkEvent 212

OnCallRetrieved 213

OnCallServiceInitiatedEvent 214

OnCallStartRecordingConf 215

OnCallStopRecordingConf 216

OnCallTransferred 217

OnClearCallConf 219

OnClearConnectionConf 220

OnConferenceCallConf 220

OnConsultationCallConf 221

OnControlFailureConf 221

OnHoldCallConf 222

OnMakePredictiveCallConf 223

OnReconnectCallConf 223

OnReleaseCallConf 223

OnRetrieveCallConf 224

OnSendDTMFConf 224

OnSetCallDataConf 225

OnSnapshotCallConf 225

OnTransferCallConf 228

IAgentEvents Interface 228

OnAgentDeskSettingsConf 229

OnAgentGreetingControlConf 231

OnAgentInfoEvent 232

OnAgentStateChange 232

OnAgentStatistics 235

OnChatMessage 236

OnControlFailureConf 236

OnEmergencyCall 242

OnLogoutFailed 243

OnMakeCallConf 243

OnNewAgentTeamMember 244

OnPostLogout 246

OnPreLogout 248

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xii

Contents

OnQueryAgentStateConf 250

OnSetAgentModeEvent 253

OnSetAgentStateConf 254

OnStartMonitoringAgent 255

OnStopMonitoringAgent 255

OnUserMessageConf 256

ISkillGroupEvents Interface 256

OnSkillGroupStatisticsUpdated 257

OnSkillInfoEvent 257

IButtonEnablementEvents 258

OnButtonEnablementChange 258

OnSupervisorButtonChange 261

IMonitoredAgentEvents Interface 262

IMonitoredCallEvents Interface 262

ISilentMonitorEvents 263

OnCallRTPStarted 264

OnCallRTPStopped 265

OnStartSilentMonitorConf 267

OnSilentMonitorStartedEvent 268

For CTI OS Based Silent Monitor 268

For CCM-Based Silent Monitor 269

OnSilentMonitorStartRequestedEvent 270

OnSilentMonitorSessionDisconnected 272

OnSilentMonitorStopRequestedEvent 273

For CTI OS Based Silent Monitor 273

For CCM-Based Silent Monitor 274

OnSilentMonitorStatusReportEvent 275

OnStopSilentMonitorConf 277

OnRTPStreamTimedoutEvent 279

IGenericEvents Interface 280

OnEvent 280

Java Adapter Classes 280

IAllInOne 280

IAgentEvents 280

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xiii

Contents

IButtonEnablementEvents 281

ICallEvents 281

ISkillGroupEvents 281

Events in Java CIL 281

Events in .NET CIL 282

Event Parameters 283

Amount of Nonessential Call Object Parameters 283

CtiOs Object 291C H A P T E R 7

CtiOs Object 291

Methods 291

DumpProperties 292

GetAllProperties 293

GetElement 293

GetLastError (Java and .NET Only) 294

GetNumProperties 295

GetPropertyName 296

GetPropertyType 296

GetValue 298

GetValueArray 299

GetValueBoolObj (Java and .NET Only) 299

GetValueInt 300

GetValueIntObj (Java Only) 301

GetValueShortObj (Java Only) 301

GetValueString 301

GetValueUIntObj (Java Only) 303

GetValueUShortObj (Java Only) 303

IsValid 303

ReportError (Java and .NET only) 304

SetValue (Java and .NET) 305

SetValue (C++ COM and VB) 305

Session Object 307C H A P T E R 8

Session Object 307

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xiv

Contents

Session Object Properties 308

Methods 310

AddEventListener (Java and .NET Only) 312

AddListener Methods (C++ Only) 312

Connect 313

CreateSilentMonitorManager 315

CreateWaitObject (C++ Java and .NET) 316

DestroySilentMonitorManager 317

DestroyWaitObject (C++ Java and .NET) 318

DisableSkillGroupStatistics (C++ Java and .NET) 318

Disconnect 319

DumpProperties 319

EnableSkillGroupStatistics (C++ Java and .NET) 320

GetAllAgents 320

GetAllCalls 323

GetAllProperties 325

GetAllSkillGroups 325

GetCurrentAgent 326

GetCurrentCall 326

GetCurrentSilentMonitor 327

GetElement 328

GetNumProperties 328

GetObjectFromObjectID 328

GetPropertyName 329

GetPropertyType 329

GetSystemStatus (Java .NET and C++ Only) 329

GetValue Methods 329

IsAgent 329

IsCCMSilentMonitor 330

IsSupervisor 331

IsValid 331

RemoveEventListener (Java and .NET) 331

RemoveListener Methods (C++ Only) 332

RequestDesktopSettings 332

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xv

Contents

SetAgent 333

SetCurrentCall 335

SetCurrentSilentMonitor 336

SetMessageFilter 336

SetSupervisorMonitorMode 337

Notes on Message Filters 338

Message Filter Syntax 338

Simple Example 339

General Form of Filter Syntax 339

Multiple Filters 339

Filters for Specific Events 339

Events Not Allowed in Filter Expressions 340

Skill Group Statistics 341

CCM-Based Silent Monitor Calls 342

Agent Object 343C H A P T E R 9

Agent Object 343

Agent Object Properties 343

Agent Statistics 345

Methods 352

Arguments Parameters 354

DisableAgentStatistics 354

DisableSkillGroupStatistics 355

EnableAgentStatistics 356

EnableSkillGroupStatistics 356

GetAgentState 357

GetAllProperties 358

GetElement 358

GetMonitoredAgent 358

GetMonitoredCall 359

GetNumProperties 360

GetPropertyName 360

GetPropertyType 360

GetSkillGroups 360

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xvi

Contents

GetValue Methods 362

IsAgent 362

IsSupervisor 363

Login 363

Logout 366

MakeCall 367

MakeEmergencyCall 372

QueryAgentState 373

ReportBadCallLine 374

RequestAgentTeamList 375

RequestSupervisorAssist 376

SendChatMessage 377

SetAgentGreetingAction 378

SetAgentState 379

StartMonitoringAgent 380

StartMonitoringAgentTeam 381

StartMonitoringAllAgentTeams 382

StartMonitoringCall 383

StopMonitoringAgent 384

StopMonitoringAgentTeam 385

StopMonitoringAllAgentTeams 385

SuperviseCall 386

Call Object 389C H A P T E R 1 0

Call Object 389

Current Call 389

ECC Variables 390

Passing Call Variables 390

ECC Variable Value Retrieval 390

ECC Values 392

Properties 393

Methods 395

Argument Parameters 396

Alternate 397

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xvii

Contents

Answer 398

Clear 399

ClearConnection 400

Conference 401

GetCallContext 402

GetCallData 404

Hold 405

MakeConsultCall 406

Reconnect 411

Retrieve 412

SendDTMFSignal 413

SetCallData 414

SingleStepConference 415

SingleStepTransfer 418

Snapshot 418

StartRecord 419

StopRecord 420

Transfer 421

SkillGroup Object 423C H A P T E R 1 1

SkillGroup Object 423

Properties 423

Statistics 424

Methods 436

DisableSkillGroupStatistics 437

DumpProperties 438

EnableSkillGroupStatistics 438

GetElement 439

GetValue Methods 439

IsValid 439

SetValue 439

Helper Classes 441C H A P T E R 1 2

Helper Classes 441

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xviii

Contents

Arg Class 442

AddRef 442

Clone 443

CreateInstance 444

DumpArg 444

GetArgType (.NET Only) 445

GetType 446

GetValue Methods 447

Release 448

SetValue 449

Arguments Class 450

Usage Notes 451

AddItem (C++ COM VB Only) 452

AddRef (C++ and COM Only) 453

Clear 454

Clone 454

CreateInstance (C++ and COM Only) 455

DumpArgs 456

GetElement Methods 456

GetValue Methods 458

IsValid 460

NumElements 461

Release (C++ and COM Only) 462

RemoveItem 462

SetElement (C++ COM and VB Only) 463

SetValue 464

CILRefArg Class (C++ Java and .NET Only) 465

GetType 466

GetUniqueObjectID (Java and .NET Only) 467

GetValue 467

SetValue 467

CCtiOsException Class (C++ Java and .NET Only) 468

CCtiosException Constructor 468

GetCode 469

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xix

Contents

GetStatus 469

GetString 469

What 470

CWaitObject Class 470

Methods 470

CreateWaitObject 471

DestroyWaitObject 471

DumpEventMask 471

GetMask 472

GetTriggerEvent 472

InMask 473

SetMask 473

WaitOnMultipleEvents 473

Logger Class (.NET and Java Only) 474

Methods 474

Logger() Constructor 475

GetTraceMask 475

SetTraceMask 476

AddLogListener 476

RemoveLogListener 476

Trace 477

LogWrapper Class (.NET and Java Only) 477

Methods 477

LogWrapper() Constructor 478

LogWrapper(string filename) Constructor 479

Return Values 479

LogWrapper(string int int int) Constructor 479

Dispose (.NET Only) 480

GetMaxDaysBeforeExpire (.NET Only) 480

SetMaxNumberFiles 481

GetMaxNumberFiles (.NET Only) 481

SetMaxDaysBeforeExpire 482

ProcessConfigFile 482

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xx

Contents

SilentMonitorManager Object 483C H A P T E R 1 3

SilentMonitorManager Object 483

Properties 484

Methods 485

Argument Parameter Rules 486

AcceptSilentMonitoring 486

GetIPPhoneInfo 488

GetSessionInfo 489

GetSMSessionList 490

IsMonitoredTarget 491

SetIPPhoneInfo 491

StartSilentMonitorRequest 493

StartSMMonitoredMode 494

StartSMMonitoringMode 496

StopSilentMonitorMode 497

StopSilentMonitorRequest 497

CTI OS Keywords and Enumerated Types 499C H A P T E R 1 4

Keywords 499

Java CIL Keywords 500

.NET CIL Keywords 500

Enumerated Types 500

Java Interfaces 500

CTI OS Logging 503A P P E N D I X A

CTI OS Client Logs (COM and C++) 503

Install Tracing Mechanism (COM and C++) 503

Set Trace Levels (COM and C++) 504

Trace Configuration (COM and C++) 504

Java CIL Logging Utilities 505

ILogEvents 505

LogEvent 505

Logger 506

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xxi

Contents

LogEventsAdapter 506

Logging and tracing (Java) 507

Logging and tracing (.NET) 508

Default Logging Mechanism 508

Log Trace Events with LogWrapper Class 508

Custom Logging Mechanism 510

Log Trace Events with Logger Class 510

Trace Configuration (Java and .NET) 511

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xxii

Contents

Preface

• Change History, on page xxiii
• About This Guide, on page xxiii
• Audience, on page xxiii
• Related Documents, on page xxiv
• Communications, Services, and Additional Information, on page xxiv
• Field Notice, on page xxiv
• Documentation Feedback, on page xxv
• Conventions, on page xxv

Change History
This table lists changes made to this guide. Most recent changes appear at the top.

DateSeeChange

February 2020Initial Release of document for Release 12.5

About This Guide
This manual provides a brief overview of the Cisco Customer Telephony Integration Object Server (CTI OS)
product, introduces programmers to developing CTI enabled applications with CTI OS, and describes the
syntax and usage for CTI OS methods and events.

Audience
This manual is for system integrators and programmers who want to use CTI OS to integrate CTI applications
with the Cisco Contact Center software.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xxiii

Related Documents
LinkSubject

To see all related documentation sets, go to
https://www.cisco.com/cisco/web/psa/
default.html?mode=prod. Select Products >
Customer Collaboration > Contact Center.

Related documentation includes the documentation
sets for Cisco CTI Object Server (CTI OS), Cisco
Unified Contact Center Management Portal, Cisco
Unified Customer Voice Portal (Unified CVP), Cisco
Unified IP IVR, and Cisco Unified Intelligence Center

Go to https://www.cisco.com/c/en/us/support/
unified-communications/
unified-communications-manager-callmanager/
tsd-products-support-general-information.html

Cisco Unified Communications Manager
documentation set

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Field Notice
Cisco publishes Field Notices to notify customers and partners about significant issues in Cisco products that
typically require an upgrade, workaround, or other user action. For more information, see Product Field Notice
Summary at https://www.cisco.com/c/en/us/support/web/tsd-products-field-notice-summary.html.

You can create custom subscriptions for Cisco products, series, or software to receive email alerts or consume
RSS feeds when new announcements are released for the following notices:

• Cisco Security Advisories

• Field Notices

• End of Sale or Support Announcements

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xxiv

Preface
Related Documents

https://www.cisco.com/cisco/web/psa/default.html?mode=prod
https://www.cisco.com/cisco/web/psa/default.html?mode=prod
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/tsd-products-support-general-information.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/tsd-products-support-general-information.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/tsd-products-support-general-information.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/tsd-products-support-general-information.html
https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html
https://www.cisco.com/c/en/us/support/web/tsd-products-field-notice-summary.html

• Software Updates

• Updates to Known Bugs

For more information on creating custom subscriptions, seeMy Notifications at https://cway.cisco.com/
mynotifications.

Documentation Feedback
To provide comments about this document, send an email message to the following address:
contactcenterproducts_docfeedback@cisco.com.

We appreciate your comments.

Conventions
This document uses the following conventions:

DescriptionConvention

Boldface font is used to indicate commands, such as user entries, keys, buttons,
folder names, and submenu names.

For example:

• Choose Edit > Find.

• Click Finish.

boldface font

Italic font is used to indicate the following:

• To introduce a new term. Example: A skill group is a collection of agents
who share similar skills.

• A syntax value that the user must replace. Example: IF (condition, true-value,
false-value)

• A book title. Example: See the Cisco Unified Contact Center Enterprise
Installation and Upgrade Guide.

italic font

Window font, such as Courier, is used for the following:

• Text as it appears in code or that the window displays. Example:
<html><title>Cisco Systems, Inc. </title></html>

window font

Angle brackets are used to indicate the following:

• For arguments where the context does not allow italic, such as ASCII output.

• A character string that the user enters but that does not appear on the window
such as a password.

< >

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xxv

Preface
Documentation Feedback

https://cway.cisco.com/mynotifications
https://cway.cisco.com/mynotifications
mailto:contactcenterproducts_docfeedback@cisco.com

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
xxvi

Preface
Conventions

C H A P T E R 1
Introduction

• Introduction to CTI, on page 1
• CTI-Enabled Applications, on page 1
• Events and Requests Within CTI Environment, on page 2
• Overview of CTI OS, on page 4

Introduction to CTI
The workflow of a modern contact center is based on two main areas: the media for communicating with the
customer and the platform for servicing customer requests.

CTI is the integration of the communications media (phone, email, or web) with the customer service platform
(customer databases, transaction processing systems, or CRM (customer relationship management) software
packages).

Integrating communicationsmedia with the customer service platform helps agents serve customers improved
and faster in the following two ways:

• It enables the agent to leverage the information and events provided by the media to direct workflow.

• It increases the depth and breadth of customer information presented to the agent when the customer's
contact arrives at the workstation.

CTI-Enabled Applications
A CTI-enabled application is one in which the software an agent uses to service a customer request is driven
by information generated by the presentation of the customer contact.

Screen Pop
The most common CTI application is a screen pop. In a screen pop, the customer service platform is provided
with customer information at the arrival of a phone call and begins processing the customer's transaction at
the same time as the communication begins between the customer and the agent. This transfer of customer
information is called the call context information: a rich set of customer-specific data that travels with the call
throughout the enterprise.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
1

For example, a phone call can trigger a screen pop application for a cellular telephone company. It uses the
customer ANI (automated number identification, or calling line ID) to do a database look up to retrieve the
customer's account information and displays this customer record for the agent. By the time the agent can say
“Thank you for calling ABC Telephony Company,” the account record is on the screen and the agent is ready
to service the customer's request.

Agent State Control
Similar to a screen pop, CTI application control of agent state is a way to improve the agent's workflow by
integrating the service delivery platformwith the communications media. A CTI application enabled for agent
state can set the agent's current work state according to the type of work being performed.

For example, a sales application can automatically send an agent to a wrap-up or after-call work state when
the customer contact terminates. The agent can then enter wrap up data about that transaction or customer
inquiry and (subject to a timer) change the state automatically back to available when the wrap up work is
complete.

Third-Party Call Control
The most advanced CTI integration projects seek a total integration of the customer service platform with the
communications media. In third-party call control applications, the actual control over the teleset or other
media is initiated via the software application and coordinated with application screens or views.

For example, a financial services application can transfer a phone call to a speed-dial number designated by
the application itself. In this scenario, the agent can click a button to determine the appropriate destination
for the transfer, save the application's customer context, and transfer the call to the other agent.

Events and Requests Within CTI Environment
The first step to developing a CTI-enabled application is to understand the events and requests that are at play
within the CTI environment. Asynchronous events are messages sent to applications that indicate an event to
which the application can respond (for example, CallBeginEvent). Requests are the mechanism that the
application uses to request that a desired behavior happen (for example, TransferCall).

Asynchronous Events
The CTI environment is one of diverse servers and applications communicating over a network. This naturally
leads to asynchronous, or unsolicited events – events that arrive based on some stimulus external to the user's
application. The main source of events in the CTI environment is the communications media.

The following figure depicts the stages of a typical inbound telephone call and its associated events.
Figure 1: Typical Inbound Call Events Flow

The following events are generated, based on the state of the call:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
2

Introduction
Agent State Control

• OnCallBegin: Indicates that the call has entered the setup phase.

• OnCallDelivered: Generated when the call starts ringing.

• OnCallEstablished: Generated when the call is answered.

• OnCallCleared: Generated when the voice connection is terminated (e.g. call hung up).

• OnCallEnd: Generated when the logical call appearance (including call data) is complete.

In addition to the events and states shown in the figure above, the following are typical call events that CTI
applications use:

• OnCallHeld: Generated when the call transitions from the active to held state.

• OnCallRetrieved: Generated when the call is removed from hold.

• OnCallTransferred: Indicates that the call has been transferred to another party.

• OnCallConferenced: Indicates that a new party has been added to the call.

The foregoing is only a brief sample of the events available via CTI OS. The complete set of events available
for CTI developers is detailed in later chapters in this guide.

Request-Response Paradigm
In addition to responding to asynchronous events, a CTI enabled application can make programmatic requests
for services via the CTI interface. Specifically, the CTI application uses the request-response mechanism to
perform agent state and third-party call control, and to set call context data.

The typical request-response flow for CTI uses the model shown in the following figure:
Figure 2: Sample Request-Response Message Flow

A request generated by the CTI-enabled application (CLIENT) is sent to the CTI service (SERVER), and a
response message (CONF) is generated to indicate that the request was received. In most cases if the request
is successful, a follow-on event is received indicating that the desired behavior has occurred. Detailed
descriptions of this kind of request-response-event message flow are detailed in later chapters in this guide.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
3

Introduction
Request-Response Paradigm

Overview of CTI OS
The Computer Telephony Integration Object Server (CTI OS) is Cisco's next generation customer contact
integration platform. CTI OS combines a powerful, feature-rich server and an object-oriented software
development toolkit to enable rapid development and deployment of complex CTI applications. Together
with the Cisco CTI Server Interface, CTI OS and Client Interface Library (CIL) creates a high performance,
scalable, fault-tolerant three-tiered CTI architecture, as illustrated in the figure below.
Figure 3: CTI OS Three-Tiered Architecture Topology

The CTI OS application architecture employs three tiers:

• The CIL is the first tier and provides an application-level interface to developers.

• The CTI OS Server is the second tier and provides the bulk of the event and request processing and
enabling the object services of the CTI OS system.

• The Cisco CTI Server is the third tier and provides the event source and the back-end handling of telephony
requests.

Advantages of CTI OS as a CTI Development Interface
CTI OS brings several major advances to developing custom CTI integration solutions. The CIL provides an
object-oriented and event driven application programming interface (API), while the CTI OS server does all
the heavy-lifting of the CTI integration: updating call context information, determining which buttons to
enable on softphones, providing easy access to supervisor features, and automatically recovering from failover
scenarios.

• Rapid integration. Developing CTI applications with CTI OS is significantly easier and faster than any
previously available Cisco CTI integration platform. The same object oriented interface is used across
programming languages, enabling rapid integrations in .NET, and C++, Visual Basic, or any Microsoft
COM compliant container environment. Developers can use CTI OS to create a screen pop application
in as little as five minutes. The only custom-development effort required is within the homegrown
application to which CTI is being added.

• Complex solutions made simple. CTI OS enables complex server-to-server integrations and multiple
agent monitoring-type applications. The CIL provides a single object-oriented interface that you can use

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
4

Introduction
Overview of CTI OS

in two modes: Agent Mode and Monitor Mode. See CTI OS Client Interface Library Architecture, on
page 7 for an explanation of these two modes.

• Fault tolerant. CTI OS is built upon the Unified ICM NodeManager fault-tolerance platform, which
automatically detects process failure and restarts the process, enabling work to continue. Upon recovery
from a failure, CTI OS initiates a complete, system-wide snapshot of all agents, calls, and supervisors
and propagates updates to all client-side objects.

Related Topics
Client Interface Library Architecture, on page 7
Advantages of CTI OS as a CTI Development Interface, on page 4

Key Benefits of CTI OS for CTI Application Developers
The CTI OSClient Interface Library (CIL) provides programmers with the tools to rapidly develop high-quality
CTI enabled applications, taking advantage of the rich features of the CTI OS server. Every feature of CTI
OSwas designedwith ease of integration inmind, to remove the traditional barriers to entry for CTI integrations.

• Object-oriented interactions. CTI OS provides an object-oriented CTI interface by defining objects
for all call center interactions. Programmers interface directly with Session, Agent, SkillGroup, and Call
objects to perform all functions. CIL objects are thin proxies for the server-side objects, where all the
heavy-lifting is done. The Session object manages all objects within the CIL. AUniqueObjectID identifies
each object. Programmers can access an object by its UniqueObjectID or by iterating through the object
collections.

• Connection and sessionmanagement. The CTI OS CIL provides out-of-the-box connection and session
management with the CTI OS Server, hiding all of the details of the TCP/IP sockets connection. The
CIL also provides an out-of-the-box failover recovery: upon recovery from a failure, the CIL automatically
reconnects to another CTI OS (or reconnects to the same CTI OS after restart), re-establishes the session,
and recovers all objects for that session.

• All parameters are key-value pairs. The CTI OS CIL provides helper classes treat all event and request
parameters as simply a set of key-value pairs. All properties on the CTI OS objects are accessible by
name via a simple Value = GetValue (“key”) mechanism. Client programmers can add values of any
type to the CTI OS Arguments structure, using the enumerated CTI OS keywords, or their own string
keywords (for example, AddItem[“DialedNumber”, “1234”]). This provides for future enhancement of
the interface without requiring any changes to the method signatures.

• Simple event subscription model. The CTI OS CIL implements a publisher-subscriber design pattern
to enable easy subscription to event interfaces. Programmers can subscribe to the appropriate event
interface that suits their needs, or use the AllInOne interface to subscribe for all events. C++ and COM
contain subclassable event adapter classes. These classes enable programmers to subscribe to event
interfaces; they add only minimal custom code for the events they use and no code at all for events they
do not use.

Illustrative Code Fragments
Throughout this manual, illustrative code fragments are provided both to clarify the usage and as examples.
These fragments are written in several languages, including .NET (VB .NET). Note that the VB code fragments
are written using the VB 6 syntax.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
5

Introduction
Key Benefits of CTI OS for CTI Application Developers

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
6

Introduction
Illustrative Code Fragments

C H A P T E R 2
CTI OS Client Interface Library Architecture

• Object Server Architecture, on page 7
• Client Interface Library Architecture, on page 7
• CIL Object Model Object Interfaces, on page 9
• Where to Go from Here, on page 18

Object Server Architecture
CTI OS is a server-based integration solution that enables all objects to exist on the CTI OS server. The
client-side objects, through which the developer can interact with the CTI OS CIL, is conceptually thought
of as a thin proxy for server-side objects.

All objects are identified by a UniqueObjectID. The UniqueObjectID is the key that maps a server-side object
and the client-side proxy (or proxies). Requests made on a client-side object are sent to the CTI OS Server,
and the corresponding server-side object services the request (see the following figure).
Figure 4: CTI OS Object Server and Client Object Sharing

Client Interface Library Architecture
The Client Interface Library has a three-tiered architecture (see figure below), which implements the
functionality provided to developers. The CIL architecture comprises the Connection Layer, the Service Layer
and Object Interface Layer. The CIL architecture also includes the custom application, which the customer
develops to use the Client interface Library services.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
7

Figure 5: Client Interface Library Three-Tiered Architecture

Related Topics
Client Interface Library Architecture, on page 7
Advantages of CTI OS as a CTI Development Interface, on page 4

Connection Layer
The Connection Layer provides basic communication and connection recovery facilities to the CIL. It creates
the foundation, or bottom tier of the CIL's layered architecture, and decouples the higher-level event and
message architecture from the low-level communication link (TCP/IP sockets). The Connection Layer sends
and receives socket messages to the CTI OS Server, where it connects to a server-side Connection Layer.

In addition to basic communication facilities, the Connection Layer provides fault tolerance to the CIL by
automatically detecting and recovering from a variety of network failures. The Connection Layer uses a
heartbeat-by-exceptionmechanism, sending heartbeats to detect network-level failures onlywhen the connection
is silent for a period of time.

The C++ CIL connection objects offered a parameter for setting QoSmarkings (DSCP packet markings). This
mechanism does not work when the desktop is deployed onWindows 7. If you require QoS markings on these
platforms, manage QoS across the enterprise with a Group Policy. Group Policies are administered using
Active Directory, but that information is beyond the scope of this document.

For more information about C++ CIL connection objects, see ISessionEvents Interface, on page 168.

For additional information about QoS and DSCP, see the Solution Design Guide for Cisco Unified Contact
Center Enterprise.

For additional information about CTI OS QoS support, see the CTI OS System Manager Guide for Cisco
Unified ICM.

Related Topics
ISessionEvents Interface, on page 168

Service Layer
The Service Layer sits between the Connection Layer and the Object Interface Layer. Its main purpose is to
translate the low-level network packets the Connection Layer sends and receives and the high-level command
and event messages the Object Interface Layer uses. The Service Layer implements a generic message
serialization protocol which translates key-value pairs into a byte stream for network transmission and
deserializes the messages back to key-value pairs on the receiving side. This generic serialization mechanism

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
8

CTI OS Client Interface Library Architecture
Connection Layer

ensures forward-compatibility, because future enhancements to the message set do not require any changes
at the Connection or Service Layers.

A secondary purpose of the Service Layer is to isolate the client from the network, so that network issues do
not block the client and vice versa. This is done via a multi-threadingmodel that allows user-program execution
to continue without having to block on network message sending or receiving. This prevents client applications
from getting stuck when a message is not immediately dispatched across the network, and allows messages
to be received from the network even if the client application is temporarily blocked.

Object Interface Layer
The CTI Object Interface Layer is the topmost layer on the CIL architecture. It consists a group of objects
(classes) that enable application developers to write robust applications for CTI in a short time. You can extend
the framework to accommodate special requirements by subclassing one or more of the CTI OS object classes.

Custom Application
The custom application is the business application that is developed to integrate with the CTI OS Client
Interface Library. The custom application uses the CIL in the two following ways:

• The CIL provides the object-based interface for interacting with CTI OS, to send requests for agent and
call control.

• The CIL provides an events subscription service, which the custom application takes advantage of to
receive events from CTI OS.

For example, a custom application can use the Agent object to send a MakeCallRequest, and then receive a
OnCallBeginEvent (and others) from the CIL's events interfaces.

CIL Object Model Object Interfaces
The Client Interface Library's Object Interface layer provides a set of objects that create abstractions for all
of the call center interactions supported. Client programs interact with the CIL objects by making requests
from the objects, and querying the objects to retrieve properties. The following figure illustrates the CIL
Object Model Object Interfaces.
Figure 6: CIL Object Model Object Interfaces

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
9

CTI OS Client Interface Library Architecture
Object Interface Layer

Session Object
The Session object is the main object in the CIL. It controls the logical session between the client application
and the CTI OS server. The Session object provides the interface to the lower layers of the CIL architecture
(the Service and Connection layers), and also encapsulates the functions required to dispatch messages to all
the other objects in the CIL.

The Session object provides object management (creation, collection management, and deletion), and is the
publisher for all CIL events. In addition, the Session object provides automatic fault tolerance and failover
recovery.

Session Modes
You can set a Session object to work in one of two modes: Agent Mode or Monitor Mode. The Session object
maintains the state of the Session mode, and recovers the session mode during failover. The client application
must set the session mode after it connects to the CTI OS Server; the Session mode remains active until the
connection to the CTI OS Server is closed.

Agent Mode

A client connects to CTI OS Server in Agent Mode when it wants to receive events for a specific agent or
supervisor. After you set the Agent Mode, the CIL receives the events for the specified agent, as well as all
call events for that agent's calls. If you also configure the agent as a Supervisor in Unified ICM, the CIL
receives events for all agents in the Supervisor's team.

Monitor Mode

A client connects to the CTI OS Server in Monitor Mode when it wants to receive a programmer-specified
set of events, such as all agent state events. For more information about setting up aMonitor Mode connection,
see Select Monitor Mode, on page 61.

For the complete interface specification of the Session object, see Session Object, on page 307

Related Topics
Select Monitor Mode, on page 61

Agent Object
The Agent object provides an interface to Agent functionality, including changing agent states and making
calls. The Agent object also provides access to many properties, including agent statistics. Depending on the
Session Mode, a CIL application can have zero to many Agent objects.

For the complete interface specification of the Agent object, see Agent Object, on page 343

Related Topics
Agent Object, on page 343

Call Object
The Call object provides an interface to Call functionality, including call control and accessing call data
properties. Depending on the Session Mode, a CIL application can have any number of Call objects.

For the complete interface specification of the Call object, see Call Object, on page 389

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
10

CTI OS Client Interface Library Architecture
Session Object

Related Topics
Call Object, on page 389

SkillGroup Object
The SkillGroup object provides an interface to SkillGroup properties, specifically skill group statistics.
Depending on the Session Mode, a CIL application can have zero to many SkillGroup objects.

For the complete interface specification of the SkillGroup object, see SkillGroup Object, on page 423

Object Creation
The Session object maintains a collection for each class of objects it manages (for example, Agents, Calls,
SkillGroups).

Objects are created either by the programmer or by the Session object as required to support the event flow
received from the CTI OS Server. In Agent Mode, the programmer creates a single Agent object with which
to log in; in Monitor Mode, Agent objects are created as required by the event flow. Call and SkillGroup
objects are always created by the Session object.

An Agent, Call, or SkillGroup object is created (by the Session) when the Session receives an event for an
object (identified by its UniqueObjectID) that is not yet present at the CIL. This ensures that the CIL always
has the appropriate collection of proxy objects, one for each object on the CTI OS Server that it is using.
When a new object is created, it is added to the Session object's collection, and is accessible from the Session
via the GetValue mechanism. See Session Object, on page 307

Reference Counting
Object lifetime is controlled using reference counting. Reference counts determine if an object is still in use;
that is, if a pointer or reference to it still exists in some collection or member variable. When all references
to the object are released, the object is deleted.

An application or object that holds a reference to a CIL object must use the AddRef method to add to its
reference count. When the reference is no longer required, the application or object holding that reference
must use the Release() method to decrement the reference count. Reference counting is discussed further in
CtiOs Object, on page 291.

Reference counting must be done explicitly in C++ applications (COM or non-COM). Visual Basic, Java,
and the .NET framework perform automatic reference counting.

Note

Call Object Lifetime
Call objects are created at the CIL in response to events from the CTI OS server. Usually, a Call object is
created in response to the OnCallBegin event, but in certain failover recovery scenarios a Call object is created
in response to an OnSnapshotCallConf event. Any call data available for the call is passed in the event, and
is used to set up the Call object's initial state and properties.

The Call object remains valid at the CIL until the receipt of the OnCallEnd event. When the OnCallEnd event
is received, the Session object publishes the event to any subscribers to the event interfaces. Applications and
objects must release any remaining references to the Call object within their event handler for OnCallEnd to

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
11

CTI OS Client Interface Library Architecture
SkillGroup Object

delete the Call object. When the Call object's OnEvent method returns after handling OnCallEnd, the Session
checks the reference count for zero; if any references remain, the Call object is removed from the Call object
collection but is not deleted until the last reference to it is released.

Agent Object Lifetime
In Agent Mode, the client programmer must create an Agent object, which causes its reference count to be
incremented to one, and must pass it to the Session in the SetAgent method.

In C++, you must create the object on the heap memory store so that it can exist beyond the scope of the
method creating it. For clients using other CILs, this is handled automatically.

Note

The Session holds a reference to the Agent object as long as it is in use, but the client programmer must release
the last reference to the object to prevent a memory leak.

In Monitor Mode, objects are created at the CIL when the CIL receives an event for that agent for the first
time (for example, in an OnAgentStateChange event). When the Session receives an event for an unrecognized
Agent, that new Agent is added to the Session's collection of agents.

During application clean-up, the Session object releases its references to all agents in the Agent collection.
To ensure proper memory clean-up, the programmer must release all reference to Agent objects.

SkillGroup Object Lifetime
A SkillGroup object is created at the CIL the first time an OnNewSkillGroupStatisticsEvent event occurs for
that SkillGroup. It is added to the SkillGroup collection, and it is subsequently updated by follow-on
OnNewSkillGroupStatisticsEvent events.

During application clean-up, the Session object releases its references to all skill groups in the SkillGroup
collection. To ensure proper memory clean-up, the programmer must release all reference to SkillGroup
objects.

Methods That Call AddRef()
The following tables detail the various methods that call AddRef(). To prevent memory leaks, C++ and COM
application developers that call these methods in their applications must be aware of the impact of these
methods on the reference count and must appropriately release the reference when no longer using the object:

Table 1: SessionLib (C++)

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object
when the object is no longer
needed.

GetSkillGroups(),

GetMonitoredCall()

CAgent

The client application must call
Release() on the returned object
when the object is no longer
needed.

CreateInstance(),

GetValue()

CILRefArg

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
12

CTI OS Client Interface Library Architecture
Agent Object Lifetime

ExplanationMethod NameObject Name

These methods increment the
reference count on the passed in
object. When the CilRefArg is
deleted the reference count of the
enclosed object is decremented.

SetValue(),

operator=

CILRefArg

This method increments the
reference count on the passed in
object. The previous "current" call's
reference count is decremented. If
an end call event is received for the
current call, its reference count is
decremented one extra time.

SetCurrentCall()CCtiOsSession

This method call decrements the
reference count on the passed in
object.

DestroyWaitObject()CCtiOsSession

The client application must call
DestroyWaitObject() on the
returned object when the object is
no longer needed.

CreateWaitObject()CCtiOsSession

This method decrements the
reference count of the passed in
object.

DestroySilentMonitorManager()CCtiOsSession

The client application must call
DestroySilentMonitorManager ()
on the returned object when it is no
longer needed.

CreateSilentMonitorManager()CCtiOsSession

This method increments the
reference count on the passed in
object. The previous "current"
silent monitor's reference count is
decremented.

SetCurrentSilentMonitor()CCtiOsSession

The client application must call
Release() on the returned object
when it is no longer needed.

GetCurrentCall(),

GetCurrentSilentMonitorManager(),

GetAllCalls(),

GetAllSkillGroups(),

GetAllAgents(),

GetCurrentAgent(),

GetValue(),

GetObjectFromObjectID()

CCtiOsSession

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
13

CTI OS Client Interface Library Architecture
Methods That Call AddRef()

ExplanationMethod NameObject Name

This method increments the
reference count on the passed in
object. If the passed in object is
NULL, then this method
decrements the current Agent
object's reference count.

SetAgent()CCtiOsSession

The client application must call
Release() on the returned object
when it is no longer needed.

GetSessionInfo(),

GetIPPhoneInfo(),

GetSMSessionList()

CSilentMonitorManager

Table 2: CtiosClient.dll (COM)

ExplanationMethod NameObject Name

This method increments the
reference count for every
SkillGroup object, adds them to a
safe array and then returns the safe
array.

GetSkillGroups()IAgent

The client application must call
Release() on the returned object
when it is no longer needed.

GetMonitoredAgent(),

GetMonitoredCall()

IAgent

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue(),

GetValueArray(),

GetElement()

IAgent

The client application must call
Release() on the returned object
(first argument) when it is no longer
needed.

GetAllProperties()IAgent

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue(),

GetValueArray(),

GetElement()

ISkillGroup

The client application must call
Release() on the returned object
(first argument) when it is no longer
needed.

GetAllProperties()ISkillGroup

The client application must call
Release() on the returned object
when it is no longer needed.

GetCallContext(),

GetCallData()

ICall

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
14

CTI OS Client Interface Library Architecture
Methods That Call AddRef()

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue(),

GetValueArray(),

GetElement()

ICall

The client application must call
Release() on the returned object
(first argument) when it is no longer
needed.

GetAllProperties()ICall

This method increments the
reference count of the passed in
object and decrements the reference
count of the previous monitor.

SetMonitor()ISilentMonitorManager

The client application must call
Release() on the returned object
when it is no longer needed.

GetMonitor()ISilentMonitorManager

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetSessionInfo(),

GetIPPhoneInfo(),

GetSMSessionList(),

GetValue(),

GetValueArray(),

GetElement()

ISilentMonitorManager

The client application must call
Release() on the returned object
(first argument) when it is no longer
needed.

GetAllProperties()ISilentMonitorManager

This method increments the
reference count on the passed in
object. If the passed in object is
NULL, then this method
decrements the current Agent
object's reference count.

SetAgent()ISession

The client application must call
Release() on the returned object
when it is no longer needed.

GetCurrentAgent(),

GetCurrentCall()

ISession

This method increments the
reference count for every Call
object, adds them to a safe array
and then returns the safe array.

GetAllCalls()ISession

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
15

CTI OS Client Interface Library Architecture
Methods That Call AddRef()

ExplanationMethod NameObject Name

This method increments the
reference count for every Agent
object, adds them to a safe array
and then returns the safe array.

GetAllAgents()ISession

This method increments the
reference count for every
SkillGroup object, adds them to a
safe array and then returns the safe
array.

GetAllSkillGroups()ISession

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue()

GetValueArray(),

GetElement()

ISession

The client application must call
Release() on the returned object
(first argument) when it is no longer
needed.

GetAllProperties()ISession

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetObjectFromObjectID()ISession

The client application must call
DestroySilentMonitorManager() on
the returned object when it is no
longer needed.

CreateSilentMonitorManager()ISession

This method call decrements the
reference count on the passed in
object.

DestroySilentMonitorManager()ISession

The client application must call
Release() on the returned object
when it is no longer needed.

GetCurrentSilentMonitorManager()ISession

Table 3: CtiosComArguments.dll (COM)

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object
when it is no longer needed.

Clone()IArg

The client application must call
Release() on the returned object
when it is no longer needed.

GetValueArray()IArg

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
16

CTI OS Client Interface Library Architecture
Methods That Call AddRef()

ExplanationMethod NameObject Name

If ARG_TYPE = ARG_ARRAY,
the client application must call
Release() on the returned object
when it is no longer needed.

GetValue()IArg

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValueArray(),

GetValue(),

GetElement()

IArguments

The client application must call
Release() on the returned object
when it is no longer needed.

Clone()IArguments

Table 4: ArgumentsLib (C++)

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object
when it is no longer needed.

CreateInstance(),

GetValueArray(),

operator=

Arg

The client application must call
Release() on the returned object
when it is no longer needed.

CreateInstance(),

Clone(),

GetValue(),

GetValueArg,

GetValueArray(),

GetElement(),

GetElementArg()

Arguments

If the returned object is of type Arg
or of type Arguments, the client
application must call Release() on
the returned object when it is no
longer needed.

SetValue()Arguments

If the returned object is of type Arg
or of type Arguments, the client
application must call Release() on
the returned object when it is no
longer needed.

SetElement()Arguments

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
17

CTI OS Client Interface Library Architecture
Methods That Call AddRef()

Where to Go from Here
Subsequent chapters in this manual contain the following information:

• For information about CIL coding conventions, see CIL Coding Conventions, on page 19

• For information about building an application using the CIL, see Building Your Custom CTI Application,
on page 33

• For a description and syntax of the CIL programming interfaces, see Chapters 8 through 13.

Related Topics
CIL Coding Conventions

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
18

CTI OS Client Interface Library Architecture
Where to Go from Here

C H A P T E R 3
CIL Coding Conventions

• CTI OS CIL Data Types, on page 19
• Asynchronous Program Execution, on page 20
• CIL Error Codes, on page 21
• COM Error Codes, on page 25
• Generic Interfaces, on page 26
• UniqueObjectID Variable-Length String, on page 28
• UniqueObjectID to Obtain Pointer or Reference, on page 29
• Button Enablement Masks, on page 30

CTI OS CIL Data Types
The CTI OS Client Interface Library is designed to be a single interface, which you can use across multiple
languages and environments (e.g. C++, COM, Visual Basic, Java, and .NET). However, each programming
language has its own native data types. Throughout this document, the interface parameters are listed with
the following standardized data types:

• STRING: A variable-length string variable. If a maximum length exists, it is listed with the parameter
description.

• INT: A 32-bit wide integer.

• UNSIGNED INT: A 32-bit wide unsigned integer.

• SHORT: A 16-bit wide short integer.

• UNSIGNED SHORT: A 16-bit wide unsigned short integer.

• BOOL: A logical true or false variable. Different implementations use variables of different sizes to
represent this type. In COM, the VARIANT_BOOL is used. Tests of variables of this data type must be
against VARIANT_TRUE and VARIANT_FALSE and not simply against 0 or 1.

• ARGUMENTS: A custom data structure used by CTI OS, which holds a variable-length set of key-value
pairs.

• ARG: An individual element (value), which can be stored in an ARGUMENTS structure.

The following table describes the appropriate language specific types to which the documented type are
associated.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
19

Table 5: CTI OS CIL Data Type

ARGARGUMENTSBOOLUNSIGNED
SHORT

SHORTUNSIGNED
INT

INTSTRINGDocumented
Data Type

ArgArgumentsboolunsigned shortshortunsigned intlong or intstd::string
or const
char

C++ Type

ArgArgumentsBooleanIntegerIntegerNoneLongStringVisual Basic
6.0 Type

IArg*IArguments *VARIANT_BOOLunsigned shortshortunsigned intlong or intBSTRCOM Type

ArgArgumentsBooleanintshortlongintStringJava Type

ArgArgumentsSystem.BooleanSystem.Int32System.Int16System.Int64System.Int32System.String.NET Type

Asynchronous Program Execution
The most common programming approach used by applications is synchronous execution. In a synchronous
execution mode, a method call executes all the code required to complete the request and provide return values
as well as error codes. Client-server programming can be synchronous (the client application makes a blocking
request and continues execution when the request is completed) or asynchronous (the client applicationmakes
a request and continues processing immediately, with the result of the request to follow at a later time).

CTI programming is unique in that requests are often serviced by third-party servers or applications, such as
a PBX/ACD in the contact center. The asynchronous nature of CTI programming requires developers to note
the distinction between an error code and the response to a request. In non-CTI programming, developers test
the error codes (return values from method calls) to determine whether a method request succeeded or failed.
However, in a distributed architecture such as CTI OS, success or failure is often determined by some external
server or component such as the PBX/ACD.

The CTI OS Client Interface Library API specifies error codes, which are return values for method calls.
These error codes relate to the success or failure of the method call, but not the success or failure of the
underlying operation. The success of the method call means that the parameters sent were of the correct format,
that internal memory allocations were successful, and that the request was put on the send queue to be
transmitted to the CTI OS Server. Generally, the CIL error code returned from method calls is CIL_OK,
indicating that the method call was successful. However, this does not indicate that the request was actually
serviced by the CTI OS Server or successfully completed at the PBX/ACD.

To determine the success or failure of the underlying telephony operation requested, the CTI programmer
must wait for an event confirming the success or failure of the request. To generalize the message flow model,
most requests made at the CTI OS CIL are answered with a confirmation message and/or an event message.
See the object interface reference in Chapters 8-12 for details on each particular request. This type of response
is called asynchronous—it can arrive at any time after the request is made, but typically requests are services
in sub-second timeframes.

The expected event sequence is described for each method request in the programmer's interface sections of
this document so that programmers know which events to expect. In the event of a request failure, an
eControlFailureConf message is sent to the client; the eControlFailureConf message has a parameter called

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
20

CIL Coding Conventions
Asynchronous Program Execution

MessageType indicating which request failed, and a parameter called ErrorMessage, with a description of the
failure cause.

For example, when sending a MakeCall request, the method typically returns CIL_OK, which means that the
method call was successful. If the underlyingmake call request is successful, the CIL receives several follow-on
events, such as eBeginCallEvent and eServiceInitiatedEvent. If the request fails, the CIL receives the
eControlFailureConf message.

A commonmistake is that developers who have not previously programmedwith asynchronous events mistake
the error code returned from a method call for the actual result of the request. The correct semantics are to
interpret the error code as being indicative of the result of the method call, and to interpret the follow-on
events to determine the actual result of the requested operation.

CIL Error Codes
Whenever a method call is invoked by a custom application using the CIL, an error code is returned. The error
codes returned only indicate success or failure of the method call, as indicated in the previous section.

The possible values of the error code returned from C++ and Java CIL methods are defined in the following
table.

The numeric values listed in the following table are subject to change. Use the error code enumerations to
check a given error code, rather than rely on a specific numeric value.

Note

Table 6: CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

The method succeeded. The request to
silent monitor the call was successfully
initiated.

1CIL_OK

The method failed.0CIL_FAIL

There is no implementation available for
this method.

-99E_CTIOS_METHOD_NO_ IMPLEMENTED

One or more properties are invalid.-100E_CTIOS_INVALID_ PROPERTY

A conflict when setting session mode.-101E_CTIOS_MODE_CONFLICT

The Event ID is not valid.-102E_CTIOS_INVALID_ EVENTID

The Argument is not valid.-103E_CTIOS_INVALID_ ARGUMENT

The Session is not valid.-104E_CTIOS_INVALID_ SESSION

An unexpected error has occurred.-105E_CTIOS_UNEXPECTED

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
21

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

There is not enoughmemory available and
the creation of CCtiOsObject failed.

-106E_CTIOS_OBJ_ALLOCATION_FAILED

There is not enoughmemory available and
the creation of an array of references to
objects of type CCtiOsObject failed.

-107E_CTIOS_ARRAYREF_ ALLOCATION_FAILED

There is not enoughmemory available and
the creation of an object of type Arguments
failed.

-108E_CTIOS_ARGUMENT_ALLOCATION_FAILED

There are no CTI OS Objects capable of
processing an incoming event.

-109E_CTIOS_TARGET_ OBJECT_ NOT_FOUND

An error occurred while accessing a
property's attributes, System may be
running out of memory.

-110E_CTIOS_PROP_ ATTRIBUTES_ACCESS_
FAILED

The object type is not one of the following
predefined types CAgent, CCall,
CSkillGroups, or CWaitObject.

-111E_CTIOS_INVALID_ OBJECT_TYPE

No valid agent.-112E_CTIOS_INVALID_AGENT

No valid call.-113E_CTIOS_INVALID_CALL

The session is recovering from a
connection failure and started the Fail Over
procedure.

-114E_CTIOS_IN_FAILOVER

Indicates that the desktop type specified in
the request for DeskSettings download is
neither Agent or Supervisor.

-115E_CTIOS_INVALID_ DESKTOP_TYPE

Missing a required argument.-116E_CTIOS_MISSING_ ARGUMENT

Call is not on hold.-117E_CTIOS_CALL_NOT_ON_ HOLD

Call is already on hold.-118E_CTIOS_CALL_ALREADY_ ON_HOLD

Call is not in alert state, it can not be
answered.

-119E_CTIOS_CALL_NOT_ ALERTING

Agent is not logged in.-120E_CTIOS_AGENT_NOT_ LOGIN

The input parameter is invalid.-121E_CTIOS_INVALID_ METHOD_PARAMETER

The cause of this error is unknown.-122E_CTIOS_UNKNOWN

Failed to allocate new memory.-123E_CTIOS_OUT_OF_ MEMORY

The specified port is not available for use.-124E_CTIOS_PORT_ UNAVAILABLE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
22

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

The SilentMonitor session was terminated
abnormally.

-125E_CTIOS_SM_SESSION_ TERMINATED_
ABNORMALLY

The request was rejected because there is
an active silent monitor session in progress.

-126E_CTIOS_SM_REJECTED_
ALREADY_IN_SESSION

The packet sniffer is not present in the
system; verify installation.

-127E_CTIOS_SM_PACKET_
SNIFFER_NOT_INSTALLED

An error occurred in the packet sniffer.-128E_CTIOS_PACKET_ SNIFFER_FAILED

A CTI OS socket call failed.-129E_CTIOS_SOCKET_CALL_ FAILED

EVVBU Media Termination component
in the system, verify installation.

-130E_CTIOS_MEDIA_ TERMINATION_NOT_
INSTALLED

Specified CODEC is not supported.-131E_CTIOS_MT_UNKNOWN_ CODEC

An error occurred in the Media
Termination Packet Decoder.

-132E_CTIOS_MEDIA_ TERMINATION_FAILED

The Sniffer has not received any IP
packets.

-133E_CTIOS_SNIFFER_NO_ PACKETS_RECEIVED

The Sniffer failed to open the networking
device.

-134E_CTIOS_SNIFFER_FAILED_TO_OPEN_DEVICE

The Sniffer failed when setting the packet
filter.

-135E_CTIOS_SNIFFER_ FAILED_TO_SET_FILTER

The packet filter expression is incorrect.-136E_CTIOS_ERROR_IN_ PACKET_FILTER

The IP Address specified for the monitored
device (IP Phone) is not valid.

-137E_CTIOS_INVALID_MONITORED_IP_ADDRESS

Invalid Sniffer object.-138E_CTIOS_INVALID_ SNIFFER_OBJECT

Invalid Decoder object.-139E_CTIOS_INVALID_ DECODER_OBJECT

There are no Silent Monitor Sessions in
progress.

-140E_CTIOS_NO_SM_ SESSION_IN_PROGRESS

The specified Silent Monitor session does
not exist.

-141E_CTIOS_INVALID_ SILENT_MONITOR_
SESSION

Silent Monitor Session was not removed
from the collection.

-142E_CTIOS_FAILED_ REMOVING_SILENT_
MONITOR_SESSION

There is no information available about the
IP Phone.

-143E_CTIOS_IP_PHONE_ INFORMATION_NOT_
AVAILABLE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
23

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

The peer application is not enabled for
Silent Monitor.

-144E_CTIOS_PEER_NOT_ENABLED_FOR_SILENT_
MONITOR

This application is not enabled for Silent
Monitor.

-145E_CTIOS_NOT_ENABLED_
FOR_SILENT_MONITOR

There are no pending requests to be
processed.

-146E_CTIOS_NO_PENDING_REQUEST

There is already an established session.-147E_CTIOS_ALREADY_IN_SESSION

The session mode is already set.-148E_CTIOS_MODE_SET_ALREADY

The session mode is not set yet.-149E_CTIOS_MODE_NOT_SET

The object is not in the correct state.-150E_CTIOS_INVALID_OBJECT_STATE

This error occurs when a request to initiate
CTI OS silent monitor is made and CTI
OS is configured to use CCM silent
monitor. This error also occurs when a
request to initiate CCM silent monitor is
made and CTI OS is configured to use CTI
OS silent monitor.

-151E_CTIOS_INVALID_SILENT_MONITOR_MODE

CoCreateInstance failed to create a COM
object wrapper for a CIL Object (Session,
Agent, Call, Skill, etc.).

-200E_CTIOS_COM_OBJ_ ALLOCATION_FAILED

A COM component failed to access data
from the registry.

-201E_CTIOS_COM_ CORRUPTED_REGISTRY

The Dial Pad common dialog was not
created and CoCreateInstance failed.

-202E_CTIOS_COM_DIALPAD_ FAIL_TO_LOAD

Failed converting COM pointer to C++
pointer.

-203E_CTIOS_COM_CONV_COMPTR_TO_CPPPTR_
FAILED

The MS COM library is not initialized.
Invoke CoInitialize(...).

-204E_CTIOS_COM_NOT_ INITIALIZED

A disconnect is already pending.-300E_CTIOS_SESSION_ DISCONNECT_PENDING

The session is not connected.-301E_CTIOS_SESSION_NOT_ CONNECTED

The call to Connect failed because the
session is not in a disconnected state. The
session may be connected or a previous
call to Disconnect may not yet be
complete.

-351E_CTIOS_SESSION_NOT_DISCONNECTED

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
24

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

An object for this agent already exists in
the session.

-900E_CTIOS_AGENT_ ALREADY_IN_SESSION

Session must be disconnected before
operation.

-901E_CTIOS_SET_AGENT_
SESSION_DISCONNECT_ REQUIRED

Could not send message. Session may not
be connected.

-902E_CTIOS_SERVICE_SEND_MESSAGE_FAILED

An object for this call is already set as
current in the session.

-903E_CTIOS_CALL_ALREADY_CURRENT_IN_SESSION

TheAgentID and/or PeripheralID provided
to a Login call do not match the properties
set on the Agent object when SetAgent()
was called.

-904E_CTIOS_LOGIN_ INCONSISTENT_
ARGUMENTS

If a method that is supposed to trigger an event returns an error code, check this return value before continuing
to wait for events. Depending on the error code, the event you were waiting for may not be triggered.

Note

COM Error Codes
For applications using the CTI OS CIL for COM, the Microsoft COM layer adds a level of error detection
and provides additional error codes, called HRESULTs. For COM method calls in C++, the HRESULT is
returned from the method call, and indicates success or failure of the method call. The CIL error code is also
returned, but as an [out, retval] parameter. For example:

// COM Example in C++
int errorCode = 0;
HRESULT hr = pCall->Answer(&errorCode);
if (errorCode=CIL_FAILED)

printf(“An error has occurred while answering the call.”)

In Visual Basic, HRESULT values are hidden under the covers.When an error occurs, a Visual Basic exception
is thrown, which can be caught using the On Error: construct. The CIL error code is returned as the result of
the method call:

' VB example:
On Error GoTo Error_handler
Dim errorCode as Long

ErrorCode = pCall.Answer
If ErrorCode = CIL_FAILED
Debug.print “An error has occurred.”

The complete set of HRESULT values is defined byMicrosoft in the header filewinerror.h. Themost common
HRESULT values that CTI OS developers see are listed in the following table:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
25

CIL Coding Conventions
COM Error Codes

Table 7: COM Error Codes

DescriptionNumeric ValueCOM Error Code

The method succeeded.0x00000000S_OK

The method succeeded, but something
unusual happened.

0x00000001S_FALSE

The method failed.0x80000008E_FAILED

The class was not found in the registry.
You must run regsvr32.exe on the DLL
file to register it.

0x80040143REG_DB_E_ CLASSNOTREG

Generic Interfaces
One of the main design goals of CTI OS was to enable future enhancements to the CTI OS feature set without
breaking existing interfaces. To accomplish this, a parameter for almost everymethod and event is an Arguments
array containing the actual parameters needed. Therefore, parameters can be added or deleted in future versions
without affecting the signature of the method or event. This provides the benefit to developers that code
developed to work with one version of the CTI OS developer toolkit works with future versions without
requiring any code changes on the client side (except to take advantage of new features). For example, CTI
OS automatically sends a new parameter in the Arguments array for an event, without requiring an interface
or library code change. The dilemma of creating a generic interface is solved by using generic mechanisms
to send parameters with events and request, and to access properties.

Arguments
The CTI OS developer's toolkit makes extensive use of a new data structure (class) called Arguments.
Arguments is a structure of key-value pairs that supports a variable number of parameters and accepts any
user-defined parameter names. For any given event, the Arguments structure allows the CTI OS Server to
send the CIL any new parameters without requiring client side changes. Similarly, for any request, the
programmer can send any new parameters without any changes to the underlying layers.

Example of using Arguments in a Visual Basic MakeCall request:

Dim args As New Arguments
args.AddItem "DialedNumber", dialthis.Text

If Not 0 = Len(callvar1.Text) Then
' set callvar1
args.AddItem "CallVariable1", callvar1.Text
End If

' send makecall request
m_Agent.MakeCall args, errorcode

Java example:

Arguments args = new Arguments();
args.SetValue(CtiOs_IkeywordIDs.CTIOS_DIALEDNUMBER, "12345");

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
26

CIL Coding Conventions
Generic Interfaces

args.SetValue(CtiOs_IkeywordIDs.CTIOS_CALLVARIABLE1, "MyData");
int iRet = m_Agent.MakeCall(args);

The Arguments structure can store and retrieve all native C/C++, Visual Basic, and .NET, and Java types, as
well as nested Arguments structures.

GetValue Method to Access Properties and Parameters
CTI OS makes extensive use of generic data abstraction. The CTI OS CIL objects, as well as the Arguments
structure, store all data by key-value pair. Properties and data values in CTI OS are accessible through a
generic mechanism called GetValue. For a list of the different GetValue methods, see CtiOs Object, on page
291 or Helper Classes, on page 441 The GetValue mechanism provides for the retrieval of any data element
based on its name. This enables the future enhancement of the data set provided for event parameters and
object properties without requiring any interface changes to support new parameters or properties. GetValue
supports use of string keywords, as shown in the following examples:

// C++string sAgentID;
args.GetValueString("AgentID", &sAgentID);

`Visual Basic
Dim sAgentID As String
sAgentID = args.GetValueString "AgentID"

//Java
String sID = args.GetValueString(CtiOs_IkeywordIDs.CTIOS_AGENTID);
Integer IPeriph = args.GetValueIntObj(CtiOs_IkeywordIDs.CTIOS_PERIPHERALID);

if (IPeriph == null)
// Error accessing Peripheral ID! Handle Error here
else

iPeriph = IPeriph.intValue();

CTI OS defines a set of well-known keywords for event parameters and properties. The well-known keywords
are of type string and are listed throughout this document with the methods and events for which they are
valid. The complete set of valid keywords are listed in the C++ header file, ctioskeywords.h, and are provided
in the COM (Visual Basic) type library as well. Java CIL keywords are listed in the Javadoc in the description
of the CtiOs_IKeywordIDs interface.

SetValue Method to Set Object Properties and Request Parameters
The CIL also provides an extensible mechanism to set properties on CTI OS Client Interface Objects. The
SetValue mechanism, available on the CIL Interface Objects (as well as the CTI OSArguments class), enables
setting properties of any known type to the object as a key-value pair.

SetValue, similar to GetValue and AddItem, supports string keywords and enumerated names:

// C++
Agent a;
a.SetValue("AgentID", "22866");
a.SetValue(CTIOS_AGENTID, "22866"); // alternative
a.SetValue(ekwAgentID, "22866"); // alternative

`Visual Basic
Dim a As Agent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
27

CIL Coding Conventions
GetValue Method to Access Properties and Parameters

a.SetValue "AgentID", "22866"

//Java. Note use of the CTIOS_AGENTID version of keywords.
String sAgentID = "22866";
Args.SetValue("AgentID", sAgentID);
Args.SetValue(CtiOs_IkeywordIDs.CTIOS_AGENTID, sAgentID); // alternative
Args.SetValue(ekwAgentID, sAgentID);

The complete syntax and usage of the GetValue, AddItem, and SetValue methods is detailed in CtiOs Object,
on page 291 The Arguments structure is detailed in Helper Classes, on page 441

UniqueObjectID Variable-Length String
The CTI OS Server creates and manages the CTI OS objects, representing all interactions for the contact
center. The CTI OS Server and CIL use the UniqueObjectID field to match up a CTI OS object on the CIL
with the corresponding object on the Server.

The UniqueObjectID is a variable-length string that can uniquely identify the object within the current context
of the CTI OS Server and the Unified CCE and CTI Interlink Advanced. The UniqueObjectID comprises an
object type (for example, call, agent, skillgroup, and so on), and two or more additional identifying fields.
The following table explains the composition of the UniqueObjectID.

Table 8: UniqueObjectID Components

ExplanationSample UniqueObjectIDObject Type

The Call object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), ConnectionCallID (202,
generated by the PBX/ACD), and its
ConnectionDeviceID (23901, generated
by the PBX/ACD).

call.5000.202.23901Call Object

The Agent object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), and its agent ID.

agent.5000.22866Agent Object

The device object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), and its instrument number
(configured by the PBX/ACD).

device.5000.23901Device Object (for events only; no
CIL object)

The skill group object is uniquely
identified by its PeripheralID (5000,
generated by Unified ICM), and its
SkillGroupNumber (configured by the
PBX/ACD).

skillgroup.5000.77SkillGroup Object

The team object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), and its TeamID (5001, also
generated by Unified ICM).

team.5000.5001Team Object (for events only; no
CIL object)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
28

CIL Coding Conventions
UniqueObjectID Variable-Length String

The CTI OS UniqueObjectID is not the same as the Unified ICM globally unique 64 bit key used in the ICM
historical databases (called the ICMEnterpriseUniqueID), which exists only for calls. The
ICMEnterpriseUniqueID stays with the call even when the call is transferred between call center sites, while
the UniqueObjectID for a call is specific to its site (by PeripheralID, ConnectionCallID, and
ConnectionDeviceID).

Note

The ICMEnterpriseUniqueID in CTI OS is a variable-length string with the form

“icm.routercallkeyday.routercallkeycallid”

where routercallkeyday is the field Day in the Unified ICM Route_Call_Detail and Termination_Call_Detail
tables, and routercallkeycallid is the field RouterCallKey in the Unified ICM Route_Call_Detail and
Termination_Call_Detail tables.

The CTI OS server enables certain types of monitor mode applications that track the pre-call notification event
(eTranslationRouteEvent or eAgentPrecallEvent) and seeks to match the call data with the arrival of an
eCallBeginEvent.

To do so, the application receives the pre-call notification for calls routed by Unified ICM, (either pre-route,
post-route, or translation route), and creates a record (object) using the ICMEnterpriseUniqueID field as the
unique key. Later, when the call arrives at the ACD, and is queued or targeted (by the ACD) for a specific
agent, the application canmatch the saved record (object) with the incoming call by the ICMEnterpriseUniqueID
field. The following events contain the ICMEnterpriseUniqueID that can associate a call with the saved call
information:

• eCallBeginEvent

• eCallDataUpdateEvent

• eSnapshotCallConf

• eCallEndEvent

UniqueObjectID to Obtain Pointer or Reference
Client applications written to take advantage of the CIL can use the UniqueObjectID to obtain a pointer (in
C++ or COM for C++) or a reference (in other languages) to the underlying object.

The CIL Session object provides easy access to the object collections via several methods, including
GetObjectFromObjectID. GetObjectFromObjectID takes as a parameter the string UniqueObjectID of the
desired object, and returns a pointer to the object. Because this mechanism is generic and does not contain
specific information about the object type retrieved, the pointer (or reference) returned is a pointer or reference
to the base class: a CCtiosObject* in C++, an Object in Visual Basic, an IDispatch* in COM for C++, or
CtiOsObject in .NET and Java.

The GetObjectFromObjectID method performs an AddRef() on the pointer before it is returned to the
programmer.

Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
29

CIL Coding Conventions
UniqueObjectID to Obtain Pointer or Reference

C++ example:

string sUniqueObjectID = "call.5000.101.23901";
Ccall * pCall = NULL;
m_pSession->GetObjectFromObjectID(sUniqueObjectID,

(CCtiOsObject**)&pCall);

pCall->Clear();
pCall->Release(); // release our reference to this object
pCall = NULL;

Java example:

String sUID = "call.5000.101.23901";
Call rCall = (Call) m_Session.GetObjectFromObjectID(sUID);

Button Enablement Masks
The CTI OS Server provides a rich object-level interface to the CTI interactions of the contact center. One of
the features the CTI OS Server provides is to evaluate all of the telephony events, and map them to the features
permitted by the Cisco CallManager implementation. The CTI OS Server provides a peripheral-independent
mechanism for clients to determine which requests are valid at any given time by using a bitmask to indicate
which requests are permitted.

For example, the only valid time to answer a call is when the ENABLE_ANSWER bit in the enablement mask
is set to the on position. The following C++ example depicts this case:

void EventSink::OnCallDeliveredEvent(Arguments& args)
{

unsigned int unBitMask = 0;
if (args.IsValid(“EnablementMask”))
{

args.GetValueInt(“EnablementMask”, & unBitMask)
//do bitwise comparison
If(unBitMask & ENABLE_ANSWER)

m_AnswerButton.Enable();
}

}

Visual Basic.NET Example

Private Sub m_session_OnAgentStateChange(ByVal pIArguments As
Cisco.CTIOSCLIENTLib.Arguments) Handles m_session.OnAgentStateChange

Dim bitmask As Integer

'Determine the agent's button enablement and update the buttons on the
form

bitmask = m_Agent.GetValueInt("EnablementMask")

btnReady.Enabled = False
btnNotReady.Enabled = False
btnLogout.Enabled = False
btnStartMonitoring.Enabled = False

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
30

CIL Coding Conventions
Button Enablement Masks

If bitmask And Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_READY
Then

btnReady.Enabled = True
End If
If bitmask And

Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_NOTREADY Then
btnNotReady.Enabled = True

End If
If bitmask And

Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_NOTREADY_WITH_REASON Then
btnNotReady.Enabled = True

End If
If bitmask And Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_LOGOUT

Then
btnLogout.Enabled = True

End If
If bitmask And

Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_LOGOUT_WITH_REASON Then
btnLogout.Enabled = True

End If

End Sub

The advantage of using this approach is that all of the peripheral-specific details of enabling and disabling
buttons is determined in a central location—at the CTI OS Server. This allows future new features to be
enabled, and software bugs to be corrected in a central location, which is a great benefit for deploying future
releases.

• You must use the button enablement mask generated by CTI OS Server in all cases where Cisco provides
button enablement masks. This prevents application impact if changes are made to the event flow.

• Cisco makes no guarantees that the event flow will remain consistent across versions of software.

Note

The button enablement feature is intended for use in agent mode applications and not for monitor mode
applications.

Warning

For any given event, the CTI OS Server calculates the appropriate button enablement bitmask and sends it to
the CIL with the event parameters. The button enablement bit masks are discussed in detail in Event Interfaces
and Events, on page 167 You can use these masks to write a custom softphone-type application without writing
custom code to enable and disable buttons. This approach is also used internally for the CTI OS ActiveX
softphone controls.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
31

CIL Coding Conventions
Visual Basic.NET Example

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
32

CIL Coding Conventions
Visual Basic.NET Example

C H A P T E R 4
Building Your Custom CTI Application

• System Requirements for Building Custom Applications, on page 33
• Environment Set Up for .NET, on page 34
• Integration Between Your Application and CTI OS via CIL, on page 35
• CTI Application Testing, on page 37
• Developer Sample Applications, on page 38
• CTI OS ActiveX Controls, on page 39
• COM CIL. in Visual Studio, on page 43
• C++ CIL and Static Libraries, on page 46
• Java CIL Libraries, on page 52
• .NET CIL Libraries, on page 53
• CTI OS Server Connection, on page 53
• Agent Login and Logout, on page 64
• Calls, on page 72
• Making Requests, on page 76
• Events, on page 77
• Agent Statistics, on page 78
• Skill Group Statistics, on page 83
• Silent Monitoring, on page 87
• Agent Greeting, on page 96
• Deployment of Custom CTI OS Applications, on page 96
• Supervisor Applications, on page 102
• Sample Code in CTI OS Toolkit, on page 115

System Requirements for Building Custom Applications
Use the following development tools for building custom applications:

VersionDevelopment Tool

2015Microsoft Visual Studio

4.7.1.NET Framework

1.8 Update 161Java

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
33

Environment Set Up for .NET
The Cisco CTI OS Toolkit introduces support for application development using Microsoft Visual Studio and
.NET framework. You need not modify the existing .NET framework controls to run .NET CLR. Cisco CTI
OS Toolkit provides a native .NET class library (.NET CIL) and runtime callable wrappers (RCWs) for COM
CIL and the CTI OS ActiveX controls. The CTI OS Toolkit consists of a set of production ready desktops
and five software development kits.

The setup program installs the .NET CIL and the RCWs in the Global Assembly Cache (GAC) making all
the components available to the sample included in the toolkit and any new application in development. Use
the CTI OS toolkit for environment settings for building .NET applications. Additional configuration steps
are available for integration with the development environment.

The Production Ready Contact Center Desktop applications are the CTI OS Toolkit Agent Desktop, CTI OS
Toolkit IPCC Supervisor Desktop, the CTI OS Toolkit Outbound Option Desktop, and the default client
desktops for Cisco CTI OS used by call center agents and supervisors. These desktop applications are built
using the COM CIL and the CTI OS ActiveX controls. These applications are implemented using Visual
Basic .NET (VB.NET) and Microsoft Visual Studio.

Microsoft Visual Studio
Microsoft Visual Studio 2015 offers a wider spectrum of development possibilities and an advanced design
experience. In addition to Service Pack 3 it also provides:

• Microsoft .NET Framework 4.7.1 application development

• New processor support (for example, Core Duo) for code generation and profiling

• Additional support for project file based Web applications

• Secure C++ application development

To access the .NET CIL and the RCWs directly from Visual Studio, add the following configuration to your
environment.

Add CTI OS Toolkit Components to Add Reference Dialog Box
In Microsoft Visual Studio, you can select class libraries and assemblies from the .NET tab of the Add
Reference dialog box. This facilitates the development process and ensures you can always use the correct
version of the components.

To enable the .NET CIL class libraries to appear on theAddReferences dialog box, follow the steps described
in https://msdn.microsoft.com/en-us/library/wkze6zky(v=VS.100).aspx.

Set a registry key that specifies the location of assemblies to appear.

To do this, add one of the following registry keys, where <AssemblyLocation> is the directory of the assemblies
that you want to appear in the Add Reference dialog box:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<version>\AssemblyFoldersEx\MyAss

emblies]@="<AssemblyLocation>"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<version>\AssemblyFoldersEx\MyAss

emblies]@="<AssemblyLocation>"

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
34

Building Your Custom CTI Application
Environment Set Up for .NET

https://msdn.microsoft.com/en-us/library/wkze6zky(v=VS.100).aspx

Creating the registry key under the HKEY_LOCAL_MACHINE node allows all users to see the assemblies
in the specified location in the Add Reference dialog box. Creating the registry key under the
HKEY_CURRENT_USER node affects only the setting for the current user.

For example, if you want to add:

• Cisco .NET CIL to the Add Reference dialog box

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<version>\AssemblyFoldersEx\MyAss

emblies]@="<AssemblyLocation>"

• Cisco CTI OS RCWs to the Add Reference dialog box

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\v2.0.50727\AssemblyFoldersEx\Cisc

oCtiOsRCWs]@="C:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\Win32

CIL\.NETInterops"

Add Cisco CTI OS ActiveX Controls to Toolbox
TheMicrosoft Visual Studio IDE allows visual editing ofWindows Forms based applications using the toolbox
of available visual components. Because Windows Forms applications are native, the visual components are
also native. You can still use ActiveX controls and include them in the toolbox.

Adding CTI OS ActiveX controls to the toolbox provides pre-packaged CTI functionality such as Agent
Login, Make Call, Transfer Call, Barge In, and so on. The ActiveX controls use COM CIL as the API to
provide call center and telephony services. These components are used in rapid software development. You
can drag and drop selected components into your project and immediately gain the selected CTI functionality.
These components are used in development environments such as: Microsoft Visual Studio, .Net Framework,
and Java.

To use the Cisco CTI OS ActiveX controls in Microsoft Visual Studio, you must configure the Cisco CTI OS
RCWs:

Procedure

Step 1 From Visual Studio's View menu, choose Add/Remove Toolbox Items.
Step 2 From the Customize Toolbox dialog box, select the .NET Framework Components tab.

If you click the COM Components tab from the Customize Toolbox dialog box or select the CTI
OS ActiveX controls, you cause Microsoft Visual Studio to automatically generate a set of private
RCWs that are not optimized and approved by Cisco, which can result in application failure.

Warning

Step 3 From the list, select the CTI OS RCW that corresponds to the CTI OS ActiveX Control you want to add to
the toolbox. For example, for the Agent State Control select AxAgentStateCtl.

Step 4 To add more CTI OS ActiveX controls, repeat steps 1 to 3.

Integration Between Your Application and CTI OS via CIL
Creating an integration between your application and CTI OS via the CIL is straightforward. The first step is
to articulate the desired behavior, and to create a complete design specification for the integration.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
35

Building Your Custom CTI Application
Add Cisco CTI OS ActiveX Controls to Toolbox

Integration Planning and Design
Good design depends on understanding how CTI fits into your application and workflow. Your requirements
analysis and design process should address the following points, as they relate to your specific application:

• Start with the call flow. What kind of call processing is done before calls are targeted for a specific
skill? Determine how you collect CTI data from the caller before the call arrives at an agent.

• Study agent workflow. What are the points where CTI can make the workflow easier and faster? Build
a business case for the CTI integration.

• Evaluate what CTIwill do for your application. A good approach is to make a list based on the priority
(for example, screen pop, then call control) and then design and implement features in that order.

• Design how CTI should work within your application. What are the interaction points? Get
specifications as to which screens interact, and which data values should be sent between your application
and the CTI OS platform.

• Determine when the application should connect to the CTI OS Server. Some applications are
server-type integrations that connect at startup, specify a monitor-mode event filter, and stay connected
permanently. Agent-mode applications connect up when a specific agent begins the work shift.

• Clean up when you are done. When and how does the application stop? Some applications stay up and
running permanently, while others have a defined runtime, such as agent workday or shift. For server-type
applications without a specified stopping point, create an object lifetime model and procedure for
recovering no-longer-used resources. For applications with a specific stopping point, determine the kind
of clean up that needs to be done when the application closes (for example, disconnect from server,
release resources).

Language and Interface
The CTI OS Client Interface Library API comes in programming languages, each with benefits and costs.
The choice of interface is important to direct you through this developers guide, because this guide addresses
the CIL API for the C++ and COM programming environments.

The main decision point in choosing which API to use depends on your workstation operating system, your
existing applications, and the language skills of your developers.

• ActiveX Controls. The CTI OS ActiveX controls are the appropriate choice for creating a rapid drag
and drop integration of CTI and third-party call control with an existing desktop application. The CTI
OS ActiveX controls are an appropriate choice for developing a CTI integration with any fully
ActiveX-compliant container, or any other container that fully supports ActiveX features (for example,
Powerbuilder, Delphi, and many third-party CRM packages). The ActiveX controls are the easiest to
implement in graphical environments, and help achieve the fastest integrations by providing a complete
user interface. All CTI OS ActiveX components are distributed via dynamic link library files (.dll), which
you only have to register once to work on any Microsoft Windows platform. These components are not
appropriate for non-Windows environments. You can use the CTI OS ActiveX controls in Windows
Forms .NET applications only if the Runtime Callable Wrappers (RCWs) provided with the CTI OS
Toolkit are a part of the project. For more information, see CTI OS ActiveX Controls, on page 39.

• COM. The CTI OS Client Interface Library for Microsoft's Component Object Model (COM) is the
appropriate choice for developing a CTI integration with any COM-compliant container, or any other
container that supports COM features, such asMicrosoft Internet Explorer or Visual Basic for Applications
scripting languages. The COM CIL is the easiest to implement in scripting environments, and helps

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
36

Building Your Custom CTI Application
Integration Planning and Design

achieve the fastest integrations requiring a custom or non-graphical user interface. All CTI OS components
are distributed via dynamic link library files (.dll), which you only have to register once to work on any
Microsoft Windows platform. These components are not appropriate for non-Windows environments.
You can use the COMCIL in Windows Forms .NET applications only if the Runtime Callable Wrappers
(RCWs) provided with the CTI OS Toolkit are a part of the project. For more information, see Hook for
Screenpops, on page 41.

• C++. The CTI OS Client Interface Library for C++ is the appropriate choice for building a
high-performance application running on a Windows platform in a C++ development environment. The
C++ CIL is distributed as a set of header files (.h) that specify the class interfaces to use and statically
linked libraries (.lib) that contain the compiled implementation code.

• Java. The CTI OS Java Client Interface Library (Java CIL) is an appropriate choice for non-Microsoft
(typically UNIX) operating systems, as well as for browser based applications.

• .NET Cil class libraries. This section covers the steps required to reference the .NET CIL components
in a C# and Visual Basic .NET project files.

CTI Application Testing
Testing is often characterized as the most time-consuming part of any application development process.

Test Plan Development
Testing CTI applications requires a detailed test plan, specific to the business requirements set forth in the
requirements gathering phase of the project. The test plan should list behaviors (test cases) and set requirements
to prove that each test case is successfully accomplished. If a test case fails, it should be investigated and
corrected (if appropriate) before proceeding to the next phase of testing.

Perform (at minimum) the following test phases:

• Unit Testing. In a unit test, you ensure that the new code units can execute properly. Each component
operates correctly based on the input, and produces the correct output. An example of a unit test is to
stub-in or hardcode the expected screen-pop data and ensure that all the screens come up properly based
on this data.

• Integration Testing. In an integration test, you ensure that the new components work together properly.
The physical connections and data passing between the layers and servers involved in the system are
tested. An example of an integration test is testing your client application with the CTI OS server, to
ensure that you can pass data correctly through the components.

• System Testing. In a system test, you ensure that the correct application behavior is exhibited. An
example of a system test is to make a phone call to a VRU, collect the appropriate caller information,
transfer the call to an agent, and ensure that the screen pop arrives correctly.

• User Acceptance Testing. In a user acceptance test, you ensure that your application has met all business
requirements set by your analysis and design process. An example of a user acceptance test is to try your
new application with real agents and ensure that it satisfies their requirements.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
37

Building Your Custom CTI Application
CTI Application Testing

Test Environment
The CTI OS Software Development Toolkit (SDK) CD media includes a CTIServerSimulator that you can
use for application development and demonstration purposes. It can roughly simulate a Lucent PBX/ACD or
a Cisco Unified Contact Center environment. Documentation on how to configure and use the simulator is
available in the Tools\Simulator directory.

This simulator is appropriate only for preliminary testing of client applications. Because it does not fully
replicate the behavior of the actual switch environment, you should not use the simulator for any type of QA
testing. To ensure proper design conformance and ensure the correctness of the application, youmust test the
CTI application with the actual telephony environment in which it will run. This enables the event flow and
third-party control components, which are driven by the switch- and implementation-specific call flow, to be
properly and thoroughly tested.

Note

Developer Sample Applications
The CTI OS Software Development Toolkit (SDK) is distributed with a rich set of Developer Sample
Applications (DSAs) for Cisco Unified CCE customers and similar Production Class Applications for Unified
ICM customers.

The DSAs are provided as tools for Unified CCE customers to accelerate development efforts. The DSAs
demonstrate several basic working applications that use varying implementations of the CTI OSClient Interface
Library API. The samples are organized by programming language and demonstrate the syntax and usage of
the API. For many developers, these DSAs form the foundation of your custom application. The samples are
available for you to customize and distribute as a part of your finished product.

For Unified ICM ACD types (such as Avaya, Aspect, and so on), you can deploy some DSAs as Production
Class Applications. Cisco certifies and supports the out-of-the-box CTI OS Agent Desktop application in a
production environment when used in conjunction with a supported Unified ICM ACD. Refer to the ACD
Supplement, Cisco Unified Intelligent Contact Management (Unified ICM)ACD PG Supportability Matrices
for the current list of supported ACD types.

For Unified CCE, these same DSAs are generally not intended for production use "as-is". They are neither
certified nor supported by Cisco as working out-of-the-box applications.

The following table lists the sample programs in the CTI OS Toolkit.

Table 9: CTI OS Toolkit Sample Programs

DescriptionLocationProgram Name

A softphone application that demonstrates
Outbound Option (formerly Blended
Agent) functionality.

CTIOS Toolkit\Win32 CIL\Samples\CTI
Toolkit Outbound Desktop

CTI Toolkit
Outbound Desktop

A Microsoft C# program demonstrating a
monitor mode application. This program
lists all agents in a grid along with current
state updates.

CTIOS Toolkit\dotNet CIL\Samples\All
Agents Sample.NET

All Agents Sample
.NET

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
38

Building Your Custom CTI Application
Test Environment

http://www.cisco.com/c/dam/en/us/td/docs/voice_ip_comm/cust_contact/contact_center/ipcc_enterprise/compatibility_matrix/icmacdmx.pdf

DescriptionLocationProgram Name

Similar to AllAgents but lists calls instead
of agents.

CTIOS Toolkit\dotNet CIL\Samples\All
Calls Sample.NET

All Calls
Sample.NET

AMicrosoft C# program that interfaces to
CTI OS via the .NET CIL interface. The
program demonstrates how to build a
multi-functional contact center desktop that
contains Agent, Supervisor and Outbound
Option features.

CTIOS Toolkit\dotNet CIL\Samples\CTI
Toolkit Combo Desktop.NET

CTI Toolkit Combo
Desktop.NET

Microsoft C# program that implements a
Tabular Grid used by the CTI Toolkit
Combo Desktop.NET to show calls and
statistics.

CTIOSToolkit\dotNet CIL\Samples\CtiOs
Data Grid.NET

CtiOs Data
Grid.NET

A Visual Basic .NET program using the
CTI OSActiveX controls. The application
is the source code used by the out of the
box CTI Toolkit Agent Desktop.

CTTIOSToolkit\Win32 CIL\Samples\CTI
Toolkit AgentDesktop

CTI Toolkit Agent
Desktop

A Visual Basic .NET program using the
CTI OSActiveX controls. The application
is the source code used by the out of the
box CTI Toolkit Supervisor Desktop.

CTTIOSToolkit\Win32 CIL\Samples\CTI
Toolkit SupervisorDesktop

CTI Toolkit
Supervisor Desktop

A softphone written in C++ linking to the
static C++ libraries. Sending requests and
event handling as well as the use of the
wait object is demonstrated.

CTIOS Toolkit\Win32 CIL\Samples\CTI
Toolkit C++Phone

C++Phone

A Java counterpart to the C++phone
sample programs.

CTIOS Toolkit\Java CIL samplesJavaPhone

A Java counterpart to the Visual Basic all
agents program.

CTIOS Toolkit\Java CILsamplesAllAgents

CTI OS ActiveX Controls
This section discusses the steps involved in building CTI OS Applications with Microsoft Visual Basic .NET
(VB.NET) using the CTI OS ActiveX controls.

Build Simple Softphone with ActiveX Controls
To use the CTI OS ActiveX controls, you must copy the ActiveX controls on the target system and register
withWindows. You accomplish this with the CTI OS toolkit install, as well as the CTI OSAgent and Supervisor
installs. For more information, see Deployment of Custom CTI OS Applications, on page 96.

After you launch Visual Basic .NET, you can use the ActiveX controls by selecting them via the Customized
Toolbox dialog (Tools > Add/Remove Toolbox Items via the menu).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
39

Building Your Custom CTI Application
CTI OS ActiveX Controls

Note: If the CTI OS ActiveX controls are not listed as shown in the following figure the files are either not
copied on the target system or the controls were not properly registered.

Note

Figure 7: Customize Toolbox in Visual Basic .Net Listing CTI OS ActiveX Controls Runtime Callable Wrappers

After you select the CTI OS ActiveX controls in the .NET Framework Components tab, you should see
them in the Visual Basic .NET ToolBox. You can now drag and drop the CTI OS ActiveX RCWs components
onto the Windows Form. For a softphone application, it is useful to start with the CallAppearanceCtl (see the
following figure).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
40

Building Your Custom CTI Application
Build Simple Softphone with ActiveX Controls

Figure 8: Microsoft Visual Basic .NET Screen with the CTI OS ActiveX Controls

On the very left, the Toolbox is visible showing some of the CTI OS ActiveX RCWs icons. On the form, the
AxCallGrid has been dragged and dropped.

For a complete description of the ActiveX controls see CTI OSActiveX Controls, on page 119. The following
figure shows the CTI OS Toolkit Agent Desktop application, which is also included as a sample on the CTI
OS CD.
Figure 9: CTI OS Toolkit Agent Desktop (See CD) Built with CTI OS ActiveX Controls

Once all ActiveX controls are placed on the phone, you can create an executable in Visual Basic .NET via
Build > Build Solution or selecting <F7>.

Hook for Screenpops
This agent desktop application did not require any Visual Basic .NET coding. You can choose to add some
custom code to add a hook for screenpops. For example, you may want to retrieve CallVariables, which are
passed along with certain call events.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
41

Building Your Custom CTI Application
Hook for Screenpops

CTI OS SessionResolver
A CTI OS Client application connects to CTI OS with a Session object (see Session Object, on page 307).
Depending on the application, a client can use one or more Session objects. For most agent desktop applications,
however, it is useful to employ only a single Session object.

If you choose to write a program not using ActiveX controls, you can create a Session object and use it directly
(see CTI Toolkit AgentDesktop at the Win32 CIL samples).

However, in the case of an application built with the ActiveX controls, all ActiveX controls must use the same
session object. The ActiveX controls accomplish this by retrieving a pointer to the same session object via
the SessionResolver. The program hosting the ActiveX can obtain the Same session object by using the
SessionResolver.GetSession method to retrieve a session named “”.

VB .NET Code Sample to Retrieve Common Session
The following sample VB .NET code retrieves the common session and listens for a CallEstablishedEvent
occurring in that session. If a CallEstablishedEvent occurs, it retrieves CallVariable 1 and puts it in the
Windows Clipboard (from where you can retrieve it via CTRL-v or used by other applications).

This code uses the COMCIL Interfaces and therefore, needs the following references: Cisco.CTIOSCLIENTLib,
Cisco.CTIOSARGUMENTSLib, Cisco.CTIOSSESSIONRESOLVERLib. The references are shown in the
following figure (in Visual Basic .NET, select Project > Add Reference...).
Figure 10: CTI OS COM CIL RCWs References Needed for Visual Basic .NET COM Programming

' VB sample for a simple CTIOS phone
' needs references to Cisco.CTIOSCLIENTLib
Cisco.CTIOSSESSIONRESOLVERLib and Cisco.CTIOSARGUMENTSLib
'
' dim CTIOS session interface
' the session interface handles connect, setagent and others

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
42

Building Your Custom CTI Application
CTI OS SessionResolver

Dim WithEvents m_session As Cisco.CTIOSCLIENTLib.Session

' the sessionresolver is needed to retrieve the session pointer
Dim m_sessionresolver As Cisco.CTIOSSESSIONRESOLVERLib.SessionResolver

Private Sub Form_Initialize_Renamed()
' instantiate the sessionresolver
Set m_sessionresolver = New Cisco.CTIOSSESSIONRESOLVERLib.SessionResolver

' CTI OS ActiveX controls use the session named "" - blank
' since the CTI OS ActiveX controls do the connection and login,
' all we do is listen for events
Set m_session = m_sessionresolver.GetSession("")

End Sub

Private Sub Form_Terminate_Renamed()
Call m_sessionresolver.RemoveSession("")

End Sub

Private Sub m_Session_OnCallEstablished(ByVal pIArguments
As Cisco.CTIOSCLIENTLib.Arguments)
' Handles m_Session.OnCallEstablished

GetCallVariable1 pIArguments
End Sub

Function GetCallVariable1(ByVal pIArguments As CTIOSCLIENTLib.IArguments)

Dim m_uid As String
m_uid = pIArguments.GetValueString("Uniqueobjectid")
Dim m_call As Cisco.CTIOSCLIENTLib.Call
Set m_call = m_session.GetObjectFromObjectID(m_uid)

' retrieve callvar1
Dim m_callvar1 As String
m_callvar1 = m_call.GetValueString("Callvariable1")

'copy call variable1 to the clipboard
Clipboard.SetText m_callvar1

End Function

Visual Basic 6.0 is no longer supported.Note

COM CIL. in Visual Studio

COM CIL.
Use this API in development environments that support COM/DCOM and OLE Automation. Examples:
Microsoft Visual Studio, Borland Delphi, Power Builder, etc. COM CIL is an adaptor interface that uses C++
CIL as kernel. The API is deployed as a group of Dynamic Linked Libraries (DLLs).

You must use Microsoft Visual Studio to build C++ applications using COM CIL. Applications using
COM CIL built with Visual C++ 8.0(1) are not supported.

Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
43

Building Your Custom CTI Application
COM CIL. in Visual Studio

For building a custom Win32 (Console or Windows) CTI application in Microsoft Visual Studio with COM,
you must create COM components in Microsoft Visual Studio.

Client applications of this type are more complex to build, and more powerful and faster in execution, than
scripting clients (for example, Visual Basic). CIL components for COM are distributed as COM Dynamic
Link Libraries (COM DLL).

COM components must be registered with Windows to be accessible to COM containers including Micsosoft
Visual Studio. The components required for programming in Microsoft Visual Studio are:

• CTI OS Client library (CTIOSClient.dll). This is the main CIL library for COM. The objects available
in this library are described in Chapters 8 through 11.

• CTI OS Arguments Library (arguments.dll). The Arguments helper class is used extensively in CTI
OS, and is described in Helper Classes, on page 441.

• CTIOS Session Resolver (ctiossessionresolver.dll). This object allowsmultiple applications or controls
to use a single CTI OS Session object. You require this object when building an application that includes
the CTI OS ActiveX controls.

Add COM Support to Your Application
Your application must support COM to use these objects in your CTI application. To add COM support to
your application, you must use one of the following:

• Microsoft Foundation Classes (MFC). The following header files are required for MFC applications to
use COM: afxwin.h, afxext.h, afxdisp.h, and afxdtctl.h. If you build an application using the Microsoft
Visual C++ application wizard, these files are included automatically.

• Microsoft's ActiveX Template Library (ATL). To use ATL, include the standard COM header file:
atlbase.h.

Important Note About COM Method Syntax
In this manual, the syntax used to describe method calls in COM shows standard COM data types such as
BSTR, VARIANT and SAFEARRAY. Be aware that these data types can be encapsulated by wrapper classes
proper to the environment depending on the development environment, tools, and how the COM CIL is
included in your project application.

For example, in a Microsoft Visual C++ project a VARIANT type can be either a CComVariant or _variant_t,
and a BSTR type can be either a CComBSTR or _bstr_t.

For more information, see the documentation for your development environment.

Use CIL Dynamic Link Libraries
Next, you must import the COM Dynamic Link Libraries into your C++ application. The following code
sample (which you might put into your StdAfx.h file) depicts how to use a COM Dynamic Link Library in
C++:
#import "..\..\Distribution\COM\ctiossessionresolver.dll" using namespace
CTIOSSESSIONRESOLVERLib;

#import "..\..\Distribution\COM\ctiosclient.dll" using namespace CTIOSCLIENTLib;

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
44

Building Your Custom CTI Application
Add COM Support to Your Application

You must register three DLLs, but you do not need to import the arguments.dll into your project because it
is imported by the ctiosclient.dll type library.

Note

Create COM Object at Run Time

Only the apartment threading model is supported.Note

COM objects in C++ are created via the COM runtime library. To create a COM object at run time, your
program must use the CreateInstance() method call.

// Create SessionResolver and Session object
hRes = m_pSessionResolver.CreateInstance
(OLESTR("CTIOSSessionResolver.SessionResolver"));

if (m_pSessionResolver)
{

m_pSession = m_pSessionResolver->GetSession(_bstr_t(""));
}

Once the Session object is created, you can use it to make requests, and subscribe for events.

COM Events in C++
In this model, client applications subscribe for events by registering an instance of an event sink in the client
with the event source. The COM Session object publishes several event interfaces (event sources), and clients
can subscribe to any or all of them.

To receive COM events, you must first create an event sink class, which should derive from a COM event
sink class. The Comphone sample application uses the MFC class CCmdTarget.

class CEventSink : public CCmdTarget
{
//...
};

This class must implement the method signatures for the events it expects to receive. When an event is fired
from the event source, the corresponding method in your event sink class is invoked, and you can perform
your custom event handling code at that time.

To subscribe for an event, the client must call the AtlAdvise() method, specifying a pointer to the interface of
the event source:

// Add event sink as event listener for the _IallEvents interface

HRESULT hRes =
AtlAdvise(m_pSession, m_EventSink.GetIDispatch(FALSE),
__uuidof(_IAllEvents), &m_dwEventSinkAdvise);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
45

Building Your Custom CTI Application
Create COM Object at Run Time

When the program run is complete, the client must unsubscribe from the event source, using the AtlUnadvise()
method:

// Unsubscribe from the Session object for the _IAllEvents interface

HRESULT hRes =
AtlUnadvise(m_pSession, __uuidof(_IAllEvents), m_dwEventSinkAdvise);

Additional Information
• For more information about the CTI OS client start up and shut down sequence, see section Disconnect
from CTI OS Server Before Shutdown, on page 63.

• For more information about the CTI OS Client Interface Library objects, see Chapters 8 through 12.

The C++ Client Interface Library (C++ CIL.) application is a programming interface (API) you can use
to build high performance CTI enabled desktop or server-to-server integration that use Cisco CTI OS.
The API is deployed as a set of C++ static libraries that you can use to build Win 32 or console based
applications.

• For more information about a sample application that uses the CIL COM interface written in C++, see
the Comphone sample application on the CTI OS CD.

C++ CIL and Static Libraries
The CTI OS Client Interface Library for C++ is the most powerful, object-oriented CTI interface for C++
developers. It provides the same interface methods and events as the COM interface for C++, but is more
straightforward for C++ developers who are not experienced COM programmers, and provides faster code
execution.

The CIL interface for C++ is a set of C++ header files (.h), and static libraries compiled for theWin32 platform
(Windows 2010). The header files required to access the class definitions are located on the CTI OS SDK
media in the CTIOSToolkit\Include\ directory, and the static libraries are located in the CTI OS
Toolkit\Win32 CIL\Libs directory.

Use Microsoft Visual Studio to build C++ applications using C++ CIL Visual Studio. Applications that are
built using Visual Studio Enterprise 2015 are supported.

Note

Header Files and Libraries
The header files you most likely require are all included in the main CIL header file, CIL.h, which you would
include in your application:
#include <Cil.h>

To link your application code with the CIL for C++, you require the following C++ static libraries:

• ConnectionLibSpd.lib. This library contains the connection-layer services for CIL.

• ServiceLibSpd.lib. This library contains the service-layer services for CIL.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
46

Building Your Custom CTI Application
Additional Information

• SessionLib.lib. This library contains the object-interface services for CIL.

• UtilLibSpd.lib. This library contains helper classes for CIL.

• ArgumentsLibSpd.lib. This library contains the Arguments data structure for CIL.

• SilentMonitorLib.lib. This library contains all the services required to establish and control silent monitor
sessions.

• SecuritySpd.Lib. This library contains the services required to establish secure connections with CTI
OS Server.

• SilentMonitorClient.lib. This library is used by the CIL to communicate with the silent monitor service.

• SilentMonitorCommon.lib and ServiceEventHandler.lib. These libraries contain support classes for
SilentMonitorClient.lib.

The preceding are the release versions of the libraries. The Debug equivalent libraries use the same library
name with the appended “d” instead of Spd; for example, for ArgumentsLibSpd, the Debug library is
ArgumentsLibd.lib.

Note

In addition to the aforementioned CTI OS CIL libraries, your application requires:

• The standard Microsoft sockets library, Wsock32.lib

• The standard multimedia library, winmm.lib

• The OpenSSL standard libraries:

• libeay32d.lib

• ssleay32d.lib (Debug) and libeay32d.lib

• ssleay32r.lib (Release)

A console C++ application with C++ CIL needs to use the following in stdafx.h:
#pragma once
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
#include <iostream>
#include <tchar.h>

Use the following libraries in linker in addition to the CIL libraries:

• ws2_32.lib

• Winmm.lib

• odbc32.lib

• odbccp32.lib

Configure Project Settings for Compiling and Linking
You must configure some program settings to set up your Visual C++ application.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
47

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Procedure

Step 1 You access the Program Setting in Visual C++ under the Project > Properties menu.
Step 2 In the Property Pages dialog box, under C/C++, select General and then select the Additional Include

Directories. Provide either the absolute or relative path to find the header files (.h) required for your application.
This path points to the CTIOSToolkit\Win32 CIL\Include directory, where the CIL header files are installed.

Step 3 Next, under C/C++, select Code Generation. For a Debug Mode program, the setting for Runtime Library
isMulti-threaded Debug DLL (/MDd). For a ReleaseMode program, the setting isMulti-threaded DLL (/MD).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
48

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Step 4 Under Preprocessor, set the Preprocessor Definitions. You need to provide the compiler with the following
define constants _USE_NUMERIC_KEYWORDS=0;_WIN32_WINNT=0x0500;
WIN32_LEAN_AND_MEAN in addition to the defaults.

Step 5 In the Preprocessor Definitions for the C++ compiler, add these macros:
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES=1
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT=1

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
49

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Step 6 In the Language settings for the C++ compiler, set the parameter "Treat wchar_t as Built-in Type" to No
(/Zc:wchar_t-) .

Step 7 For the Precompile Headers for the C++ compiler, set to Not Using Precompile Headers.
Step 8 Under Linker, set the link settings for your project. You must list all the static libraries for your program to

link with the settings described in Configure Project Settings for Compiling and Linking. The libraries required
for CIL (in addition to the default libraries) are described in Header Files and Libraries, on page 46.

Step 9 Finally, expand Link , select General. Set the Additional Library Directories: to the location of the
CTIOSToolkit\Win32 CIL\Libs directory.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
50

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Step 10 After specifying all the Project Settings required for CTI OS, click OK, and save your project settings.

Event Subscription in C++
The publisher-subscriber model provides event interfaces in C++. To subscribe for events, you must create a
callback class (event sink), or implement the event interface in your main class. You can derive the callback
class from the Adapter classes that are defined in CIL.h, such as AllInOneEventsAdapter.h.

To register for an event, use the appropriate AddEventListener method on the Session object:
// Initialize the event sink
m_pEventSink = new CEventSink(&m_ctiSession, &m_ctiAgent, this);

// Add event sink as an event listener
m_ctiSession.AddAllInOneEventListener((IAllInOne *) m_pEventSink);

To remove an event listener (upon program termination), use the appropriate RemoveEventListener on the
Session object:
// Tell session object to remove our event sink
m_ctiSession.RemoveSessionEventListener((IAllInOne *) m_pEventSink);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
51

Building Your Custom CTI Application
Event Subscription in C++

Removal of STLPort Requirement
The Cisco CTI OS Toolkit no longer uses STLPort. The toolkit now uses Microsoft's version of STL, which
removes any special configuration of the build environment.

Additional Information
• For more information about the CTI OS client start up and shut down sequence, see the section Disconnect
from CTI OS Server Before Shutdown, on page 63.

• For more information about the CTI OS Client Interface Library objects, see Chapters 6 through 11.

• For a complete sample application that uses the CIL interface with C++ static libraries, see the C++
phone sample application on the CTI OS CD.

Java CIL Libraries
The Java CIL provides a powerful cross-platform library for developing Java CTI applications. This Java API
allows the creation of multiplatform client application that you can execute either in MS Windows or Linux.
JavaTM CIL is built to support the 1.8 Java Development Kit (JDK) and JRE. It is built using a similar
architecture to the C++ CIL. The interface is similar to C++ with minor differences. A developer porting a
C++ CIL application to Java or working between a Java and C++ should find it easy to switch between the
two.

The Java CIL consists of two packages contained in a single JAR file called JavaCIL.jar. The packages are
com.cisco.cti.ctios.util and com.cisco.cti.ctios.cil. You can use CTI OS Client Install to install the Java CIL
on Windows or you can copy it directly from the CTIOS_JavaCIL directory on the CTI OS media under
Installs\CTIOSClient. The Java CIL also includes JavaDoc with the distribution. No install is provided for
Linux. Mount the CDROM and copy the CTIOS_JavaCIL directory from the media. You can check the Java
CIL version by using the CheckVersion.bat program in Windows or the checkversion shell script on Linux.
Both of these are in the same directory as the JAR file.

Sun JRE installers are also included on the media as a convenience for developers who obtain the correct
version of the JRE.

The Java CIL ships with a GUI TestPhone application that provides most of the functionality found on the
CTI OSAgent and Supervisor Desktops. The distribution also includes samples that are Java versions of some
of the C++/COM/VB sample applications. For more information, see Developer Sample Applications, on
page 38.

The CTI OS Java Test Phone was updated and compiled with CTI OS Java CIL 8.0(1) using the JDK/JRE
1.6_01 for Linux and was functionally tested on Red Hat Linux Enterprise.

Additional Information
• For more information about differences between the C++ and Java event publishing, see Event Interfaces
and Events, on page 167 and Keywords, on page 499.

• For more information about differences in method calls and syntax for those classes between C++ and
Java, see CtiOs Object, on page 291.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
52

Building Your Custom CTI Application
Removal of STLPort Requirement

• For more information about differences between C++ and Java tracing, see CTI OS Client Logs (COM
and C++), on page 503.

.NET CIL Libraries
The .NET CIL provides native .NET class libraries for developing native .NET Framework applications. It
is built using the same architecture as the Java CIL and the interface is similar to C++. A developer porting
a C++ CIL application to .NET CIL between a .NET and Win32 should find it easy to switch between the
two. The .NET Client Interface Library (.NET CIL.) API provides native support for the Microsoft .NET
Framework Common Language Runtime 4.7 (CLR). You can use the API with all major .NET Programming
languages (C#, VB.NET, Managed C++, ASP.NET, etc). The API is deployed as .NET Assemblies that are
registered in the system Global Assembly Cache (GAC).

The .NET CIL consists of two class libraries: NetCil.dll and NetUtil.dll that must be added as references on
the build project. See the CTI OS Toolkit Combo Desktop sample.

To deploy the client application, use the Global Assembly Cache Tool (gacutil.exe) that is included with
Microsoft Visual Studio. Use the Microsoft .NET Framework 4.7 Configuration Manager to install the
NetCil.dll and NetUtil.dll class libraries on the host Global Assembly Cache (GAC). The .NET CIL libraries
include sample programs that explain how to use APIs in a .NET programming environment. For more
information, see Developer Sample Applications, on page 38.

In addition to NetCil.dll and NetUtil.dll, the .NET Combo sample requires the CTIOSVideoCtl.dll, which is
in: C:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet
CIL\Controls.

Note

Additional Information
• For more information about the differences between the C++, and .NET and Java event publishing, see
Event Interfaces and Events, on page 167 and CTI OS Client Logs (COM and C++), on page 503.

• For more information about the differences in method calls and syntax for those classes between C++
and Java, see CtiOs Object, on page 291.

CTI OS Server Connection
To connect a desktop application to the CTI OS server, you must:

1. Create a session instance, described below.

2. Set the event listener and subscribe to events, described below.

3. Set connection parameters, described below.

4. Call the Connect() method, described on Connect Session to CTI OS Server, on page 55.

5. Set the connection mode, described on Connection Mode, on page 57. This section also describes how
to deal with connection failures, on Connection Failures, on page 55.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
53

Building Your Custom CTI Application
.NET CIL Libraries

Although the Cisco Security Agent (CSA) is now in end-of-life status and no longer supported, if your system
is a duplexed Unified CCE PG with a CSA installed and one side of the CTI OS server is not running, CSA
does not respond to login requests on the CTI OS server port. This triggers a time-out (20 second delay) before
you attempt to connect to the active CTIOS server in the CTI OS client machine TCP stack. On start-up or
login, the CTI OS client randomly chooses a CTI OS server side to connect and it may connect to the server
side that is not running.

To avoid this delay/time-out, you must:

• Start the inactive CTI OS server side.

• Disable CSA (temporarily) and reconfigure the CTI OS desktop for a simplex operation.

• Upgrade the version of the CTI OS server to CTI OS 12.0 (the desktop does not appear frozen though
the delay persists).

Connect to CTI OS Server
To connect to the CTI OS Server, you must first create an instance of the CtiOsSession object.

The following line shows this in Java:

CtiOsSession rSession = new CtiOsSession();

Session Object Lifetime (C++ Only)
In C++, you must create a Session object on the heap memory store so that it can exist beyond the scope of
the method creating it. (In COM, VB, and Java, this is handled automatically.)

For example:
CCtiOsSession * m_pSession = NULL;
m_pSession = new CCtiOsSession();

The client application holds a reference to the Session object as long as it is in use, but the client programmer
must release the last reference to the object to prevent a memory leak when the object is no longer needed.

During application cleanup, youmust dispose the Session object only by invoking the CCtiOsSession::Release()
method. This ensures proper memory cleanup.

For example:
m_pSession->Release();

Set Event Listener and Subscribe to Events
Before making any method calls with the Session instance, you must set the session as an event listener for
the desktop application and subscribe to events.

The following lines show this in Java:

rSession.AddEventListener(this, CtiOs_Enums.SubscriberList.eAllInOneList);

In this example, the session is adding the containing class, the desktop application as the listener, and using
the eAllInOneList field in the CtiOs_Enums.SubscriberList class to subscribe to all events.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
54

Building Your Custom CTI Application
Connect to CTI OS Server

Set Connection Parameters for Session
To set connection parameters:

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 Set values for the CTI OS servers, ports, and the heartbeat value.

When setting values, use the String key fields in the CtiOs_IKeywordIDs interface, as shown in the
example below.

Note

The following example demonstrates this task in Java:

/* 1. Create Arguments object.*/
Arguments rArgs = new Arguments();

/* 2. Set Connection values.*/
rArgs.SetValue(CTIOS_enums.CTIOS_CTIOSA, "CTIOSServerA");
rArgs.SetValue(CTIOS_enums.CTIOS_PORTA, 42408);
rArgs.SetValue(CTIOS_enums.CTIOS_CTIOSB, "CTIOSServerB");
rArgs.SetValue(CTIOS_enums.CTIOS_PORTB, 42408);
rArgs.SetValue(CTIOS_enums.CTIOS_HEARTBEAT, 100);

The Arguments.setValue() methods return a boolean value to indicate whether the method succeeded (true)
or not (false).

Note

Connect Session to CTI OS Server
After successfully creating the Session instance, you must connect it to the CTI OS Server using the
Session.Connect() method, using the Arguments instance you constructed when setting connection parameters,
as described in the previous section.

The following line shows this in Java:

int returnCode = session.Connect(rArgs);

For more information about the possible values and meanings of the int value returned by the Connect()
method in the Java CIL, see Connection Attempt Error Codes in Java and .NET CIL, on page 56.

When successful, the Connect() method generates the OnConnection() event. Code within the OnConnection()
event sets the connection mode, as described in the next section.

Connection Failures
This section contains the following information:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
55

Building Your Custom CTI Application
Set Connection Parameters for Session

• Connection Failure Events, on page 56

• Connection Attempt Error Codes in Java and .NET CIL, on page 56

• Configure Agent to Automatically Log In After Failover, on page 57

• Stop Failover Procedure, on page 57

Also see Deal with Failover in Monitor Mode, on page 61.

Connection Failure Events
If the Connect() method does not succeed, one of the following events is generated:

• OnConnectionRejected() event indicates that an unsupported version mismatch was found.

• OnCTIOSFailure() indicates that the CTI OS Server requested in the Connect() method is down. If an
OnConnectionFailure() event is generated, the application is in Failover and the CIL continues to attempt
to connect until the connection succeeds or until the application calls Disconnect(). The Arguments
parameter for the event includes the following keywords:

• FailureCode

• SystemEventID

• SystemEventArg1

• ErrorMessage

For more information on the contents of the OnConnectionFailure() event, see the description in Chapter 6.

Connection Attempt Error Codes in Java and .NET CIL
The following field values can be returned by the Connect() method. See the documentation for the
CtiOs_Enums.CilError interface in the CIL JavaDoc for information on these fields.

• CIL_OK - The connection process has successfully begun. The CIL either fires the OnConnection()
event to indicate that the CIL successfully connected or fires the OnConnectionFailure() event and go
into failover mode. If the latter occurs, the CIL continues to attempt to connect, alternating between hosts
CTIOS_CTIOSA and CTIOS_CTIOSB, until the connection succeeds, at which point the CIL fires the
OnConnection() event.

• E_CTIOS_INVALID_ARGUMENT - A null Arguments parameter was passed to the Connect() method.
The connection failed. No events are fired.

• E_CTIOS_MISSING_ARGUMENT - The Arguments parameter did not contain values for both
CTIOS_CTIOSA and CTIOS_CTIOSB. At least one of these values must be provided. The connection
failed. No events are fired.

• E_CTIOS_IN_FAILOVER - A previous connection attempt failed and the CIL is currently in failover
and attempting to establish a connection. This continues until a connection is established, at which point
the CIL fires an OnConnection() event indicating that the previous Connect() method succeeded. To
attempt to connect again with different parameters, the applicationmust first use the Disconnect() method.

• E_CTIOS_SESSION_NOT_DISCONNECTED - The Session is not disconnected (i.e. a previous
Connect() method is in progress, or the Session is already connected). The application must call the
Disconnect() method before attempting to establish another connection. The CIL may fire an

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
56

Building Your Custom CTI Application
Connection Failure Events

OnConnection() event for the to previous call to the Connect() method if the connection was in progress,
but will not fire one corresponding to this method call.

• E_CTIOS_UNEXPECTED - There was an unanticipated error. The connection failed. No events are
fired.

After the application receives a Connect return code of CIL_OK, it does not call Connect again on that session
until it receives an OnConnectionClosed event after a call to Disconnect.

Note

Configure Agent to Automatically Log In After Failover
If you are using CTI OS in an Unified Contact Center Enterprise (Unified CCE) environment, you can configure
the agent to automatically relogin in the event of a failover.

To configure the agent to log back in automatically, add the CTIOS_AUTOLOGIN keyword with the value
“1” to the Arguments instance used to configure the agent:

rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AUTOLOGIN, “1”);

For more information on logging in an agent, see Log In an Agent, on page 64.

Stop Failover Procedure
To stop the failover procedure, call the Disconnect(args) method, with the Arguments instance containing the
CTIOS_FORCEDDISCONNECT keyword as a parameter.

Connection Mode
After you create the session, you must specify the connection mode for the session. You must use one of two
modes:

• Agent mode

• Monitor mode

Set Connection Mode in OnConnection() Event Handler
To ensure that you only try to set the connectionmode on valid connections, place the code to set the connection
mode within the OnConnection() event handler. The OnConnection() event is generated by a successful
Connect() method.

The application contains logic within the OnConnection() event handler to ensure it attempts to set the
connection mode only during the initial connection, and not in an OnConnection() event due to failover.

Caution

Agent Mode
You use Agent mode for connections when the client application must log in and control a specific agent.
When in Agent mode, the connection also receives call events for calls on that agent's instrument, as well as
system events.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
57

Building Your Custom CTI Application
Configure Agent to Automatically Log In After Failover

Select Agent Mode
To select Agent mode for the connection, in the OnConnection() event:

Procedure

Step 1 Set properties for the agent.

The properties required for the agent depend on the type of ACD you use. The following example
demonstrates the required properties for Unified CCE users.

Note

Step 2 Set the agent for the Session object to that Agent object.

In the Java CIL only: If the SetAgent() method is called on a session in which the current agent is
different than the agent parameter in the SetAgent() method, the Java CIL automatically calls the
Disconnect() method on the current session instance, generating an OnCloseConnection() event,
then attempts to reconnect, generating an OnConnection() event. Then the new agent is set as the
current agent.

Note

The following example, which assumes the Session object has been created and connected to the CTI OS
Server, demonstrates this task in Java:

void OnConnection(Arguments rArgs) {

/* 1. Create and agent and set the required properties. */
Agent agent = new Agent();
agent.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, "275");
agent.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, "5002");

/* 2. Set the session's agent */
int returnValue = session.SetAgent(agent);

}

When successful, the SetAgent() method generates the following events:

• OnQueryAgentStateConf()

• OnSetAgentModeConf()

• OnSnapshotDeviceConf(), if the agent is already logged in

• OnSnapshotCallConf(), if there is a call and the agent is already logged in

• OnCTIOSFailureEvent()

Monitor Mode
Use Monitor Mode for applications that need to receive all events that CTI OS Server publishes or a specified
subset of those events. Monitor Mode applications may receive events for calls, multiple agents, or statistics.
The session receives specific events based on the event filter specified when setting the session to Monitor
Mode.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
58

Building Your Custom CTI Application
Select Agent Mode

Monitor Mode, as the name implies, is intended for use in applications that passively listen to CTI OS server
events. Monitor Mode is not intended for use in applications that actively control the state of calls or agents.
Such applications include but are not limited to the following:

• Applications that log in agents and change their state

• Applications that make or receive calls and change their state

• Applications that silently monitor agents

Caution

When a Monitor Mode session is initialized, the CTI OS Server performs a CPU intensive sequence of
operations to provide the application with a snapshot of the state of the system. A large number of Monitor
Mode applications connecting to CTI OS server at the same time, such as in a fail-over scenario, can cause
significant performance degradation on CTI OS Server. Therefore, minimize the number of Monitor Mode
applications connecting to CTI OS Server to two (2).

Caution

You can only use the button enablement feature in agent mode sessions and is not intended for Monitor Mode
applications.

Warning

Monitor Mode Filters

Overview Monitor Mode Filters

To set a connection to Monitor Mode, you must create a filter that specifies which events to monitor over that
connection. The filter is a String; that String is the value for the CtiOs_IKeywordIDs.CTIOS_FILTER key
in an Arguments instance. That Arguments instance is the argument for the SetMessageFilter() method.

By default the CTIOS server does a snapshotting which results in sending the info about all agents to the
monitormode connection.You control the behavior using theCTIOS_MONITORSESSIONSNAPSHOTMODE
argument in the messagefilter args.

Use filter arg Enum_CtiOs.CTIOS_MONITORSESSIONSNAPSHOTMODE, 1 to turn off the snapshot.

Note

Filter String Syntax

The filter String you create to specify events to monitor must adhere to a specific syntax to accurately instruct
the CTI OS Server to send the correct events.

The general syntax for the filter String is as follows:

“key1=value1, value2, value3;key2=value4, value5, value6”

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
59

Building Your Custom CTI Application
Monitor Mode Filters

The filter String may also contain an asterisk (*), which is used as a wildcard to indicate any possible value.
In addition, you can use a prefix to * to narrow the results. For example, using 10* matches 1001, 1002,
10003. However, CTI OS ignores any characters that follow the asterisk. For example, using 10*1 matches
both 1001and 1002.

Note

The filter String must contain at least one key, and there must be at least one value for that key. However, a
key can take multiple values, and the filter String can contain multiple keys.

Multiple values for a single key must be separated by commas (,). Multiple keys must be separated by
semicolons (;).

Multiple keys in a single filter combine using a logical AND. That is, the filter is instructing CTI OS to send
to this connection only events that meet all the criteria included in the filter.

Note

For example, a filter String could be as follows:

S_MESSAGEID + "=" + CtiOs_Enums.EventID.eAgentStateEvent + ";" + S_AGENTID + "=5128";

This example works as follows:

• The first key-value pair, S_MESSAGEID + "=" + CtiOs_Enums.EventID.eAgentStateEvent, serves to
request events with a message ID equal to eAgentStateEvent; that is, it requests agent state events.

• The second key-value pair, S_AGENTID + "=5128", specifies that the request is for the agent with the ID
5128.

• The result of the filter then is that the connection receives agent state events for agent 5128.

Filter Keys

Filter keys can be any known key value used by CTI OS. These keys have corresponding fields in the
CtiOs_IKeywords interface.

When constructing the filter String, use the fields that begin with “S_”, as these are the String values for the
key.

Note

For example, in Java:

String sFilter = S_AGENTID + "=5128,5129,5130";

In this example, S_AGENTID is the String representation of the key indicating an Agent ID.

Filters for Events for Monitored Calls

If a client filter mode application wants to filter for events for monitored calls, the applications does the
following:

• Creates the filter

• Checks events to verify that the CTIOS _MONITORED parameter is present and is TRUE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
60

Building Your Custom CTI Application
Filter Keys

• Ignores events if the CTIOS_MONITORED parameter is missing or FALSE

Select Monitor Mode
To select Monitor mode for the connection:

Procedure

Step 1 Specify the filter String. See the previous section for filter details.
Step 2 Create an Arguments instance and add an item with CtiOs_IKeywordIDs.CTIOS_FILTER as the keyword

and the filter String as the value.
Step 3 Use the CtiOsSession.SetMessageFilterArgs(args) method to select Monitor mode and to set the event filter.

Always include the OnCtiOsFailure() event in the message filter so that the application can detect
when a system component is online or offline.

Note

AMonitor mode application that monitors any Call-related events must also monitor the OnCallEnd() event,
as described on OnCallEnd() Event Monitoring, on page 78.

Caution

The following example, which assumes the Session object has been created, demonstrates this task in Java:

/* 1. Constructing message filter string /

String filter = “messageid=” + eAgentStateEvent + “,” + eAgentInfoEvent
+ “,” + eCTIOSFailureEvent;

/* 2. Create the Arguments object*/
Arguments rArgs = new Arguments();

/* 3. Add the filter to the Arguments instance.*/
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);

/* 3. Set the message filter.*/
int returnValue = session.SetMessageFilter(rArgs);

When successful, the SetMessageFilter() method generates the following events:

• With Unified CCE only, OnQueryAgentStateConf() for each team and each agent logged in

• OnSnapshotDeviceConf() for each device

• OnSnapshotCallConf()

• OnMonitorModeEstablished()

Deal with Failover in Monitor Mode
The CTI OS CIL does not support failover for Monitor Mode. Agents in Monitor Mode cannot recover their
state after a failover. Furthermore, after a failover, the CTI OS CIL may leak Call objects.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
61

Building Your Custom CTI Application
Select Monitor Mode

To deal with failover in Monitor Mode:

Procedure

Step 1 When the application detects a failover, for example, in a CTIOSFailure() event indicating a connection failure
or an offline component, wait until the CIL has failed over and everything is back online and the CIL is
connected to CTI OS.

TheMonitorMode application determines when all required servers are online. You can do this by monitoring
OnCtiosFailure() events and keeping track of system status changes as they occur.

Step 2 Use the Disconnect() method to disconnect the session from CTI OS.
Step 3 Follow the steps starting at the beginning of the section Silent Monitoring, on page 87 to:

a) Create a session instance.
b) Set the event listener.
c) Set connection parameters.
d) Call the Connect() method.
e) Set the connection mode in the OnConnection() event handler.

Settings Download
One of the many useful features of CTI OS is the ability to configure Agent Desktop settings after what is on
the server and have them available to all agent desktops via the RequestDesktopSettings() method. You
canmake any changes after what is on the server instead of changing each and every desktop. Settings download
are considered as part of the process of setting up a connection that the client application uses.

Desktop settings are stored in the registries on the machines running CTI OS Server. Centralizing the desktop
settings on the server streamlines the process of changing or updating the agent desktop. A settings download
occurs every time a client application connects and ensures that all the desktops are based on the same settings.

You can downloading settings from CTI OS Server after connecting and setting the mode via the
RequestDesktopSettings() method on the Session object. The OnGlobalSettingsDownloadConf event
indicates success and also returns the settings which are now available to the client application in the form of
properties on the Session object. You can access these properties via the GetValue()methods. Refer to Chapter
9 for a list of all the properties of the Session object.

You can make the request for desktop settings either in the OnConnection event or in the
OnSetAgentModeEvent event (if Agent mode has been specified). Sample code:
Private Sub m_Session_OnConnection(ByVal pDispParam As Object)
'Issue a request to the server to send us all the Desktop 'Settings
m_Session.RequestDesktopSettings eAgentDesktop

End Sub

The OnGlobalSettingsDownloadConf event passes back the settings and you can access them via the Session
object. For example, the following snippet checks for Sound Preferences and specifically to see if the Dial
Tone is Mute or not:
Private Sub m_session_OnGlobalSettingsDownloadConf(ByVal pDispParam As Object)

Dim SoundArgs As CTIOSARGUMENTSLib.Arguments

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
62

Building Your Custom CTI Application
Settings Download

' check if "SoundPreferences is a valid property

If m_session.IsValid("SoundPreferences ") = 1 Then
Set SoundArgs = m_session.GetValue("SoundPreferences")
Dim DialToneArgs As CTIOSARGUMENTSLib.Arguments
If Not SoundArgs Is Nothing Then

If SoundArgs.IsValid("DialTone") = 1 Then
Set DialToneArgs = SoundArgs.GetValue("DialTone")

End If
End If

Dim Mute As Integer
If Not DialToneArgs Is Nothing Then
If DialToneArgs.IsValid("Mute") = 1 Then
Mute = DialToneArgs.GetValueInt("Mute")
If Mute = 1 Then
MsgBox "Dial Tone MUTE"//Your logic here

Else
MsgBox "Dial Tone NOT MUTE"//Your logic here

End If
End If

End If
End If
End Sub

Disconnect from CTI OS Server Before Shutdown
Disconnecting from CTI OS Server (via the Disconnect()method) before shutting down is an important part
of the client application functionality. The Disconnect() method closes the socket connection between the
client application and CTI OS. On most switches, it does not log the agent out. If no logout request was issued
before the Disconnect(), then on most switches the agent stays logged into the instrument even after the
client application has shut down.

Disconnect is a higher priority method than all others. Before calling Disconnect, ensure that all prior requests
have completed lest the call to Disconnect abort these requests. For example, calling Disconnect immediately
after calling Logout can result in an agent not being logged out.

Note

Upon Disconnect(), each object maintained by the Session (Call, Skillgroup,Wait) is released and no further
events are received. Cleaning up the Agent object is the developer's responsibility because it was handed to
the Session (via the SetAgent()) method.

Code sample:

In the C++ and COM CIL only, to disconnect from CTI OS Server when the session mode has not yet been
established bymeans of calling either CCtiOsSsession::SetAgent(...) or CCtiOsSsession::SetMessageFilter(...),
you must call for disconnect with an Arguments array containing the CTIOS_FORCEDDISCONNECT set
to True.
m_session.Disconnect
// Perform disconnect

if(m_ctiSession->GetValueInt(CTIOS_CONNECTIONMODE) == eSessionModeNotSet)
{ // If the session mode has not yet been set by SetAgent or

// SetSessionMode at the time of the disconnect.
// we need to indicate the session that a disconnect needs to
// be forced
bool bAllocOk = true;
Arguments * pDisconnectArgs = NULL;

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
63

Building Your Custom CTI Application
Disconnect from CTI OS Server Before Shutdown

bAllocOk = Arguments::CreateInstance(&pDisconnectArgs);

if ((false==bAllocOk) || (pDisconnectArgs == NULL))
{

CDialog::OnClose();
argsWaitParams.Release();
return;

}

pDisconnectArgs->AddItem(CTIOS_FORCEDDISCONNECT,true);
m_ctiSession->Disconnect(*pDisconnectArgs);
pDisconnectArgs->Release();

}
else
{
m_ctiSession->Disconnect();

}

Agent Login and Logout

Log In an Agent
When the connection to the CTI OS Server is established and the mode set, you log in the agent.

Before attempting to log in an agent, you typically request global configuration data to correctly handle a
duplicate log in attempt. For more information, see Get Registry Configuration Values to Desktop Application,
on page 67.

Note

To log in the agent, in the SetAgentModeEvent() event:

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 Set log in values for the agent in the Arguments instance.

The properties required for the agent depend on the type of ACD you are using. The following
example demonstrates the required properties for Unified CCE.

Note

Step 3 Log in the agent.

The following example, which assumes the Agent object has been created, demonstrates this task in Java:
public void SetAgentMode(Arguments rArgs) {

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

/* 2. Set log in values.*/
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, “275”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, “5002”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTINSTRUMENT, “5002”)
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTPASSWORD, “********”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AUTOLOGIN, “1”);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
64

Building Your Custom CTI Application
Agent Login and Logout

/* 3. Log in the agent.*/
int returnValue = agent.Login(rArgs);

}

It is the client application's responsibility to keep track of whether the log in attempt is the first
attempt or during failover, and branch accordingly in the SetAgentMode() event to avoid calling
the Login() method during failover.

Note

The Login() method generates the following events:

• QueryAgentStateConf()

• AgentStateEvent(), if the agent is unknown or is logged out.

The client application receiving the these events must check both the ENABLE_LOGOUT and
ENABLE_LOGOUT_WITH_REASON bitmasks. For more information, see In the
OnButtonEnablementChange() Event, on page 74.

Note

When not successful, the Login() method generates the eControlFailureConf() event.

Duplicate Login Attempts

Overview of Duplicate Login Attempts
A duplicate log in attempt occurs when an agent who is already logged in tries to log in a second time using
the same ID. Desktop applications must account for such a possible situation and have a plan for dealing with
it.

You can handle duplicate log in attempts in three ways:

• Allow the Duplicate Log In with No Warning

• Allow the Duplicate Log In with a Warning

• Do not allow a duplicate log in

You control how duplicate log in attempts are handled in two ways:

• By configuring how duplicate log in attempts are handled on a global basis by creating custom values
in the CTI OS Server Registry. By using custom values in the CTI OS Server registry to control how
duplicate log in attempts are handled and downloading these settings to your desktop application as
described in Log Out an Agent, on page 69, you can enable flexibility without having to modify your
desktop application code.

• By implementing code in your desktop application to detect and to handle the duplicate log in attempt
error according to the custom values in the CTI OS Server Registry. You can write code to handle
duplicate log in attempts in each of the three ways listed above. When you need to change how such
attempts are handled, you simply change the registry settings; you would not have to change the desktop
application code.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
65

Building Your Custom CTI Application
Duplicate Login Attempts

Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts
You can create keys in the CTI OS Server Registry that instruct desktop applications to handle duplicate log
in attempts in a specific way.

The CTI OS CIL Two has keys that exist by default in the registry: WarnIfAlreadyLoggedIn and
RejectIfAlreadyLoggedIn. You must not use these keys in your desktop application. You must instead create
other keys as described in this section.

Warning

Create two custom values:

• custom_WarnIfAgentLoggedIn

• custom_RejectIfAgentLoggedIn

The custom keys you create can be set to 0 (False) or 1 (True).

The following table lists the settings to control how duplicate log in attempts are handled:

Table 10: CTI OS Server Registry Settings (to Control Duplicate Login)

custom_RejectIfAgentLoggedIncustom_WarnIfAgentLoggedInGoal

01To warn the agent of the duplicate log in attempt, but to allow
the agent to proceed.

00To allow the agent to proceed with the duplicate log in attempt
with no warning.

10 or 1To not allow the agent to proceed with a duplicate log in
attempt.

To create keys to control duplicate log in attempts:

Procedure

Step 1 Open the registry and navigate to: HKEY_LOCAL_MACHINE\Software\Cisco Systems,
Inc.\CTIOS\[CTI Instance
Name]\CTIOS1\EnterpriseDesktopSettings\AllDesktops\Login\ConnectionProfiles\Name\[Profile
Name].

Step 2 Right click in the registry window and select New > DWord Value. The new value appears in the window.
Step 3 Change the value name to custom_WarnIfAgentLoggedIn.
Step 4 Double-click the value to open the Edit DWORD Value dialog box.
Step 5 Enter 1 in the Value data field to set the value to true, or 0 to set it to false.
Step 6 Repeat steps 2 through 5 for the value custom_RejectIfAgentLoggedIn.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
66

Building Your Custom CTI Application
Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts

Agent Login with Incorrect Credentials
To prevent another agent log in with incorrect credentials, use the SendIdentifyClientRequest method to
identify and detect the log in request.

Set the Method Argument to Nil. To invoke this method, use the session object.

The following examples demonstrate the method in:

C++: int SendIdentifyClientRequest()

.NET: CilError SendIdentifyClientRequest()

Java: int SendIdentifyClientRequest()

Following is an example of how to use the method:
if (CIL_OK != SessionObj.SendIdentifyClientRequest())
{

LOG(CRITICAL, "CCtiOsSession::SetAgent(...), SendIdentifyClientRequest: authentication
will fail, aborting..");

ReportError(CIL_FAIL);
return CIL_FAIL;

}

Get Registry Configuration Values to Desktop Application
To get CTI OS registry configuration values to your desktop application to handle duplicate log in attempts
correctly, you must request global configuration settings, then extract the custom settings from the event. You
typically do this task before attempting to log in an agent, in the OnConnection() event.

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 In the Arguments instance, set the value for the CTIOS_DESKTOPTYPE key to either:

• CtiOs_Enums.DesktopType.eAgentDesktop

• CtiOs_Enums.DesktopType.eSupervisorDesktop

Although the Arguments object must have one of these fields as a value for the
CTIOS_DESKTOPTYPE key, this version of CTIOS does not utilize the desktop type parameter
when sending global configuration data to a desktop application. Regardless of which field
you use in defining the Arguments object, CTI OS returns all global configuration data with
the OnGlobalSettingsDownloadConf() event. The desktop type indicators, through currently
required, are reserved for future use.

Note

Step 3 Request desktop settings for the session using the RequestDesktopSettings() method. This results in a
OnGlobalSettingsDownloadConf() event.

The following example demonstrates steps 1 through 3 in Java:

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
67

Building Your Custom CTI Application
Agent Login with Incorrect Credentials

/* 2. Set the desktop type.*/
rArgs.SetValue(“CTIOS_DESKTOPTYPE”,
CtiOs_Enums.DesktopType.eAgentDesktop);

/* 3. Request desktop settings. This should cause CTI OS to send the
OnGlobalSettingsDownloadConf event.*/
int returnValue = session.RequestDesktopSettings(rArgs);

Step 4 In the OnGlobalSettingsDownloadConf() event, get the Arguments instance for Login configuration from the
event Arguments parameter. Use the S_LOGIN key from the CtiOs_IKeywordIDs interface.

Step 5 Get the Arguments instance for the correct switch from the Login Arguments instance. The example below
uses the “SoftACD” login configuration information, the key for which is established by the CTI OS Server
installation.

Step 6 Get the Integer instances for the custom values you established for the key in the CTI OS Server registry.
Step 7 For convenience, get the int values for those Integers to test with, as described in the section Duplicate Login

Attempts, on page 65.

The following example demonstrates steps 4 through 7 in Java:

void OnGlobalSettingsDownloadConf(Arguments rArgs) {

/* 4. Get the Arguments instance for the Login configuration
information from the event Arguments parameter.*/

Arguments logInArgs = rArgs.getValueArray(CTIOS_LOGIN);

/* 5. Get the Arguments instance for the Connection Profile
from the Login Arguments instance. */

Arguments connectionProfilesArgs = logInArgs.GetValueArray(CTIOS_CONNECTIONPROFILES);

/* 6. Get the Arguments instance for the specific switch from the Connection
Profiles instance */

Arguments IPCCLogInArgs = connectionProfilesArgs.GetValueArray(“SoftACD”)

/* 7. Get the Integer instances for the custom values you entered in the CTI OS Server
registry.*/

Integer warningIntObj = IPCCLogInArgs.GetValueIntObj(“custom_WarnIfAgentLoggedIn”);

Integer rejectIntObj =IPCCLogInArgs.GetValueIntObj(“custom_RejectIfAgentLoggedIn”);

/* 8. Get the int values for those object to test later.*/

custom_WarnIfAgentLoggedIn = warnIntObj.intValue();
custom_RejectIfAgentLoggedIn = rejectIntObj.intValue();

}

Detect Duplicate Login Attempt in Desktop Application
You detect the duplicate log in attempt in the OnQueryAgentStateConf() event, which is sent after the
application calls SetAgent():

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
68

Building Your Custom CTI Application
Detect Duplicate Login Attempt in Desktop Application

Procedure

Step 1 Get the agent state value from the Arguments instance passed to the event.
Step 2 Test the agent state value in the CtiOs_Enums.AgentState interface, as follows.

(state != eLogout) && (state != eUnknown)

Step 3 If the test is true, handle the duplicate log in attempt as described in the next section.

The following example demonstrates this task in Java:
public void eQueryAgentStateConf(Arguments rArgs) {

/* 1. Get the agent state value*/
Short agentState = rArgs.getValueShortObj(CTIOS_AGENTSTATE)

/*Test the agent state*/
if (agentState.intValue() != eLogout

&& agentState.intValue() != eUnknown) {

/*If the agent is logged in, handle duplicate log in attempt.*/
}

}

Handle Duplicate Login Attempts in Desktop Application
If you detect from the OnQueryAgentStateConf() event that the agent is already logged in as described in the
previous section, do the following:

• If your custom_WarnIfAgentLoggedIn = 1 and custom_RejectIfAgentLoggedIn = 0, notify the user that
the agent is already logged in and proceed with Login() depending on the user response.

• If your custom_RejectIfAgentLoggedIn = 1, notify the user that the agent is already logged in and
Disconnect.

Log Out an Agent
To log out an agent:

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 Set log out values for the agent in the Arguments instance.

Unified CCE requires a reason code to log out. Other switches may have different requirements.Note

Step 3 Log out the agent.

The following example demonstrates this task in Java:

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

/* 2. Set log out values.*/

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
69

Building Your Custom CTI Application
Handle Duplicate Login Attempts in Desktop Application

rArgs.SetValue(CTIOS_EVENTREASONCODE, 1);

/* 3. Log out the agent.*/
int returnValue = agent.Logout(rArgs);

Typical Logout Procedure
When the Logout button is clicked the following actions need to happen:

1. Call Logout request on your current agent.

You need to call Logout and not use SetAgentState(eLogout), because Logout provides additional logic
to support pre-Logout notification, Logout failure notification, and resource cleanup.

Here is the sample code for the same:

if(m_ctiAgent)
{

Arguments &rArgAgentLogout = Arguments::CreateInstance();

//add reason code if needed
rArgAgentLogout.AddItem(CTIOS_EVENTREASONCODE, reasonCode);
int nRetVal = m_ctiAgent->Logout(rArgAgentLogout);
rArgAgentLogout.Release();

}

2. Receive a response for the Logout request.

You can expect the following events in response to a Logout request:

• OnAgentStateChange (with Logout agent state).

or

OnControlFailure (with the reason for the failure).

• OnPostLogout (you additionally receive this event if the Logout request succeeds).

You can disable statistics either prior to issuing the Logout request or upon receipt
of the OnAgentStateChange to logout state. Use the OnPostLogout event to trigger
session disconnect. This guarantee that all event listeners can make CTI OS server
requests in response to the logout OnAgentStateChange event.

Note

See the following example code:

void CMyAppEventSink::OnPostLogout(Arguments & rArguments)
{

// Do not Disconnect if the reason code is Forced Logout
// (particular failover case):
int nAgentState = 0;
if (rArguments.GetValueInt(CTIOS_AGENTSTATE, &nAgentState))
{

if (nAgentState == eLogout)
{

int nReasonCode = 0;
if (rArguments.GetValueInt(CTIOS_EVENTREASONCODE,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
70

Building Your Custom CTI Application
Typical Logout Procedure

&nReasonCode))
{

if (CTIOS_FORCED_LOGOUT_REASON_CODE ==
(unsigned short)nReasonCode)

{
return;

}
}

}
}

//Disconnect otherwise
if(IsConnected()) //if session is connected
{

if(m_ctiSession)
{

m_ctiSession->Disconnect();
}

}
}

3. If you are not concerned with whether the agent is successfully logged out prior to disconnect, issue a
session Disconnect request without a Logout request.

4. Additionally, you must wait for OnConnectionClosed before destroying Agent and Session objects. This
guarantee that the CIL has completed cleanup of the Session object prior to your calling Release on these
objects.

5. Ensure that the Agent Object is set to NULL in the session before you Release the session object. For
example, whenever your application is exiting and you are disconnecting the session object (for example,
when the user closes your application window) do something similar to the code below:

if (m_ctiSession)
{

m_ctiSession->Disconnect();

// stop all events for this session
int nRetVal =

m_pctiSession->RemoveAllInOneEventListener((IAllInOne *)
m_pmyEventSink);

//The application is closing, remove current agent from session
CAgent * pNullAgent = NULL;
m_Session->SetAgent(*pNullAgent);
m_Session->Release();
m_Session = NULL;

}

if(m_ctiAgent)
{

m_ctiAgent->Release();
m_ctiAgent = NULL;

}

if (m_pmyEventSink)
{

m_pmyEventSink->Release();
m_pmyEventSink = NULL;

}

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
71

Building Your Custom CTI Application
Typical Logout Procedure

Calls

Multiple Call Handling
It is critical that you design an Agent Mode desktop application to store all the calls on the specific device to
do the following:

• Apply incoming events to the correct call

• Select the correct call on which to make method calls (for example, telephony requests)

It is not necessary to maintain a set of Call objects to do this. Instead, the application can store the string
UniqueObjectID of each call (keywordCTIOS_UNIQUEOBJECTID). CTIOS_UNIQUEOBJECTID is always
included in the args parameter for each call event. You can obtain the actual Call object with the Session
object's GetObjectFromObjectID() method to make a method call.

Current Call
The CIL maintains a concept of a Current Call, which is the call for which the last
OnButtonEnablementChange() event was fired. Knowing which call is the Current Call is useful when there
are multiple components which set and act on the Current Call, such as telephony ActiveX Controls.

The CTI OS ActiveX controls included in the CTI OS Toolkit use the concept of the Current Call. The
CallAppearance grid control sets the Current Call when the user clicks on a particular call in the grid. When
the user clicks the Answer control, this control must get the Current Call to call the Answer() method on the
correct call.

The Current Call is set according to the following rules:

• When there is only 1 call on a device, the CIL sets it to the Current Call.

• When there are multiple calls on a device and an application wants to act on a call that is not the Current
Call, it sets a different call to the Current Call with the SetCurrentCall() method.

• When the call which is the Current Call ends, leaving multiple calls on the device, the application must
set another call to be the Current Call.

• Whenever the Current Call is set to a different call, OnCurrentCallChanged() event is fired as well as an
OnButtonEnablementChange() event.

Get Call Object from Session
You can get the Call object from the session using the GetObjectFromObjectID() method.

The following code fragment, which assumes that existing Call Unique Identifiers are stored in an array called
UIDArray, shows how to get a specific Call object in Java:

String sThisUID = UIDArray[Index];
Call ThisCall = (Call) m_Session.GetObjectFromObjectID(sThisUID);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
72

Building Your Custom CTI Application
Calls

Set Current Call for Session
To set the current call you use the SetCurrentCall() method for the Session. The following code fragment,
which assumes you retrieved the Call object as described in the previous section, shows how to set the current
call.

The following line shows this in Java:
m_Session.SetCurrentCall(ThisCall);

Call Wrapup
The agent/supervisor desktop behaves differently at the end of a call depending on the following factors:

• The direction of the call (inbound or outbound)

• Configuration of Unified CCE or the ACD (whether wrapup data is required, optional, or not allowed)

• Configuration of CTI OS server

The CTI Toolkit Combo Desktop .NET sample shows how to use this information to display a wrapup dialog
box that allows the agent to select from a set of pre-configured wrapup strings after an inbound call goes into
wrapup state (see ProcessOnAgentStateEvent in SoftphoneForm.cs). On an agent state change event, if the
state changes toWorkReady orWorkNotready state, this indicates that the agent has transitioned to call wrapup
state. The CTI OS server provides the following key/value pairs in the event arguments to determine whether
wrapup data is associated with the call and whether that data is required or optional.

CTIOS_INCOMINGOROUTGOING indicates the direction of the call. The defined values are:

0 = the direction of the call is unknown

1 = the call is an incoming call and the agent may enter wrapup data

2 = the call is an outgoing call and the agent may not enter wrapup data

You can use the GetValueInt method to obtain this value on the Agent object.

CTIOS_WRAPUPOKENABLED indicates whether wrapup data is required for the recently ended call. A
value of false indicates that wrapup data is not required. A value of true indicates that wrapup data is required.
(In the Combo Desktop sample, this value is used as a boolean to determine whether the "Ok" button on the
wrapup dialog box is enabled when no wrapup information is selected.) You can use the GetValueBool method
to obtain this value on the Agent object.

The wrapup strings that are configured on CTI OS server are sent to the client during the login procedure and
are stored under the keyword CTIOS_INCOMINGWRAPUPSTRINGS as an Arguments array within the
Agent object. You can use the GetValueArray method to obtain the wrapup strings on the Agent object. For
more information about how to configure wrapup strings on CTI OS server see the CTI OS System Manager
Guide for Cisco Unified ICM.

Logout and NotReady Reason Codes
Depending on the configuration of Unified CC or the configuration of CTI OS server, the agent/supervisor
desktop may be required to supply a reason code when requesting an agent state change to Logout or NotReady
state. The CTI Toolkit Combo Desktop .NET sample provides examples of how to implement reason codes
in an agent/supervisor desktop. (See the btnLogout_Click and btnNotReady_Click methods in
SoftphoneForm.cs.)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
73

Building Your Custom CTI Application
Set Current Call for Session

CTI OS server informs the CTI OS client of this configuration during the login process and the information
is stored in the following properties on the Agent object:

CTIOS_LOGOUTREASONREQUIRED - This boolean value indicates whether a reason code is required
for logout. A value of true indicates that a reason code is required. A value of false indicates that a reason
code is not required. You can use the GetValueBool method to get this value on the Agent object.

CTIOS_LOGOUTREASONCODES - This Arguments array provides a list of the logout reason codes
configured on CTI OS server. You can use the GetValueArray method to get this value on the Agent object.

CTIOS_NOTREADYREASONREQUIRED - This boolean value indicateswhether a reason code is required
when setting an agent to NotReady state. A value of true indicates that a reason code is required. A value of
false indicates that a reason code is not required. You can use the GetValueBool method to obtain the value
on the Agent object.

CTIOS_NOTREADYREASONCODES - This Arguments array provides a list of the not ready reason codes
configured on CTI OS server. You can use the GetValueArray method to obtain the value on the Agent object.

Applications and OnButtonEnablementChange() Event
An application receives an OnButtonEnablementChange() event in the following situations:

• When the Current Call is changed.

• When the call that is the Current Call receives an event, which includes a CTIOS_ENABLEMENTMASK
argument. Usually the included enablement mask is changed from what it was set to, but occasionally it
is the same. This mask is used to indicate which functions are allowed for this Call in its current state.

For example, when a Call receives an OnCallDelivered() event with a Connection State of
LCS_ALERTING, its enablement mask is changed to set the Answer bit. When this Call is answered,
and it receives the OnCallEstablished() event, the mask no longer sets the Answer bit, but instead enables
the Hold, Release, TransferInit and ConferenceInit bits.

In the OnButtonEnablementChange() Event
To see if a button should be enabled, do a bitwise “AND”with the appropriate value listed in the Table included
under the OnButtonEnablementChange event in Chapter 6.

The following examples shows this in Java:

Integer IMask = rArgs.GetValueIntObj(CTIOS_ENABLEMENTMASK);
if (null != IMask) {

int iMask = IMask.intValue();
if (iMask & ENABLE_ANSWER) {

//Enable the AnswerCall button
}

else {
//Disable the AnswerCall button
}

}
// else do nothing

Not Ready Bitmasks in OnButtonEnablementChange() Event
A client application receiving the OnButtonEnablementChange() event must check both the
ENABLE_NOTREADY and ENABLE_NOTREADY_WITH_REASON bitmasks in the event.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
74

Building Your Custom CTI Application
Applications and OnButtonEnablementChange() Event

Failure to check both the ENABLE_NOTREADY and ENABLE_NOTREADY_WITH_REASON bitmasks
can lead to problems properly displaying a NotReady control to the agent.

Caution

The following example shows this in Java:

void OnButtonEnablementChange(Arguments rArguments) {
m_appFrame.LogEvent("OnButtonEnablementChange", rArguments);

// Get mask from message
Long LMask = rArguments.GetValueUIntObj(CTIOS_ENABLEMENTMASK);
if (null==LMask)

return;

final long bitMask = LMask.longValue();

/* Transfer modification of the GUI objects to the
EventDispatchThread or we could have a thread sync issue. We're
currently on the CtiOsSession's event thread.*/

SwingUtilities.invokeLater(new Runnable() {
public void run() {

/* Enable a button if it's bit is
turned on. Disable it if not.*/

m_appFrame.m_btnAnswer.setEnabled (((bitMask & ENABLE_ANSWER) > 0));
m_appFrame.m_btnConference.setEnabled

(((bitMask & ENABLE_CONFERENCE_COMPLETE) > 0));
m_appFrame.m_btnCCConference.setEnabled

(((bitMask & ENABLE_CONFERENCE_INIT) > 0));
m_appFrame.m_btnHold.setEnabled (((bitMask & ENABLE_HOLD) > 0));
m_appFrame.m_btnLogin.setEnabled (((bitMask & ENABLE_LOGIN)> 0));
m_appFrame.m_btnLogout.setEnabled

(((bitMask & (ENABLE_LOGOUT |

CtiOs_Enums.ButtonEnablement.ENABLE_LOGOUT_WITH_REASON)) >
0));

m_appFrame.m_btnMakeCall.setEnabled
(((bitMask & ENABLE_MAKECALL) > 0));

m_appFrame.m_btnNotReady.setEnabled(((bitMask & (ENABLE_NOTREADY |
ENABLE_NOTREADY_WITH_REASON)) > 0));

m_appFrame.m_btnReady.setEnabled(((bitMask & ENABLE_READY) > 0));
m_appFrame.m_btnRelease.setEnabled(((bitMask & ENABLE_RELEASE)> 0));
m_appFrame.m_btnRetrieve.setEnabled

(((bitMask & ENABLE_RETRIEVE) > 0));
m_appFrame.m_btnSSTransfer.setEnabled

(((bitMask & ENABLE_SINGLE_STEP_TRANSFER)> 0));
m_appFrame.m_btnSSConference.setEnabled

(((bitMask & ENABLE_SINGLE_STEP_CONFERENCE) > 0));
m_appFrame.m_btnTransfer.setEnabled

(((bitMask & ENABLE_TRANSFER_COMPLETE)> 0));
m_appFrame.m_btnCCTransfer.setEnabled

(((bitMask & ENABLE_TRANSFER_INIT) > 0));
}

});
} // OnButtonEnablementChange

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
75

Building Your Custom CTI Application
Not Ready Bitmasks in OnButtonEnablementChange() Event

OnButtonEnablementChange() Event in Supervisor Desktop Applications
When a supervisor desktop application processes an OnButtonEnablementChange() event, the application
checks for the CTIOS_MONITORED parameter and ignores this parameter if it is present and is TRUE. In
a supervisor desktop application, the OnButtonEnablementChange() event can reflect button enablement for
either a monitored team member or the supervisor.

Making Requests
Telephony requests are made through either an Agent object or a Call object by calling the appropriate API
methods listed in Chapters 9 and 10. It is important to ensure that a user cannot make multiple duplicate
requests before the first request has a chance to be sent to the switch and the appropriate events sent back to
the application, because this results in either multiple failures or unexpected results.

Multiple Duplicate Requests
Because it is important for a custom application to prevent a user frommaking a number of duplicate requests,
the user should not be able to click the same button multiple times. A custom application should disable a
clicked button until it is all right for the user to click it again.

Some examples of when Sample softphones re-enable a button that was clicked and disabled are listed below:

• Re-enable Connect/LoginBtn when:

• LoginDlg canceled

• ControlFailure or CTIOSFailure when login is in progress

• In ProcessOnConnectionClosed()

• Re-enable Logout/DisconnectBtn when:

• Logout ReasonCodes are required & Dlg pops up, but user clicks Cancel

• Re-enable NotReadyBtn when:

• NotReady ReasonCodes are required & Dlg pops up, but user clicks Cancel

• Re-enable DialBtn, TransferBtn or ConferenceBtn when:

• DialPad was closed with Cancel rather than Dial, depending on which was originally clicked

• Re-enable TransferBtn & ConferenceBtn when:

• Received ControlFailure with MessageType parameter set to eConsultationCallRequest

• Re-enable EmergencyBtn when:

• Received ControlFailure with MessageType parameter set to eEmergencyCallRequest

• Re-enable SupervisorAssistBtn when:

• Received ControlFailure with MessageType parameter set to eSupervisorAssistRequest

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
76

Building Your Custom CTI Application
OnButtonEnablementChange() Event in Supervisor Desktop Applications

• Re-enable any AgentStateBtn when:

• Received ControlFailure with MessageType parameter set to eSetAgentStateRequest &
lastAgentStateBtnClicked was the appropriate one

• Re-enable any of the buttons when:

• Received OnButtonEnablementMaskChange indicating the button should be enabled.

Events

Event Order
A desktop application using the CTI OS API must handle events in the order they are sent by CTI OS.

Becausemany events include agent state data and button enablement data indicating valid agent state transitions,
if events are handled out of order agents may not be presented with valid options.

Warning

Coding Considerations for CIL Event Handling
The CTI OS CIL fires events to the application in a single thread. Keep the amount of time spent in a particular
CIL event handler to a minimum to ensure timely delivery of subsequent CIL events. If a screenpop based
on a call event (such as the OnCallDelivered event or the OnCallDataUpdate event) takes longer than a few
seconds (for example, remote database lookup), delegate this operation to a separate thread or separate process
so as not to block CTI OS event handling.

The order of arrival of CIL events is highly dependent on the ACD that is in use at the customer site. Therefore,
CIL event order is not guaranteed. Do not write your event handling code in a manner that relies on a particular
event order.

Note

If an application calls a CIL API method from a CIL event callback routine it must ensure that the method
call is made on the same thread as the CIL event callback. This rule applies to the following methods:

• SetCurrentCall

• SetAgent

This rule must be followed in order to guarantee that events are fired from the CIL to the application in the
proper sequence.

When handling events in the browser using JavaScript, keep event processing time to a minimum because all
other JavaScript execution (e.g., handling of button clicks) may be blocked during handling of the event.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
77

Building Your Custom CTI Application
Events

OnCallEnd() Event Monitoring
AMonitor Mode application that monitors any Call-related events must also monitor the OnCallEnd() event.

The Call object in the CTI OS CIL is only deleted when the OnCallEnd() event is received. If the OnCallEnd()
and OnCallDataUpdate() events are not monitored, Call objects accumulate and cause a memory leak.

Warning

Agent Statistics

Overview of Agent Statistics
This section describes how to work with agent statistics and contains the following subsections:

• Set Up Agent Application to Receive Agent Statistics, on page 78

• Set Up Monitor Mode Application to Receive Agent Statistics, on page 79

• Agent Statistics Access, on page 82

• Agent Statistics Configuration, on page 83

• Agent Statistics Computed by Sample CTI OS Desktop, on page 83

Set Up Agent Application to Receive Agent Statistics
To set up an Agent application to receive agent statistics:

Procedure

Step 1 Create an instance of the Session class, as described on Connect to CTI OS Server, on page 54.
Step 2 Subscribe for events for the session, as described on Set Event Listener and Subscribe to Events, on page 54.

You must register to receive agent and session events; therefore, in the AddEventListener() method
you must use as parameters the field CtiOs_Enums.SubscriberList.eAgentList and
CtiOs_Enums.SubscriberList.eSessionList. Or you can use the
CtiOs_Enums.SubscriberList.eAllInOneList.

Note

Step 3 Set connection parameters, as described on Set Connection Parameters for Session, on page 55.
Step 4 Connect the desktop application to the CTI OS Server, as described on Connect Session to CTI OS Server,

on page 55.
Step 5 In the OnConnection() event handler, set the Agent for the session, as described on Select Agent Mode, on

page 58.
Step 6 Log in the agent, as described on Log In an Agent, on page 64.
Step 7 Enable agents statistics using the EnableAgentStatistics() method.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
78

Building Your Custom CTI Application
OnCallEnd() Event Monitoring

Though the EnableAgentStatistics()method requires anArguments parameter, there are no parameters
to set for agent statistics; you can therefore send an empty Arguments instance as a parameter.

Note

The agent must be logged in before you can use the EnableAgentStatistics() method.Caution

Step 8 To disable agents statistics, use the DisableAgentStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eAgentList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
returnCode = rSession.Connect(rArgs);

public void OnConnection(Arguments rArgs) {

/*5. Set agent for the session. */
returnCode = rSession.SetAgent(agent);

/* 6. Log in the agent.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, “275”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, “5002”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTINSTRUMENT, “5002”)
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTPASSWORD, “********”);
returnCode = agent.Login(rArgs);

/* 7. Enable Agent statistics. */
if (returnCode == CIL_OK) {
agent.EnableAgentStatistics(new Arguments());
}

}

Set Up Monitor Mode Application to Receive Agent Statistics
To set up a Monitor-mode application to receive agent statistics, follow the instructions below.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
79

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Agent Statistics

The agent to monitor must be logged in Agent mode before a Monitor-mode application can receive statistics
for that agent.

CTI OS has a limitation in providing monitor-mode support to build agent desktop call-control applications,
as well as having the ability to rely on button enablement messages.

Note

Procedure

Step 1 Create an instance of the Session class, as described on Connect to CTI OS Server, on page 54.
Step 2 Subscribe for events for the session, as described on Set Event Listener and Subscribe to Events, on page 54.

You must register to receive agent events; therefore, in the AddEventListener() method you must
use as a parameter the field CtiOs_Enums.SubscriberList.eAgentList.

Note

Step 3 Set connection parameters, as described on Set Connection Parameters for Session, on page 55.
Step 4 Connect the desktop application to the CTI OS Server, as described on Connect Session to CTI OS Server,

on page 55.
Step 5 Set a String variable to store the ID of the agent for which you want statistics.

The applicationmust be aware of the Agent ID and the agent's Peripheral ID for any agent to monitor;
the application cannot dynamically get these values from CTI OS Server.

Note

Step 6 Set the message filter as described on Filters for Events for Monitored Calls, on page 60.
a) Create String for the filter using the keyword CTIOS_MESSAGEID as the name, and “*;agentID” as the

value.

The “*;” indicates all events for that agent.Note

b) Create an instance of the Arguments class.
c) Set the value in the filter for the CTIOS_FILTER keyword to the String created in Step a.
d) Use the SetMessageFilter() method in the Session class to set the filter for the session, using the Arguments

instance you created in Step b as a parameter.

Step 7 Wait for any event for the agent, to ensure that the Agent instance exists for the Session.

The application must wait for the first event for this agent before continuing, to ensure that the
Agent instance is part of the current session.

Caution

This example uses a Wait object to wait.Note

Step 8 Get the Agent instance from the Session using GetObjectFromObjectID() method.
Step 9 Enable agents statistics using the EnableAgentStatistics() method.

Although the EnableAgentStatistics() method requires an Arguments parameter, there are no
parameters to set for agent statistics; you can therefore use an empty Arguments instance as a
parameter.

Note

The agent must be logged in before you can use the EnableAgentStatistics() method.Caution

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
80

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Agent Statistics

Step 10 To disable agents statistics, use the DisableAgentStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eAgentList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
int returnCode = rSession.Connect(rArgs);

/*5. Set String to AgentID*/
String UIDAgent = “agent.5000.5013”;

/*6. Set the message filter. */
String filter = "MessageId=*;AgentId=5013;
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);
returnCode = rSession.SetMessageFilter(rArgs);

/*7. Wait for agent events.*/

rArgs = new Arguments();

// Create a wait object in the session
WaitObject rWaitObj = rSession.CreateWaitObject(rArgs);

// Load the events into the Args for the wait object
rArgs.SetValue("Event1", eAgentStateEvent);
rArgs.SetValue("Event2", eQueryAgentStateConf);
rArgs.SetValue("Event3", eControlFailureConf);
rArgs.SetValue("Event4", eCTIOSFailureEvent);

// Set the mask for the WaitObject
rWaitObj.SetMask(rArgs);

// Wait for up to 9 seconds, and then give up
if (rWaitObj.WaitOnMultipleEvents(9000) != EVENT_SIGNALED)
{

// Handle error ...
return;

}

// Find out what triggered the wait
int iEventID = rWaitObj.GetTriggerEvent();
if (iEventID == eControlFailureConf|| iEventID == eCTIOSFailureEvent)
{

// Handle error ...
return;

}

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
81

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Agent Statistics

Agent Statistics Access

Overview of Agent Statistics Access
After you set up the applications to receive agent statistics, as described in the preceding section, you can
access agent statistics in two ways:

• By implementing the eOnNewAgentStatisticsEvent() (in Java) or the OnAgentStatistics() event (in C++,
COM, or VB 6.0)

The name of the event to access agent statistics is different in Java when compared to other languages supported
by CTI OS.

Caution

• Through the Agent instance itself

The rest of this section describes these methods for accessing agent statistics.

eOnNewAgentStatisticsEvent() in Message Filter (JAVA)
To register to receive agent statistics, you must include the eOnNewAgentStatisticsEvent() in the message
filter.

For example, in Java, the message filter to receive agent statistics is:
String filter = S_MESSAGEID + “=” +

CtiOs_Enums.EventID.eNewAgentStatisticsEvent;

For more information about message filters, see Monitor Mode Filters, on page 59.

OnAgentStatistics() Event in Message Filter (C++ COM and VB)
To register to receive agent statistics, you must include the OnAgentStatistics() event in the message filter.

For more information about message filters, see Monitor Mode Filters, on page 59.

Get Agent Statistics Through Agent Instance
After you use the EnableAgentStatistics() method for the agent, agent statistics are available through that
Agent instance.

To get the agent statistics perform the following procedure:

Procedure

Step 1 Get the Arguments instance containing statistics from the Agent instance using the GetValueArray() method.
Step 2 Parse the Arguments instance as needed to get specific statistics.

The following example demonstrates this task in Java:

/* 1. Get Arguments instance.*/
Arguments rArgs = agent.GetValueArray(CtiOs_IKeywordIDs.CTIOS_STATISTICS);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
82

Building Your Custom CTI Application
Agent Statistics Access

/* 2. Parse as necessary. For example:*/
int availTimeSession = rArgs.GetValueIntObj(CtiOs_IKeywordIDs.CTIOS_AVAILTIMESESSION);

Agent Statistics Configuration
You can change which agent statistics are sent to applications by modifying the registry on the CTI OS Server.

For more information about how to change which agent statistics are sent to applications by default, see the
CTI OS System Manager Guide for Cisco Unified ICM.

Agent Statistics Computed by Sample CTI OS Desktop
The sample CTI OS Desktop computes many agent statistics from data received from CTI Server. You may
choose to develop applications that compute these same statistics. Therefore, these computed statistics (in
italics) and the data and formulas used to derive them are listed below:

• AvgTalkTimeToday = (AgentOutCallsTalkTimeToday + HandledCallsTalkTimeToday) /
(AgentOutCallsToday + HandledCallsToday)

• CallsHandledToday = AgentOutCallsToday + HandledCallsToday

• TimeLoggedInToday = LoggedOnTimeToday

• TimeTalkingToday = AgentOutCallsTalkTimeToday + HandledCallsTalkTimeToday

• TimeHoldingToday = AgentOutCallsHeldTimeToday + IncomingCallsHeldTimeToday

• TimeReadyToday = AvailTimeToday

• TimeNotReadyToday = NotReadyTimeToday

• AvgHoldTimeToday = (AgentOutCallsHeldTimeToday + IncomingCallsHeldTimeToday) /
(AgentOutCallsToday + HandledCallsToday)

• AvgHandleTimeToday = (AgentOutCallsTimeToday + HandledCallsTimeToday) / (AgentOutCallsToday
+ HandledCallsToday)

• AvgIdleTimeToday = NotReadyTimeToday / (AagentOutCallsToday + HandledCallsToday)

• PercentUtilitizationToday = (AgentOutCallsTimeToday + HandledCallsTimeToday) /
(LoggedOnTimeToday + NotReadyTimeToday)

Skill Group Statistics

Overview of Skill Group Statistics
This section describes how to receive and work with skill group statistics in a server-to-server integration
environment and contains the following subsections:

• Set Up Monitor Mode Application to Receive Skill Group Statistics, on page 84

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
83

Building Your Custom CTI Application
Agent Statistics Configuration

• Skill Group Statistics Access, on page 86

• Skill Group Statistics Sent to Desktop Application, on page 86

• Skill Group Statistics Computed by Sample CTI OS Desktop, on page 86

Set Up Monitor Mode Application to Receive Skill Group Statistics
To set up a Monitor-mode application to receive skill group statistics:

Procedure

Step 1 Create an instance of the Session class, as described on Connect to CTI OS Server, on page 54.
Step 2 Subscribe for events for the session, as described on Set Event Listener and Subscribe to Events, on page 54.

You must register to receive session and skill group events. In the AddEventListener() method you
must use as a parameter the field CtiOs_Enums.SubscriberList.eAllInOneList, or
you must call the method twice using the fields
CtiOs_Enums.SubscriberList.eSessionList and
CtiOs_Enums.SubscriberList.eSkillGroupList.

Note

Step 3 Set connection parameters, as described on Set Connection Parameters for Session, on page 55.
Step 4 Connect the desktop application to the CTI OS Server, as described on Connect Session to CTI OS Server,

on page 55.
Step 5 Set the message filter as described on Filters for Events for Monitored Calls, on page 60.

a) Create String for the filter using the keyword S_FILTERTARGET as the name and the event keyword
(enum or number) eOnNewSkillGroupStatisticsEvent (numeric value 536871027)
as the value.

b) Create an instance of the Arguments class.
c) Set the value in the filter for the CTIOS_FILTER keyword to the String created in Step a.
d) Use the SetMessageFilter() method in the Session class to set the filter for the session, using the Arguments

instance you created in Step b as a parameter.

Step 6 Enable individual statistics as needed.
a) Create an instance of the Arguments class.
b) Set values in the Arguments instance. You must provide the skill group number and the peripheral number

for each skill group for which you want to receive statistics. Use the SetValue(keyword, int) method
signature.

For example: use SetValue(CTIOS_SKILLGROUPNUMBER, sgNumber) where sgNumber is an integer
for the skill group for which you want to receive statistics, and SetValue(CTIOS_PERIPHERALID,
peripheralNumber) where sgNumber is an integer for the skill group for which you want to receive
statistics.

You must pass a value of "0" for the Skill Group Priority.Attention

The application must know the Skill Group ID, and the skill group's Peripheral ID, for any skill
group to monitor. The application cannot dynamically get these values from CTI OS Server.

Caution

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
84

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Skill Group Statistics

c) Use the Arguments instance as a parameter for the session's EnableSkillGroupStatistics() method.
d) Repeat steps b and c for each skill group for which you want to receive events.

Step 7 When the desktop application no longer requires the statistics for a certain skill group, the application can
disable those statistics.
a) Create an instance of the Arguments class.
b) Set values in the Arguments instance. You must provide the skill group number and the peripheral number

for each skill group for which you want to receive statistics. Use the SetValue(keyword, int) method
signature.

For example, use SetValue(CTIOS_SKILLGROUPNUMBER, sgNumber) where sgNumber is an integer
for the skill group for which you want to receive statistics, and SetValue(CTIOS_PERIPHERALID,
sgNumber) where sgNumber is an integer for the skill group for which you want to stop receiving statistics.

c) Use the Arguments instance as a parameter for the session's DisableSkillGroupStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eSessionList);
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eSkillGroupList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
int returnCode = session.Connect(rArgs);

/*5. Set the message filter. */
String filter = S_FILTERTARGET + "=" + "SkillGroupStats";
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);
returnCode = session.SetMessageFilter(rArgs);

/*6. Enable statistics. */
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_SKILLGROUPNUMBER, sgNumber);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, peripheralID);
rSession.EnableSkillGroupStatistics(rArgs);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
85

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Skill Group Statistics

Skill Group Statistics Access

Overview of Skill Groups Statistics Access
After you set up the application to receive skill group statistics, as described in the preceding section, you
access skill group statistics through an event handler. The name of the event depends on the language of the
application:

• In Java, eOnNewSkillGroupStatisticsEvent()

• In C++, COM, or VB, OnSkillGroupStatisticsUpdated()

The name of the event through which to access skill group statistics is different in Java from other languages
supported by CTI OS.

Caution

eOnNewSkillGroupStatisticsEvent() in Message Filter (JAVA)
To register to receive skill group statistics, you must include the eOnNewSkillGroupStatisticsEvent() in the
message filter.

For example, in Java, the message filter to receive skill group statistics is:

String filter = S_MESSAGEID + “=” +

CtiOs_Enums.EventID.eNewSkillGroupStatisticsEvent;

For more information about message filters, see Monitor Mode Filters, on page 59.

eOnNewSkillGroupStatisticsEvent() in Message Filter (C++ COM and VB)
To register to receive skill group statistics, you must include the OnSkillGroupStatisticsUpdated() event in
the message filter.

For more information about message filters, see Monitor Mode Filters, on page 59.

Skill Group Statistics Sent to Desktop Application
You can change which skill group statistics are sent to desktop applications by modifying the registry on the
CTI OS Server.

For more information about how to change which skill group statistics are sent to desktop applications, see
the CTI OS System Manager Guide for Cisco Unified ICM.

Skill Group Statistics Computed by Sample CTI OS Desktop
The sample CTI OS Desktop computes many skill group statistics from data received from CTI Server. You
may choose to develop applications that compute these same statistics. These computed statistics (in italics)
and the data and formulas used to derive them are listed below:

• AvgCallsQTimeNow = CallsQTimeNow/CallsQNow

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
86

Building Your Custom CTI Application
Skill Group Statistics Access

• AvgAgentOutCallsTalkTimeToHalf = AgentOutCallsTalkTimeToHalf/AgentOutCallsToHalf

• AvgAgentOutCallsTimeToHalf = AgentOutCallsTimeToHalf/AgentOutCallsToHalf

• AvgAgentOutCallsHeldTimeToHalf = AgentOutCallsHeldTimeToHalf/AgentOutCallsHeldToHalf

• AvgHandledCallsTalkTimeToHalf = HandledCallsTalkTimeToHalf/HandledCallsToHalf

• AvgHandledCallsAfterCallTimeToHalf = HandledCallsAfterCallTimeToHalf/HandledCallsToHalf

• AvgHandledCallsTimeToHalf = HandledCallsTimeToHalf/HandledCallsToHalf

• AvgIncomingCallsHeldTimeToHalf = IncomingCallsHeldTimeToHalf/IncomingCallsHeldToHalf

• AvgInternalCallsRcvdTimeToHalf = InternalCallsRcvdTimeToHalf/InternalCallsRcvdToHalf

• AvgInternalCallsHeldTimeToHalf = InternalCallsHeldTimeToHalf/InternalCallsHeldToHalf

• AvgCallsQTimeHalf = CallsQTimeHalf/CallsQHalf

• AvgAgentOutCallsTalkTimeToday = AgentOutCallsTalkTimeToday/AgentOutCallsToday

• AvgAgentOutCallsTimeToday = AgentOutCallsTimeToday/AgentOutCallsToday

• AvgAgentOutCallsHeldTimeToday = AgentOutCallsHeldTimeToday/AgentOutCallsHeldToday

• AvgHandledCallsTalkTimeToday = HandledCallsTalkTimeToday/HandledCallsToday

• AvgHandledCallsAfterCallTimeToday = HandledCallsAfterCallTimeToday/HandledCallsToday

• AvgHandledCallsTimeToday = HandledCallsTimeToday/HandledCallsToday

• AvgIncomingCallsHeldTimeToday = IncomingCallsHeldTimeToday/IncomingCallsHeldToday

• AvgInternalCallsRcvdTimeToday = InternalCallsRcvdTimeToday/InternalCallsRcvdToday

• AvgInternalCallsHeldTimeToday = InternalCallsHeldTimeToday/InternalCallsHeldToday

• AvgCallsQTimeToday = CallsQTimeToday/CallsQToday

Silent Monitoring
There are two (mutually exclusive) silent monitoring methods:

• CTI OS based silent monitoring

• Cisco Unified Communications Manager (Unified CM) based silent monitoring

For more information, see the CTI OS System Manager Guide for Cisco Unified ICM. For more information
about how to enable silent monitor in your application, see CTI OS Based Silent Monitoring, on page 88 or
Unified CM-Based Silent Monitoring in Your Application, on page 92, as applicable.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
87

Building Your Custom CTI Application
Silent Monitoring

CTI OS Based Silent Monitoring

CTI OS Silent Monitor functionality is only available in the C++ and COM CILs.Note

The silent monitor manager object is responsible for establishing and maintaining the state of a silent monitor
session.

The first thing a client application should do is to create a silent monitor object instance. The application
should then set this object instance as the current manager in the session object. The CIL provides the interface
to this functionality. A client application can work in one of two possible modes:

• Monitoring mode. The client receives audio from a remote monitored target (device/agent).

• Monitored mode. The client sends audio to a remote monitoring client.

Silent Monitor does not work until you set the session mode using one of the following function calls:

• Session.SetAgent() for an Agent mode application

• Session.SetMessageFilters() for a Monitor mode application

Note

Create a Silent Monitor Object
The first step towards setting up a silent monitor session is creating a SilentMonitorManager using the Session
object CreateSilentMonitorManager method. Then, set the new manager object as the current silent monitor
manager using the Session object SetCurrentSilentMonitor method.

The following VB 6.0 code sample demonstrates how to create a SilentMonitorManager object with COM
CIL and make it the current manager in the Session object:

Dim errorcode As Long
Dim m_nSMSessionKey As Integer
Dim m_SMManager As CTIOSCLIENTLib.SilentMonitorManager
Dim m_Args As New Arguments
'Create the silent monitor manager
Set m_SMManager = m_session.CreateSilentMonitorManager(m_Args)
'Make the object the current manager
errorcode = m_Session.SetCurrentSilentMonitor(m_SMManager)

Session Mode
After you set this new object as the current object, set themanager's workmode toMonitoring for themonitoring
client and Monitored for the monitored client. The following sections provide code examples. For more
information about syntax of the StartSMMonitoringMode and SMMonitoredMode methods, see
SilentMonitorManager Object, on page 483.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
88

Building Your Custom CTI Application
CTI OS Based Silent Monitoring

Monitoring Mode

In this mode, the client receives audio confirmation and session status events for a specific silent monitor
session. This mode is intended for use by client applications developed for Supervisor desktop functionality.
The StartSMMonitoringMode method on the SilentMonitorManager object selects this mode.

Following is a code sample for specifying the mode for the client application.

Dim m_Args As New Arguments
'Assemble arguments to set the work mode
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)
'Address or hostname of the silent monitor service
m_Args.AddItem("SMSAddr", "localhost")
'Port on which silent monitor service is listening
m_Args.AddItem("SMSListenPort", 42228)
'QoS setting when sending messages to the silent monitor service
m_Args.AddItem("SMSTOS", 0)
'Milliseconds between heartbeats
m_Args.AddItem("SMSHeartbeats", 5000)
'Number of missed heartbeats before the connection to the
'silent monitor service is considered disconnected
m_Args.AddItem("SMSRetries", 3)
'Port number where audio will be listened for
m_Args.AddItem("MediaTerminationPort", 4000)
'Set the working mode to monitoring
m_SMManager.StartSMMonitoringMode(args)

Monitored Mode

In this mode, the client sends audio and status reports on silent monitor session and receives requests for start
and stop silent monitor session. This mode is intended for client applications developed for Agent desktop
functionality. The StartSMMonitoredMode method on the SilentMonitorManager object selects this mode.

Following is a code sample for specifying the mode for the client application:

Dim m_Args As New Arguments
'Assemble arguments to set the work mode
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)
'Address or hostname of the silent monitor service
m_Args.AddItem("SMSAddr", "localhost")
'Port on which silent monitor service is listening
m_Args.AddItem("SMSListenPort", 42228)
'QoS setting when sending messages to the silent monitor service
m_Args.AddItem("SMSTOS", 0)
'Milliseconds between heartbeats
m_Args.AddItem("SMSHeartbeats", 5000)
'Number of missed heartbeats before the connection to the
'silent monitor service is considered disconnected
m_Args.AddItem("SMSRetries", 3)
'Extension number of the IP Phone to monitor
m_Args.AddItem("MonitoringDeviceID", 1234)
'Set the working mode to monitored
m_silentMonitor.StartSMMonitoredMode(args)

Silent Monitor Session
Initiating a silent monitor session starts with the client in monitoring mode, calling the
StartSilentMonitorRequest method. This indicates that the CTI OS server send an

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
89

Building Your Custom CTI Application
Monitoring Mode

OnSilentMonitorStartRequestedEvent to a remote client in monitored mode. The remote client, upon receiving
the OnSilentMonitorStartRequestedEvent, chooses whether or not accept the request. The remote client
acknowledges its approval or rejection by sending a status report back to the monitoring client. The monitoring
client receives the acceptance or rejection via the OnSilentMonitorStatusReportEvent. When the session is
accepted by the remote client, it immediately starts forwarding voice to the monitoring client. The monitoring
client can terminate the silent monitoring session only by calling the StopSilentMonitorRequest method. CTI
OS server issues the OnSilentMonitorStopRequestedEvent to the remote client. The monitored client stops
sending audio immediatelywhenOnSilentMonitorStopRequestedEvent is received by its SilentMonitorManager
object.

Following are code samples for initiating and ending a silent monitor session:

Monitoring Client Code Sample

Private Sub btnStartSM_OnClick()
Dim m_Args As New Arguments

'Agent to monitor
m_Args.AddItem("AgentID", "23840")
m_Args.AddItem("PeripheralID", "5000")
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)

'If MonitoringIPPort is not specified, port 39200 will be used by 'default.
m_Args.AddItem("MonitoringIPPort", 39200)

'Request silent monitor session to start
m_SMManager.StartSilentMonitorRequest(m_Args, m_nSMSessionKey)
End Sub

Private Sub m_session_OnSilentMonitorStatusReportEvent(By Val pIArguments As
CTIOSCLIENTLib.IArguments)

Dim strAgent As String
Dim nMode As Integer

nMode pIArguments.GetValueInt("StatusCode)

If nMode = eSMStatusMonitorStarted Then strAgent =
pIArguments.GetValueString("MonitoredUniqueObjectID")

MsgBox "Silent Monitor Status",,
"Started Monitoring Agent: " & strAgent

Else
MsgBox "Silent Monitor Status",,

"Request Failed with code = " & nMode
End If

End Sub

Private Sub tmrScreening_Timer()
'After listening the conversation for 30 sec, drop monitoring session

'Assemble arguments for stop request
'Agent to monitor
m_Args.AddItem "SMSessionKey", m_nSMSessionKey

'Request silent monitor session to stop
m_SMManager.StopSilentMonitorRequest(m_Args, m_nSMSessionKey)

End Sub

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
90

Building Your Custom CTI Application
Monitoring Client Code Sample

Monitored Client Code Sample

Private Sub m_session_OnSilentMonitorStartRequestedEvent(By Val pIArguments As
CTIOSCLIENTLib.IArguments)

Dim strRequestInfo As String

strRequestInfo = pIArguments.DumpArgs
MsgBox “Request to Start Silent Monitor Received”,, strRequestInfo
End Sub

Private Sub m_session_OnSilentMonitorStopRequestedEvent(By Val pIArguments As
CTIOSCLIENTLib.IArguments, bDoDefaultProcessing)

Dim strRequestInfo As String

strRequestInfo = pIArguments.DumpArgs
MsgBox “Request to Stop Silent Monitor Received”,, strRequestInfo
End Sub

Silent Monitor Manager Shutdown
Shutting down the Silent monitor object requires that the monitoring client call the StopSilentMonitorMode
method when it is done monitoring an agent, and that the monitored client call the StopSilentMonitorMode
method during cleanup. Each client must then remove the silent monitor manager from the Session object by
calling SetMonitorCurrentSilentMonitor with a NULL pointer. Finally each client must destroy the silent
monitor object using Session's DestroySilentMonitorManager method.

Following is a code sample for initiating and ending a silent monitor session:

'Stop Silent Monitor ModeRequest
m_SMManager.StopSilentMonitorMode
'Remove silent monitor manager object from session
errorcode = m_session_SetCurrentSilentMonitor(Nothing)
'Destroy silent monitor manager object
errorcode = m_session.DestroySilentMonitorManager()

CTI OS Silent Monitor Management in Monitor Mode
CTI OS Silent Monitor is configured, initiated, and ended the same in monitor mode as it is in agent mode.
There is one additional step in monitor mode. Youmust include the OnCallRTPStarted and OnCallRTPStopped
events in the filter used by the monitor mode application. An example follows.

// 116 = OnCallRTPStarted
// 117 = OnCallRTPStopped
m_session.SetMessageFilter("MessageID = 116, 117")

For more information, see Session Modes, on page 10.Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
91

Building Your Custom CTI Application
Monitored Client Code Sample

Unified CM-Based Silent Monitoring in Your Application

CCM-Based Silent Monitor Overview
CCM based silent monitor is the Call Manager implementation of silent monitor. When CCM based silent
monitor is used, silent monitor is implemented as a call. After initiating silent monitor, the supervisor is able
to hear agent conversations using their phone.

Agents can only be silent monitored by one supervisor at a time.

CCM based silent monitor is supported in all CILs.

The CTI Toolkit Combo Desktop .Net sample includes CCM based silent monitor source code.

The following section describes how to enable CCM based silent monitor in custom CTI OS applications.

CTI OS Monitor Mode Applications
CCM based silent monitor is not supported for CTI OS monitor mode applications.

CCM-Based Silent Monitor Request
Before you initiate CCM based silent monitor, ensure that you configure CCM based silent monitor. For more
information, see Determine if CCM-Based Silent Monitoring Is Enabled, on page 95.

CCM based silent monitoring is initiated through the SuperviseCall() method associated with the supervisor's
Agent object. To start silent monitor:

• Set the SupervisoryAction parameter to eSupervisorMonitor.

• Set the AgentReference parameter to the unique object ID of the agent to be silent monitored.

• Set the AgentCallReference parameter to the unique object ID of the call to be silent monitored.

When the request is successfully initiated and the silent monitor call is established, the supervisor and agent
applications receive the OnSilentMonitorStartedEvent. You can use this event to trigger application specific
logic.

The following figure illustrates the messaging that occurs between the CIL and CTI OS Server after an
application initiates a CCM based silent monitor request using Agent.SuperviseCall().

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
92

Building Your Custom CTI Application
Unified CM-Based Silent Monitoring in Your Application

Figure 11: CIL-to-CTI OS Server Messaging When CCM-Based Silent Monitor Initiated Using Agent.SuperviseCall()

C# Code Sample for Initiating Silent Monitor Session

Agent curAgent = session.GetCurrentAgent() ;
Agent monAgent = curAgent.GetMonitoredAgent() ;
Call monCall = curAgent.GetMonitoredCall() ;

string monAgentID;
monAgent.GetValueString(

Enum_CtiOs.CTIOS_UNIQUEOBJECTID,
out monAgentID);

string monCallID;
monCall.GetValueString(

Enum_CtiOs.CTIOS_UNIQUEOBJECTID,
out monCallID);

Arguments args = new Arguments() ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTREFERENCE, monAgentID) ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTCALLREFERENCE, monCallID) ;
args.SetValue(

Enum_CtiOs.CTIOS_SUPERVISORYACTION,
SupervisoryAction.eSupervisorMonitor) ;

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
93

Building Your Custom CTI Application
C# Code Sample for Initiating Silent Monitor Session

CilError ret = curAgent.SuperviseCall(args) ;

Current Agent Being Silently Monitored
If an application needs to determine if the current agent is being silently monitored, then compare the current
agent unique object ID against the silent monitor target agent unique ID carried in the
SilentMonitorStartedEvent.

Code Sample for Determining if Current Agent Is Target of Silent Monitor Call

The parameter args carries the payload of an OnSilentMonitorStartedEvent.Note

public bool IsCurrentAgentTargetAgent(Arguments args)
{

bool isTarget = false ;

if (m_ctiSession != null)
{

Agent rAgent = m_ctiSession.GetCurrentAgent() ;
if (rAgent != null)
{

string curAgentUID ;
rAgent.GetValueString(Enum_CtiOs.CTIOS_UNIQUEOBJECTID,

out curAgentUID) ;
if (curAgentUID != null)
{

string targetAgentUID ;

args.GetValueString(Enum_CtiOs.CTIOS_SILENTMONITOR_TARGET_AGENTUID,
out targetAgentUID) ;

if (targetAgentUID != null)
{

isTarget = curAgentUID == targetAgentUID;
}

}
}

}

return isTarget ;
}

CCM-Based Silent Monitor Request End
CCM based silent monitoring is stopped using the SuperviseCall method associated with the supervisor's
Agent object. To stop silent monitor, set the SupervisoryAction parameter to eSupervisorClear. Set the
AgentReference parameter to the unique object ID of the agent currently silent monitored. Set the
AgentCallReference parameter to the unique object ID of the call that resulted from the initiation of silent
monitor (Agent.SuperviseCall[eSupervisorMonitor]). The application receives the
SilentMonitorStopRequestedEvent event when the stop silent monitoring request is processed.

The following figure illustrates the message flow.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
94

Building Your Custom CTI Application
Current Agent Being Silently Monitored

Figure 12: Message Flow When Ending a CCM-Based Silent Monitor Request

You can also release the silent monitor call using the Call.Clear() method.

Code Sample for Ending Silent Monitor Session

Agent curAgent = session.GetCurrentAgent();

string monAgentID;
curAgent.GetValueString(

Enum_CtiOs.CTIOS_SILENTMONITOR_TARGET_AGENTUID,
out monAgentID);

string monCallID;
curAgent.GetValueString(

Enum_CtiOs.CTIOS_SILENTMONITOR_CALLUID,
out monCallID);

Arguments args = new Arguments() ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTREFERENCE, monAgentID) ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTCALLREFERENCE, monCallID) ;

args.SetValue(
Enum_CtiOs.CTIOS_SUPERVISORYACTION,
SupervisoryAction.eSupervisorClear) ;

CilError ret = curAgent.SuperviseCall(args) ;

Determine if CCM-Based Silent Monitoring Is Enabled
To determine if CCM based silent monitoring is enabled, use the Session.IsCCMSilentMonitor() method if
the application uses the C++, Java, or .Net CIL. Use the CCMBasedSilentMonitor value stored in the session
object if the application uses the COM CIL:

/// <summary>
/// Determines if CCM Based Silent Monitor is enabled
/// </summary>
public bool IsCCMSilentMonitor()
{

if (m_ctiSession == null)
{

return false ;
}

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
95

Building Your Custom CTI Application
Code Sample for Ending Silent Monitor Session

return m_ctiSession.IsCCMSilentMonitor() ;
}

Agent Greeting
There are several ways to control the behavior of the Agent Greeting feature. You can enable or disable Agent
Greeting for the duration of the Agent's login session. Note that when an Agent logs in, the feature is
automatically enabled.

Code example:

Arguments &rArgAgentAction = Arguments::CreateInstance();
rArgAgentAction.AddItem("AgentAction", commandRequested);
int nRetVal = m_pCtiAgent->SetAgentGreetingAction(rArgAgentAction);
rArgAgentAction.Release();

Where "commandRequested" is an int with the value 1 (to disable) or 2 (to enable).

Deployment of Custom CTI OS Applications
This section discusses the deployment of CTI OS applications in the various programming languages and
interfaces.

Application Deployment Using ActiveX Controls
ActiveX controls need all the components for COM deployment plus the components listed in the following
table.

Table 11: ActiveX Control DLLs

DescriptionDLL

AgentSelect ActiveX controlAgentselectctl

Agentstate ActiveX controlagentstatectl.dll

Alternate ActiveX controlAlternateCtl.dll

Answer/Release ActiveX controlanswerctl.dll

Arguments COM classarguments.dll

Badline ActiveX controlbadlinectl.dll

Basic Button ActiveX controlbuttoncontrol.dll

Cisco EVVBU Media Termination ActiveX controlccnsmt.dll

Chat ActiveX controlchatctl.dll

Conference ActiveX controlconferencectl.dll

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
96

Building Your Custom CTI Application
Agent Greeting

DescriptionDLL

Common Dialogs utility COM objectcticommondlgs.dll

AgentStatistics ActiveX controlCTIOSAgentStatistics.dll

CallAppearance ActiveX controlctioscallappearance.dll

COM cil interfacesctiosclient.dll

COM sessionresolverctiossessionresolver.dll

SkillgroupStatistics ActiveX controlCTIOSSkillGroupStatistics.dll

StatusBar ActiveX controlctiosstatusbar.dll

EmergencyAssist ActiveX controlEmergencyAssistCtl.dll

GridControl ActiveX controlgridcontrol.dll

Hold/Retrieve ActiveX controlholdctl.dll

Internationalization COM objectIntlResourceLoader.dll

MakeCall ActiveX controlmakecallctl.dll

Reconnect ActiveX controlReconnectCtl.dll

Record ActiveX controlrecordctl.dll

Standalone Silent Monitor ActiveX controlSilentMonitorCtl.dll

COM utility controlSubclassForm.dll

Supervisor ActiveX controlSupervisorOnlyCtl.dll

Transfer ActiveX controltransferctl.dll

You must copy and register ActiveX controls using the regsvr32 Windows utility. Some ActiveX controls
are dependent on others. For example, all Button type controls (for example, AgentStatectl.dll) depend on
(buttoncontrol.dll) and all Grid type controls (for example, CtiosCallappearance.dll) depend on Gridcontrol.dll.
The following table means that for a dll listed in the left column to work properly, all dlls listed in the right
column (Dependencies) need to be available (copied and registered).

The following table lists the dependencies of CTI OS ActiveX controls.

Table 12: Dependencies of CTI OS ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.AgentSelectCtl.dllInterop.AgentSelectCtl.dll

Note

Agentselectctl

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
97

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.AgentStateCtl.dllInterop.AgentStateCtl.dll

Note

agentstatectl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.AlternateCtl.dllInterop.AlternateCtl.dll

Note

AlternateCtl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.AnswerCtl.dllInterop.AnswerCtl.dll

Note

answerctl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTIOSARGUMENTSLib.dll

Note

arguments.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.BadLineCtl.dllInterop.BadLineCtl.dll

Note

badlinectl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.ButtonControl.dllInterop.ButtonControl.dll

Note

buttoncontrol.dll

Traceserver.dll, LIBG723.dllccnsmt.dll

ATL80.dll, ctiosclient.dll, arguments.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.ChatCtl.dllInterop.ChatCtl.dll

Note

chatctl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.ConferenceCtl.dllInterop.ConferenceCtl.dll

Note

conferencectl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTICOMMONDLGSLib.dll

Note

cticommondlgs.dll

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
98

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, Gridcontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSAgentStatistics.dllInterop.CTIOSAgentStatistics.dll

Note

CTIOSAgentStatistics.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSCallAppearance.dllInterop.CTIOSCallAppearance.dll

Note

ctioscallappearance.dll

ATL80.dll, arguments.dll, ctiosracetext.exe, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTIOSCLIENTLib.dll

Note

If the client application uses silent monitoring in monitoring mode, ccnsmt.dll is
also a dependency.

If the client application uses silent monitoring in monitored mode, wpcap.dll is
also a dependency.

ctiosclient.dll

ATL80.dll, ctiosclient.dll, arguments.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTIOSSESSIONRESOLVERLib.dll

Note

ctiossessionresolver.dll

ATL80.dll, ctiosclient.dll, arguments.dll, Gridcontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSSkillGroupStatistics.dllInterop.CTIOSSkillGroupStatistics.dll

Note

CTIOSSkillGroupStatistics.dll

ATL80.dll, ctiosclient.dll, arguments.dll, cticommondlgs.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSStatusBar.dllInterop.CTIOSStatusBar.dll

Note

ctiosstatusbar.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.EmergencyAssistCtl.dllInterop.EmergencyAssistCtl.dll

Note

EmergencyAssistCtl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.GridControl.dllInterop.GridControl.dll

Note

gridcontrol.dll

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
99

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.HoldCtl.dllInterop.HoldCtl.dll

Note

holdctl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.INTLRESOURCELOADERLib.dll

Note

IntlResourceLoader.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.MakeCallCtl.dllInterop.MakeCallCtl.dll

Note

makecallctl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.ReconnectCtl.dllInterop.ReconnectCtl.dll

Note

ReconnectCtl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.RecordCtl.dllInterop.RecordCtl.dll

Note

recordctl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, ccnsmt.dll,MSVCP80.dll,MSVCR80.dll

When used in a.NET application must
include:AxInterop.SilentMonitorCtl.dllInterop.SilentMonitorCtl.dll

Note

SilentMonitorCtl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.SubclassForm.dllInterop.SubclassForm.dll

Note

SubclassForm.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.SupervisorOnlyCtl.dllInterop.SupervisorOnlyCtl.dll

Note

SupervisorOnlyCtl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.TransferCtl.dllInterop.TransferCtl.dll

Note

transferctl.dll

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
100

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

Application Deployment Using COM (but Not ActiveX Controls)
Custom applications using COM from VB or C++ or any other Com supported development platform need
the following COM Dynamic Link Libraries:

• CTIOSClient.dll

When used in a.NET application must include: Cisco.CTIOSCLIENTLib.dll

•
• Arguments.dll

When used in a.NET application must include: Cisco.CTIOSARGUMENTSLib.dll

•
• CtiosSessionresolver.dll (only if used – see previous discussion)

When used in a.NET application must include: Cisco.CTIOSSESSIONRESOLVERLib.dll

•
• ATL80.dll (only if not already available on target system)

• If the client application uses silent monitoring in monitoring mode, ccnsmt.dll is needed. If the client
application uses silent monitoring in monitored mode, wpcap.dll is also a dependency.

You must copy and register the dll files on the target system. To register, use theWindows utility regsvr32.exe
providing the dll name (for example, regsvr32 ctiosclient.dll).

ATL80.dll is a Microsoft Dynamic Link Library implementing the Active Template Library used by CTI OS.
It is usually available on most Windows client systems in a windows system directory (for example,
\winnt\syste32 on Windows 2000). Because CTI OS depends on this DLL, you must copy and register it if it
is not already available at the target system.

Application Deployment Using C++ CIL
Custom C++ applications link to the static CTI OS libraries. With your custom application, you should also
distribute ctiostracetext.exe. For the tracing component to work, you need to register it on the system where
your application will run. To register the trace tool, run ctiostracetext /RegServer. Besides ctiostracetex.exe,
there is no need to ship additional components.

Application Deployment Using .NET CIL
Applications built with the .NET CIL class libraries require the following assemblies to be distributed with
the custom application.

Table 13: .NET CIL Libraries

DescriptionLibrary

.NET CIL Class library, contains the CTI OS object classesNetCil.dll

.NET Util Class library, contains helper and utility classes used in conjunction
with .NET CIL

NetUtil.dll

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
101

Building Your Custom CTI Application
Application Deployment Using COM (but Not ActiveX Controls)

In addition to NetCil.dll and NetUtil.dll, the .NET Combo sample requires the CTIOSVideoCtl.dll, which is
located in C:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet CIL\Controls.

Note

You can install both assembly libraries in the Global Assembly Cache (GAC) at the application host computer
or they can be at the working directory of the custom client application.

Custom Application and CTI OS Security
A custom application that launches the SecuritySetupPackage.exe program to create CTI OS client certificate
request needs to add the InstallDir registry value under the following registry key:

SOFTWARE\Cisco Systems\CTI Desktop\CtiOs

If the InstallDir registry value does not exist, then the setup program fails and aborts the installation process,
otherwise the program uses the InstallDir registry value to create and copy the security files to the right place
after it appends Security directory to it.

For example, if the InstallDir registry value is
<drive>:\Program Files\Cisco Systems\CTIOS Client

then the security files should be under
<drive>:\Program Files\Cisco Systems\CTIOS Client\Security

Supervisor Applications
This section describes how to build a supervisor desktop for Unified CCE. The following documentation
references the source of the CTI OS Toolkit Combo Desktop when describing how to build a supervisor
desktop. This section also references a class called CTIObject. The CTI OS Toolkit Combo Desktop uses this
class to wrap CIL functionality.

The source code for the Combo Desktop is found in the following directories.

• <Install Drive>\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet CIL\Samples\CTI
Toolkit Combo Desktop.NET

• <Install Drive>\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet CIL\Samples\CtiOs
Data Grid.NET

In the following section, string keys are used as keys to method calls. This is for the sake of readability. A
developer writing an application can use either string or integer based keys.

General Flow
The general flow of a supervisor application is as follows:

1. Request the supervisor's teams.

2. Start monitoring the supervisor's team.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
102

Building Your Custom CTI Application
Custom Application and CTI OS Security

3. Select a team member and start monitoring the selected team member's activity.

4. Perform supervisory actions on the currently monitored call.

These steps illustrate the layers of a supervisor application. First, the application gets the team. After the team
is retrieved, the supervisor application can monitor agents. This generates more events/information allowing
the supervisor application to monitor agent calls.

Monitored and Unmonitored Events
When writing a supervisor application, developers are confronted with two types of events: monitored events
and unmonitored events.

Unmonitored events are received for agent, call, and button enablement events associated with the supervisor.
Monitored events are received to notify the supervisor of agent, call, and button enablement events
corresponding to an agent or call that is currently monitored by the supervisor. These events carry a field
named CTIOS_ISMONITORED. This field is set to true.

For example, if a supervisor changes state to ready, the supervisor receives an AgentStateEvent. If a supervisor
is monitoring an agent and the monitored agent changes state, the supervisor receives an
OnMonitoredAgentState event. Call events behave in a similar manner. When the supervisor puts a call on
hold, the supervisor receives an OnCallHeld event. When the supervisor is monitoring an agent and that agent
puts a call on hold, the supervisor receives an OnMonitoredCallHeld event.

Button enablement events behave differently. When the supervisor is monitoring agents on the supervisor's
team, the agent receives OnButtonEnablementChange events for the monitored agent. It is important for the
application not to apply these events to elements of the application that control the supervisor's or any of the
supervisor's calls state. For example, if a monitored agent changes state to ready, the supervisor receives a
ButtonEnablementChange event. The supervisor should not apply this event since the event does not apply
to the supervisor's state.

To determine if an event is monitored, check the payload of the event for the “Monitored” field. If the field
exists and is set to true, the event is a monitored event.

Supervisor Application Flow to Request and Monitor Team
This section discusses steps 1 and 2 in the flow of a supervisor application. The methods and events listed
below are used to request and monitor the team.

Methods Called:

Agent.RequestAgentList(Arguments args)

Agent.StartMonitoringAgentTeams(Arguments args)

Events Processed:

OnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfo

OnSkillInfo

The following diagram illustrates the flow of messages between the application and CTI OS Server when the
supervisor application requests its team and then requests to monitor the team. Because logging in a supervisor

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
103

Building Your Custom CTI Application
Monitored and Unmonitored Events

is the same as logging in an agent, this diagram picks up at the first AgentStateEvent after the agent has logged
in.
Figure 13: Message Flow Between the Application and the CTI OS Server

The requests leading up to and includingAgent.StartMonitoringAgent() is in CTIObject.StartMonitoringAgent().
When writing a supervisor application, the developer should call Agent.RequestAgentTeamList() and
Agent.StartMonitoringAllAgentTeams(). The developer should call these methods after the supervisor logs
in. In the CTI OS Toolkit Combo Desktop, this is done when processing the eAgentStateEvent in the
SupervisorUIManager class' ProcessAgentStateEvent() method. SupervisorUIManager checks to see that the
current agent is a supervisor. If so and if CTIObject.StartMonitoringTeams() has not already been called,
CTIObject.StartMonitoringTeams() is called. CTIObject.StartMonitoringTeams() then calls
Agent.RequestAgentTeamList() and Agent.StartMonitoringAllAgentTeams().

If these requests are successful, the desktop begins receiving OnNewAgentTeamMember,
OnMonitoredAgentStateChange, and MonitoredAgentInfoEvent events. The next sections describe how to
handle each of these events.

OnNewAgentTeamMember Events
Process OnNewAgentTeamMember events as follows.

The OnNewAgentTeamMember event is received for two possible reasons:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
104

Building Your Custom CTI Application
OnNewAgentTeamMember Events

1. After the application calls Agent.RequestAgentTeamList(), OnNewAgentTeamMember events are sent
for each member of the supervisor's team.

2. An agent has been added or removed from the supervisor's team.

To address point 2 above, examine the field “ConfigOperation” in the payload of theOnNewAgentTeamMember
event. If this flag does not exist or exists and is set to TeamConfigFlag.CONFIG_OPERATION_ADDAGENT
(1), add the agent to the grid. If the flag exists and is not set to
TeamConfigFlag.CONFIG_OPERATION_ADDAGENT, remove the agent from the grid.

In supervisor applications, use the value in the UniqueObjectID field of the event to uniquely reference/track
each agent in the supervisor's team. This ID uniquely identifies each agent cached on the CIL.

OnNewAgentTeamMember Events and Supervisors

Because the supervisor is considered part of the team, an OnNewAgentTeamMember event is sent for the
supervisor logged in to the application. If the developer does not want to include the supervisor in the agent
team grid, compare the current agent ID to the ID of the agent carried in the OnNewAgentTeamMember
event. If the values are equal, do not add the supervisor to the grid.

Note

If the developer does not want to add primary supervisors to the grid, retrieve the Agent object stored in the
CIL using the Session.GetObjectFromObjectID() method. When calling Session.GetObjectFromObjectID(),
set the value in the “UniqueObjectID” (Enum_CtiOs.CTIOS_UNIQUEOBJECTID) field of the
OnNewAgentTeamMember event as the key (first parameter to this method). This method returns an Agent
object. Check the properties of the Agent object for the field “AgentFlags”
(Enum_CtiOs.CTIOS_AGENTFLAGS). If the field exists with the
TeamConfigFlag.AGENT_FLAG_PRIMARY_SUPERVISOR (0x01) bit set, the agent is a primary supervisor
and should not be added to the grid.

It is possible for an agent to be team supervisor while not being a member of the team. Some supervisor
applications, including the combo desktop, may not want to add this type of supervisor to the agent select
grid. This is tricky because supervisors that are not part of the team generate OnMonitoredAgentStateChange
events. The agent select grid normally updates when the OnMonitoredAgentStateChangeevent is received.
To prevent this, supervisors who are not members of the team that they are supervising need to be marked as
such. You can use this information to avoid updates when an OnMonitoredAgentStateChange event is received
for a supervisor that is not part of the team. To accomplish this, the application leverages the following:

1. OnNewAgentTeamMember events are not received for supervisors that are not part of the team.

2. The CIL keeps a cache of all the agents and supervisors that it knows about. Agents in this cache have
properties that can be modified by applications built on top of the CIL.

Knowing this, the application marks every agent that is included in a OnNewAgentTeamMember event as a
member of this supervisor's team.When OnMonitoredAgentStateChange events are received, the agent select
grid only updates when the agent that is represented by the event is marked as a member of the team. In short,
any agent that does not send a OnNewAgentTeamMember event to the CIL is not displayed in the agent select
grid. This is illustrated in the SupervisorUIManager.ProcessMonitoredAgentStateChange() method.

OnMonitoredAgentStateChange Events
OnMonitoredAgentStateChange events are sent when an agent in the supervisor's team changes state. Supervisor
applications, like the CTI OS Toolkit Combo Desktop, use this event to update structures that store the

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
105

Building Your Custom CTI Application
OnNewAgentTeamMember Events and Supervisors

supervisor's team (the agent team grid). This event is processed similar to OnNewAgentTeamMember.
However, there is one subtle difference. Instead of using the Arguments object carried with the event, the
application uses the arguments associated with the Agent object cached by the CIL. This is done to correctly
handle skill group membership changes related to dynamic reskilling. The CIL contains logic that processes
the OnMonitoredAgentStateChange and determines whether or not an agent has been added or removed from
a skill group. The changes in the agent's skill group membership are reflected in the Agent object's properties.

OnMonitoredAgentInfo Event
You can use this event to populate the following agent information:

• AgentID

• AgentFirstName

• AgentLastName

• LoginName

Time in State
If your application needs to track an agent's time in state, it can be done as follows. The algorithm is contained
in AgentSelectGridHelper.cs. The first part of the algorithm resides in the AgentData.UpdateData() method.
This method decides if the agent's state duration is known or unknown. An agent's state duration is unknown
if the agent was just added to the grid or if the agent's state has not changed since being added to the grid. If
a state change is detected after the agent was added to the grid, the time of the state change is marked.

Second, there is a timer callback that the AgentSelectGridHelper class starts when the grid is initialized. The
timer callback fires every ten seconds. When the callback fires, the method
AgentSelectGridHelper.m_durationTimer_Tick() cycles through all of the rows in the grid. Each row whose
Time in State column is not unknown has its value set to the time the agent changed state minus the current
time.

OnSkillInfo Event
OnSkillInfo events are sent to the CIL when skillgroup statistics are enabled using the
Agent.EnableSkillGroupStatistics() method. These events are used to populate the fields in the Skill Name
column of the team grid. OnSkillInfo events carry the ID of a skill group and its corresponding name. The
AgentSelectGridHelper processes this event by storing a mapping of skill group IDs to skill group names.
After the map is updated, each field in the Skill Name column is updated to reflect the new skill name.

Agent Team Information Displayed in Grid Format
If your application would like to display agent team information in a grid similar to the one used by the CTI
OS Toolkit Combo Desktop, the following table illustrates which events supply information for each column.

Please refer to CtiOsDataGrid.AgentSelectGridHelper as an example of handling theOnNewAgentTeamMember
event.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
106

Building Your Custom CTI Application
OnMonitoredAgentInfo Event

Table 14: Agent Grid Data Population

FieldEventColumn

Enum_CtiOs.CTIOS_AGENTFIRSTNAME

Enum_CtiOs.CTIOS_AGENTLASTNAME

OnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Name

Enum_CtiOs.CTIOS_LOGINNAMEOnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Login Name

Enum_CtiOs.CTIOS_AGENTIDOnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Agent ID

Enum_CtiOs.CTIOS_STATEOnNewAgentTeamMember

OnMonitoredAgentStateChange

Agent State

For more information, see Time in State,
on page 106.

OnMonitoredAgentStateChangeTime in State

Enum_CtiOs.CTIOS_NUMSKILLGROUPSOnMonitoredAgentStateChangeSkill Group

For more information, see OnSkillInfo
Event, on page 106.

OnSkillInfoEventSkill Name

Enum_CtiOs.CTIOS_AGENTAVAILABILITYSTATUSOnNewAgentTeamMemberAvailable for Call

The Skill Group column lists the field from the Arguments object as CTIOS_NUMSKILLGROUPS. This
field tells the developer how many skill groups the agent belongs to. To obtain information about each of the
agent's skill groups the developer should construct the following loop to get information about each of the
agent's skill groups (code taken from the sample source file CtiOsDataGrid\AgentSelectGridHelper.cs).

Note

// Check to see if the event carries an array of skillgroups
// (OnNewAgentTeamMember)
//
int numGroups ;
if (args.GetValueInt(Enum_CtiOs.CTIOS_NUMSKILLGROUPS, out numGroups))
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_METHOD_AVG_LOGIC,
methodName,
"Found skillgroup numbers") ;

m_skillGroupNumbers.Clear() ;

for (int j = 1 ; j <= numGroups ; j++)
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_METHOD_AVG_LOGIC,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
107

Building Your Custom CTI Application
Agent Team Information Displayed in Grid Format

methodName,
string.Format("Looking for skillgroup at position {0}", j)) ;

string unknownStr = string.Format(
AgentSelectGridHelper.STRING_UNKNOWN_SG_FORMAT, j) ;

// Keys for individual skillgroups are formatted as SkillGroup[{index}]
//
string sgKey = string.Format(

AgentSelectGridHelper.STRING_SKILLGROUP_FORMAT, j) ;

// Each element of the array is an argument containing
// skillgroup information.
//
Arguments sgInfo ;
if (!args.GetValueArray(sgKey, out sgInfo))
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_WARNING,
methodName,
string.Format("No skillgroup info at position {0}", j)) ;

m_skillGroupNumbers.Add(unknownStr) ;
}
else
{

string sgStr ;
if (sgInfo.GetValueString(

Enum_CtiOs.CTIOS_SKILLGROUPNUMBER,
out sgStr))

{
CtiOsDataGrid.Trace(

Logger.TRACE_MASK_METHOD_AVG_LOGIC,
methodName,
string.Format(

"Found skillgroup number {0} at position {1}", sgStr, j)) ;

m_skillGroupNumbers.Add(sgStr) ;
}
else
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_WARNING,
methodName,
string.Format("No skillgroup number at position {0}", j)) ;

m_skillGroupNumbers.Add(unknownStr) ;
}

}
}

}

Supervisor Application Flow to Monitor an Agent
This section discusses step 3 in the flow of a supervisor application. The methods and events listed below are
used to monitor an agent.

Methods Called:

Agent.StartMonitoringAgent(Arguments args)

Events Processed:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
108

Building Your Custom CTI Application
Supervisor Application Flow to Monitor an Agent

OnSupervisorButtonChange

OnStopMonitoringAgent

OnMonitoredAgentStateChange

OnMonitoredCallBegin

OnMonitoredCallCleared

OnMonitoredCallConferenced

OnMonitoredCallConnectionCleared

OnMonitoredCallDataUpdate

OnMonitoredCallDelivered

OnMonitoredCallDequeued

OnMonitoredCallDiverted

OnMonitoredCallEstablished

OnMonitoredCallFailed

OnMonitoredCallHeld

OnMonitoredCallOriginated

OnMonitoredCallQueued

OnMonitoredCallReachedNetwork

OnMonitoredCallRetrieved

OnMonitoredCallServiceInitiated

OnMonitoredCallTransferred

OnMonitoredCallTranslationRoute

OnMonitoredCallEnd

After a supervisor application is informed of an agent teammember via the OnNewAgentTeamMember event,
the supervisor can monitor the agent via the Agent.StartMonitoringAgent() method. The following sequence
diagram illustrates the call to StartMonitoringAgent() and the events sent upon successful completion of the
call.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
109

Building Your Custom CTI Application
Supervisor Application Flow to Monitor an Agent

Figure 14: Sequence Diagram for StartMonitoringAgent() and Successful Call Completion

The requests leading up to and including Agent.StartMonitoringAgent() is in the
CTIObject.StartMonitoringAgent() method.When calling the Agent.StopMonitoringAgent(), the Agent object
associated with the supervisor (the current agent) is the target of the method. The parameter is an Arguments
object set as follows:

Table 15: Agent.StopMonitoringagent Parameter

ValueKey

The UniqueObjectID of the currently monitored agent.AgentReference

When calling Agent.StartMonitoringAgent(), the Agent object associated with the supervisor (the current
agent) is the target of the method. The parameter is an Arguments object set as follows:

Table 16: Agent.StartMonitoringAgent Parameter

ValueKey

The UniqueObjectID of the agent to begin monitoring.AgentReference

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
110

Building Your Custom CTI Application
Supervisor Application Flow to Monitor an Agent

OnSupervisorButtonChange
This event is delivered to define the operations that the supervisor can successfully execute. The operations
included in this event are as follows:

• Log out an agent on the team

• Make an agent on the team ready

• Enable silent monitor

• Enable barge-in on agent

• Enable intercept call

The application uses the bitmask carried by this event to enable or disable the functionality listed above. The
ProcessSupervisorButtonChange() method in SupervisorUIManager illustrates how to process this event.

Monitored Call Events
The majority of events listed with StartMonitoringAgent() are monitored call events. These events inform the
supervisor of monitored agent calls beginning, ending, and changing. The combo desktop uses these events
to populate its monitored calls grid.

Supervisor Application Makes Agent Ready or Logs Agent Out
When StartMonitoringAgent() is called for a given agent, the supervisor application begins receiving
SupervisorButtonChange events. This event can indicate that the monitored agent is in a state where the
supervisor can make the agent ready or log the agent out. The following section describes how a supervisor
application can make an agent on the supervisor's team ready or log the agent out.

To make an agent ready, the desktop calls the method Agent.SetAgentState(). When calling this method, the
Agent object representing the monitored agent is used as the target of the method. The parameter is an
Arguments object populated with the following key/value pairs:

Table 17: Agent.SetAgentState Parameter

ValueKey

The ID of the supervisor who is making the agent ready. This value is the value
of the AgentID key associated with the current agent (the current agent is the
agent passed into the call to Session.SetAgent() when first logging in the agent).

SupervisorID

The state to which to set the agent. In this case, the state is ready (integer with
value 3).

AgentState

To log out an agent, the desktop calls the method Agent.SetAgentState().When calling this method, the Agent
object representing the monitored agent is used as the target of the method. The parameter is an Arguments
object populated with the following key/value pairs:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
111

Building Your Custom CTI Application
OnSupervisorButtonChange

Table 18: Agent.SetAgentState Parameter (Logout) A

ValueKey

The ID of the supervisor who is making the agent ready. This value is the value
of the AgentID key associated with the current agent (the current agent is the
agent passed into the call to Session.SetAgent() when first logging in the agent).

SupervisorID

The state to which to set the agent. In this case, the state is ready (integer with
value 3).

AgentState

The value associated with this key is 999. The value 999 indicates to the rest of
Unified CCE that the agent was logged out by their supervisor.

EventReasonCode

An agent involved in a call is not logged out until the agent is disconnected from the call. Both the
out-of-the-box desktop and the combo desktop warn the supervisor of this behavior. To do this, check the
state of the currently monitored agent. If the agent's state is talking, hold, or reserved, the monitored agent is
involved in one or more calls and is not logged out until the agent is disconnected from all calls. This is
illustrated in SupervisorUIManager.m_btnMonLogoutAgentClick().

Successfully calling Agent.SetAgentState() should be followed by one or more SupervisorButtonChange and
MonitoredAgentEvents reflecting the change in the monitored agent's state.

Supervisor Application Flow to Monitor a Call
This section discusses step 4 in the flow of a supervisor application. The methods and events listed below are
used to monitor a call.

Methods Called

Agent.StartMonitoringCall()

Agent.SuperviseCall()

Events Processed

Events Processed

OnSupervisorButtonChange

AgentStateEvents

CallEvents

MonitoredCallEvents

MonitoredCallEvents
As stated in the “Monitoring Agents” section, calling Agent.StartMonitoringAgent() triggers
MonitoredCallEvents for the agent specified in Agent.StartMonitoringAgent(). The MonitoredCallEvents
received by the supervisor desktop inform the desktop of the state of the monitored agent's calls. The combo
desktop uses these events to populate and update the monitored calls grid. For more information see the
SupervisorUIManager and CallAppearanceHelper classes.

To monitor a call, the supervisor calls the Agent.StartMonitoringCall() method. The target of the call is the
current agent (Agent object representing the supervisor). StartMonitoringCall() takes an Arguments object

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
112

Building Your Custom CTI Application
Supervisor Application Flow to Monitor a Call

with the CallReference key set to the UniqueObjectID of the call to be monitored. This is illustrated in the
CTIObject.StartMonitoringCall()method.

Barging into Calls
The following sequence diagram illustrates a request to barge into an agent's call. In this sequence diagram,
the supervisor application is divided into four components to illustrate the different events that affect the
different pieces of a supervisor application.
Figure 15: Sequence Diagram for Barging into a Call

Figure 16:

After Agent.StartMonitoringCall() is called for a specific call, the application begins receiving
SupervisorButtonChange events. When a call is being monitored, the SupervisorButtonChange event can
carry a bitmask indicating that the call can be barged into. To barge-in on a call, the application calls the
Agent.SuperviseCall() method. The target of the SuperviseCall() method is the current agent (the Agent object
that represents the supervisor). The parameter to the method is an Arguments object with the following
key/value pairs:

Table 19: Agent.StartMonitoringCall Parameter

ValueKey

The UniqueObjectID of the currently monitored agentAgentReference

The UniqueObjectID of the currently monitored callCallReference

The value 3. For the .NET CIL, this is SupervisoryAction.eSupervisorBargeInSupervisoryAction

When successfully calling this method, the application receives many events because this method not only
changes the state of the monitored call, but also delivers a call to the supervisor which changes the supervisor's
state. When an OnButtonEnablementChange event is received, be sure to check the monitored flag. If the flag

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
113

Building Your Custom CTI Application
Barging into Calls

does not exist or exists and is set to false, apply the event to any application specific logic or UI to control
the supervisor's state. This is illustrated in SoftphoneForm.OnEvent(). Notice that this method discards any
event that is monitored.

One or more OnSupervisorButtonChange events are received by the application. These events notify the
application that it is now possible to intercept the agent's call.

The trickiest piece of handling the events that result from a successful call to Agent.SuperviseCall() is handing
the resulting Call andMonitoredCall events. You should apply all CallEvents to whatever application specific
object and/or UI element is managing calls directly connected to the supervisor's device (SoftphoneForm in
the combo desktop). You should apply all MonitoredCallEvents to whatever application specific object and/or
UI element is managing calls connected to the supervisor's team members/monitored agents
(SupervisorUIManager in the combo desktop).

Calling SuperviseCall() with the SupervisoryAction set to barge-in initiates a consultative conference between
the caller, agent, and supervisor. This means that whatever UI elements and/or objects that handle monitored
calls has to be able to handle the set of events that set up a consultative conference. In general, this is not too
difficult. The consultative call is joined to the conference call by sending a MonitoredCallEndEvent to end
the consultative call. Then a MonitoredCallDataUpdateEvent is used to change the ID of the call to the
conference. The MonitoredCallEndEvent takes care of cleaning up the consultative call. The trick is to check
OnMonitoredCallDataUpdateEvents for the OldUniqueObjectID key. If this key exists, it means that the
UniqueObjectID of a call has changed. OldUniqueObjectID stores the old/obsolete ID of the call.
UniqueObjectID stores the new ID of the call. This new ID is carried in all future events for the call. Application
logic must be updated based on this information or new events for the call are not tracked correctly.

Intercepting Calls
After a supervisor has barged into an agent's call, the supervisor can intercept the call. This is done by calling
the Agent.SuperviseCall() method. The target of the SuperviseCall() method is the current agent (the Agent
object that represents the supervisor). The parameter to the method is an Arguments object with the following
key/value pairs:

Table 20: Agent.SuperviseCall Parameter

ValueKey

The UniqueObjectID of the currently monitored agentAgentReference

The UniqueObjectID of the currently monitored callCallReference

The value 4. For the .NET CIL, this is SupervisoryAction.eSupervisorInterceptSupervisoryAction

Calling this method removes the agent from the call. This means that OnMonitoredEndCall events are received
for the agent. Also, OnSupervisorButtonChange events are sent to reflect the current state of the monitored
agent.

Monitored Call Data
Setting monitored call data is similar to setting call data on an agent's call. The only difference is that the
monitored call is the target of the Call.SetCallData() method. You can retrieve the currently monitored call
by calling Agent.GetMonitoredCall() where the current agent (the Agent object that represents the supervisor)
is the target of the Agent.GetMonitoredCall() method.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
114

Building Your Custom CTI Application
Intercepting Calls

Sample Code in CTI OS Toolkit
The CTI OS Toolkit provides several samples that illustrate how to use the various CTI OS CILs in custom
applications. These samples are categorized according to the CIL (.NET, Java, or Win32) that they use.

.NET Samples

Of all the samples provided in the CTI OS toolkit, the .NET sample applications provide the most complete
set of coding examples. Therefore, use the .NET samples as the reference implementation for custom CTI OS
application development regardless of which language you plan to use in your custom development.

Use the Java and Win32 samples as secondary references to highlight syntactic differences as well as minor
implementation differences between the CILs.

Note

CTI Toolkit Combo Desktop.NET
The CTI Toolkit Combo Desktop.NET sample illustrates how to use the .NET CIL to build a fully functional
agent or supervisor desktop. Though this sample is written in C#, it is a good reference for how to make CIL
requests and handle CIL events in an agent mode CIL application. This sample illustrates the following CIL
programming concepts:

• Agent mode connection to CTI OS

• Agent desktop functionality (call control, agent state control, statistics)

• Supervisor desktop functionality (team state monitoring, barge-in, intercept)

• Outbound option functionality

• Button enablement

• Failover

CTI Toolkit Combo Desktop Configuration

The .NET CTI Combo desktop is configured via an XML file found in the current working directory of the
desktop.

The name of the file used to configure the CTI Toolkit ComboDesktop is “CTIOSSoftphoneCSharp.exe.config”.
The desktop attempts to find the file in the current directory. If the file is not found, the desktop creates the
file and displays the following error message.

The user can now edit the file to fill in the appropriate values.

Following is an example configuration file.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
115

Building Your Custom CTI Application
Sample Code in CTI OS Toolkit

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<configSections>

<section name="JoeUser" type="System.Configuration.SingleTagSectionHandler" />
<appSettings>

<add key="LogFilePath" value=".\CtiOsClientLog" />
<add key="CtiOsA" value="CtiOsServerA" />
<add key="CtiOsB" value="CtiOsServerB" />
<add key="PortA" value="42028" />
<add key="PortB" value="42028" />

</appSettings>
</configSections>
<JoeUser TraceMask="0xf" AgentID="1003" AgentInstrument="3009" PeripheralID="5000"

DialedNumbers="3011,3010" />
</configuration>

The configuration file is composed of the following elements. These elements are as follows:

configuration – This elements contains the configuration for the desktop.

appSettings – This section defines configuration settings that are shared by every Windows user that logs in
to the system. A system administrator needs to configure these values for the appropriate CTI OS Servers and
ports. Each of this element's sub-elements defines key value pairs used to configure the desktop.

• LogFilePath – The value for this key is the path to the log file as well as the prefix of the name of the
log file. The name of theWindows user, the log file's creation time, and the extension “.log” are appended
to form the complete name of the log file. For example, if the desktop was run at 11:58 AM on May 23,
2005, the log file would have the name CtiOsClientLog.JoeUser.050523.11.58.04.5032.log.

• CtiOsA – The name or IP address of one of the CTI OS Server peers.

• CtiOsB – The name or IP address of the other CTI OS Server peer.

• PortA – The port used to connect to the CTI OS Server specified by the CtiOsA key.

• PortB – The port used to connect to the CTI OS Server specified by the CtiOsB key.

• configSections – This section defines Windows user specific sections of the configuration file.

These sections are defined using the section element. Note that in the sample configuration file there is a
section element under configSections corresponding to the element tagged with the Window's user name
“JoeUser” under the configuration element. You should not have to manually modify this section. As different
Windows users use the desktop, this section is modified to include section elements for each of the users.

The rest of the configuration file comprises elements that define configuration specific to different Windows
users. For each section element in the configSections element, there is a corresponding element under the
configuration element. These elements are used to store information specific to given users such as trace mask,
agent login ID, dialed numbers, and so on. Most of the attributes in this element do not need to be modified.
The one attribute that may need modification is the TraceMask attribute. This attribute is used to control the
amount of information logged to the log file.

CtiOs Data Grid.NET
This sample is a set of helper classes that are used in other .NET CIL samples.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
116

Building Your Custom CTI Application
CtiOs Data Grid.NET

All Agents Sample.NET
This sample illustrates how to use the .NET CIL to build a monitor mode application that monitors agents.
Though this sample is written in C#, it is a good reference in general for how to create a monitor mode CIL
application. This sample illustrates the following CIL programming concepts:

• Monitor mode connection to CTI OS

• When to enable connect and disconnect buttons for a monitor mode application

• How to handle failover in monitor mode.

• Filtering for agent events

All Calls Sample.NET
This sample illustrates how to use the .NET CIL to build a monitor mode application that monitors calls. This
sample illustrates the following CIL programming concepts:

• Monitor mode connection to CTI OS

• Connect and Disconnect error handling

• Filtering for call events

• Filtering for silent monitor call events

For CCM based silent monitoring only. Filtering for silent monitor calls is only
applicable to CCM based silent monitoring.

Note

Java CIL Samples
AllAgents - This sample illustrates how to use the Java CIL to build a monitor mode application that monitors
calls.

JavaPhone - This sample illustrates how to use the Java CIL to create a rudimentary agent mode application.

Win32 Samples
CTI Toolkit AgentDesktop - This sample illustrates how to use the Win32 COM CIL's ActiveX controls to
create an agent desktop using VisualBasic .NET.

CTI Toolkit SupervisorDesktop - This sample illustrates how to use theWin32 COMCIL's ActiveX controls
to create a supervisor desktop using VisualBasic .NET.

CTIToolkit OutboundDesktop - This sample illustrates how to use theWin32 COMCIL's ActiveX controls
to create an outbound option desktop using VisualBasic .NET.

CTI Toolkit C++Phone - This sample illustrates how to use the C++ CIL to create a rudimentary agent mode
application.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
117

Building Your Custom CTI Application
All Agents Sample.NET

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
118

Building Your Custom CTI Application
Win32 Samples

C H A P T E R 5
CTI OS ActiveX Controls

• CTI OS ActiveX Controls, on page 119
• Property Pages, on page 121
• Button Controls and Grid Controls, on page 121
• CTI OS ActiveX Control Descriptions, on page 127
• The Silent Monitor StandAlone ActiveX Control, on page 163

CTI OS ActiveX Controls
The CTI OS Developer Toolkit includes a set of ActiveX controls to enable rapid application development.
ActiveX controls are typically UI components (there are also ActiveX controls that are invisible at run time)
that enable easy drag-and-drop creation of custom CTI applications in a variety of container applications.
Container applications include: Microsoft Visual Basic 6.0, Microsoft Internet Explorer, Microsoft Visual
C++ , Borland Delphi, Sybase Powerbuilder and other applications supporting the OC96 ActiveX standard.

The CTI OS Agent Desktop and CTI OS Supervisor Desktop for Unified CCE applications are both Visual
Basic applications based on the CTI OS ActiveX controls.

For more information, seeCTI OS Agent Desktop User Guide for Cisco Unified ICM and theCTI OS Supervisor
Desktop User Guide for Cisco Unified ICM.

The following table lists the ActiveX controls included with CTI OS. As seen in the table, you can group CTI
OS Controls into Agent Related Controls, Call Related Buttons, Statistics Controls, and Supervisor Controls.

Table 21: CTI OS ActiveX Controls

DescriptionControl

Agent Related Controls

Provides a UI for turning the Agent Greeting feature
on or off.

AgentGreetingCtl

Provides UI to for login, logout, ready, not ready and
wrapup requests, also enables the use to specify reason
codes for logout and Not_Ready (if supported and
configured).

AgentStateCtl

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
119

DescriptionControl

Provides UI to send text messages to a supervisor or
(if allowed) to other agents.

ChatCtl

Provides UI to place Emergency and Supervisor Assist
calls. These calls allow agents to conveniently contact
a supervisor if they need help. You must configure
the correspondingUnified ICM scripts for this control
to work.

EmergencyAssistCtl

Provides a UI for recording and managing agent
greeting messages by placing a Make Call request to
a hard coded “RecordAgentGreeting”Dialed Number
and setting the Placement type
(CPT_RECORD_AGENT_GREETING) to 7.

Record Greeting Ctl

Call Related Controls

Provides UI for alternate requests. If an agent has Call
A active and Call B on hold, alternate puts call A on
hold and makes Call B active. Useful during consult
calls.

AlternateCtl

Provides UI to answer a call. Only a call with state
“LCS_Alerting” (Ringing) can be answered.

AnswerCtl

Provides a UI to report a Bad Line, such as bad voice
quality or equipment problems.

BadLineCtl

A grid control displaying call information, including
call status and context data.

CallAppearanceCtl

Provides UI to place a conference call in single step
or consultative mode.

ConferenceCtl

Provides UI to put calls on hold and retrieve them.HoldCtl

Provides UI to enter a telephone number and place a
make call request.

MakeCallCtl

Provides a UI for reconnect requests. If an agent has
Call A active and Call B on hold, reconnect hangs up
call A andmakes Call B active. Useful during consult
calls to return to the original call.

ReconnectCtl

Visually displays information about the logged on
agent (id, instrument, extension, current state).

StatusBarCtl

Provides UI for Call Recording requests (start/stop
recording), the requests are forwarded to CTI Server,
so they care handled by a configured call recording
service.

RecordCtl

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
120

CTI OS ActiveX Controls
CTI OS ActiveX Controls

DescriptionControl

Provides UI to transfer a call in single step or
consultative mode.

TransferCtl

Statistics Controls

A grid control displaying real-time agent statistics.
Columns are configurable at CTI OS server (for more
information, see CTI OS System Manager Guide for
Cisco Unified ICM).

AgentStatisticsCtl

A grid control displaying real time skill group
statistics. Columns are configurable at CTI OS server
(for more information, see CTI OS System Manager
Guide for Cisco Unified ICM).

SkillgroupStatisticsCtl

Supervisor Controls

Supervisor specific; displays all agent teammembers
of a supervisor (configured by Unified ICM) ,
including agent name, agentid, agentstate, timeinstate
and skillgroups.

AgentSelectCtl

Provides UI for Supervisor functions including
Barge-In, Intercept, logout monitored agent and make
monitored agent ready.

SupervisorOnlyCtl

Standalone control that can create a monitoring
application that connects to CTI OS, but does not need
to login as a supervisor.

SilentMonitorCtl.dll

Property Pages
While most settings in CTI OS are downloaded fromCTI OS server to the client, ActiveX controls additionally
offer property pages. The activation of the property pages is container dependent (for example, in Visual
Basic, you can “right-click” on an ActiveX control and select Properties from the pop-up menu). In CTI OS
the most common properties selectable via property pages are ButtonType (for example, The Holdctl can be
a hold or retrieve button), fonts and colors.

Button Controls and Grid Controls
Most of the CTI OSActiveX controls are either Button Type Controls or Grid Type Control, with the following
exceptions:

• Statusbarcontrol

• ChatCtl

• Utility controls (such as CtiCommonDlgs and SubClassFormCtl)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
121

CTI OS ActiveX Controls
Property Pages

The Utility controls, such as CtiCommonDlgs and SubClassFormCtl (used by
the CTI OS Agent and Supervisor desktops), are for Internal Use Only.

Note

As such they share common principles.

The following table describes button enablement scenarios only for call control, agent state control and
supervisor assist in Unified CCE.

The video control button (under the tools group) is not included in standard Unified CCE desktops. This button
is related to controls exercised on the supervisor desktop.

Note

Table 22: Button Enablement in a Standard CTI OS Desktop for Unified CCE

Buttons enabled and DescriptionScenarios

Only the Log-in button is enabled.Agent is not logged in to a desktop

The agent is in the Not Ready state.

The following buttons are enabled: Ready, Supervisor
Assist, Emergency Assist, Statistics and Chat Control,
and Make Call Control.

The Make Call Control button allows you
to dial out only in the Not Ready (NR)
state.

Note

Agent in the Not ready state

The agent is in the Ready state.

The following buttons are enabled: Not Ready,
Supervisor Assist, Emergency Assist, Statistics and
Chat Control, and Make call Control.

The Make Call Control button allows you
to dial out only in the Not Ready state.

Note

Agent in the Ready state

The agent is in the Reserved state.

The following buttons are enabled: Statistics, Chat
Control, and Bad Line Ctrl.

Agent gets an incoming call that is alerted on the agent
desktop

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
122

CTI OS ActiveX Controls
Button Controls and Grid Controls

Buttons enabled and DescriptionScenarios

The agents is in the Talking state.

The following buttons are enabled: Hold, Release,
Supervisor Assist, Emergency Assist, Conference,
transfer, Statistics, Chat ctl, and Badline control.

The Ready, Not Ready, and wrap-up
buttons are enabled based on the agent
desktop settings configured in the
Configuration Manager.

Note

Agent answers the call

The agent is in the On hold state.

The following buttons are enabled: Retrieve, Release,
Supervisor Assist, Emergency Assist, Statistics, Chat
ctl, and Badline control.

Agent puts an answered call on hold

The agents is in the Talking state.

The following buttons are enabled: Hold, Release,
Supervisor Assist, Emergency Assist, Conference,
transfer, Statistics, Chat ctl and Badline control.

Agent retrieves the call on hold

The agent continues to be in the same state he was in
before talking the call.

The agent is in theWrap-up state, provided
Wrap-up is configured.

Note

If Wrap-up was not configured, then the Ready and
Not Ready buttons are enabled.

Agent releases the call

The agent is in the Talking state.

The following buttons are enabled: Statistics, Chat
ctl, Bad Line Ctrl, and Reconnect.

Agent initiates a conference

Conference Initiator Desktop

The agent is in the Talking state.

The following buttons are enabled: Statistics, Chat
ctl, BadLineCtrl, Alternate, Reconnect, and
Conference complete.

The Ready, NR and Wrap-up buttons are
enabled based on the agent desktop setting.

Note

Conference Receiver Desktop

The agent is in the Talking state.

The following buttons are enabled: Hold, Release,
Supervisor Assist, Emergency Assist, Conference,
transfer, Statistics, Chat ctl, and Badline control.

Consult conference call is answered

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
123

CTI OS ActiveX Controls
Button Controls and Grid Controls

Buttons enabled and DescriptionScenarios

The agent continues to be in the same state he was in,
before talking the call.

The agent is in theWrap-up state, provided
Wrap-up is configured.

Note

If Wrap-up was not configured, then the Ready and
Not Ready buttons are enabled.

Complete conference is done for the conference
initiator

The agent is in the Talking state.

The following buttons enabled: Statistics, Chat ctl,
BadLine Ctrl, and Reconnect.

Agent initiates a consult transfer

Consult transfer Initiator Desktop

The agent is in the Talking state.

The following buttons are enabled: Statistics, Chat
ctl, Bad Line Ctrl, Alternate, Reconnect, Conference
complete.

The Ready, NR, and Wrap-up buttons are
enabled based on the agent desktop setting.

Note

Consult transfer Receiver Desktop

The agents is in the Talking state.

The following buttons are enabled: Hold, Release,
Supervisor Assist, Emergency Assist, Conference,
transfer, Statistics, Chat ctl, and Badline control.

The Ready, Not Ready, and wrap-up
buttons are enabled based on the agent
desktop settings configured in the
Configuration Manager.

Note

Consult transfer call is answered

The agent continues to be in the same state he was in,
before talking the call.

The agent is in theWrap-up state, provided
Wrap-up is configured.

Note

If Wrap-up was not configured, then the Ready and
Not Ready buttons are enabled.

Complete conference is done for the Transfer Initiator

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
124

CTI OS ActiveX Controls
Button Controls and Grid Controls

Buttons enabled and DescriptionScenarios

The agent continues to be in the same state he was in,
before talking the call.

The agent is in theWrap-up state, provided
Wrap-up is configured.

Note

If Wrap-up was not configured, then the Ready and
Not Ready buttons are enabled.

After Initiating a Consult Transfer or a Consult
Conference, there are two calls on the agent desktop
of the initiator of Transfer and Conference until the
Transfer/Conference is complete.

Agent does a Single Step Transfer

The following buttons are enabled: Statists, Chat ctl,
BadLine Ctrl, and Reconnect.

The Ready, NR, and Wrap-up buttons are
enabled based on the agent desktop setting.

Note

The held call is selected for Consult Conference when
the call rings on the conference agent desktop

The following buttons are enabled: Statistics, Chat
ctl, BadLine Ctrl, and Reconnect.

The Ready, NR, and Wrap-up buttons are
enabled based on the agent desktop setting.

Note

The button enablement on desktops based on the agent
desk settings depends on:

• Work Mode incoming
• Work Mode outgoing

The button enablement described are common, the
only difference being they are enabled on an incoming
call or an outgoing call based on the settings.

The held call is selected for Consult Transfer when
the call rings on the conference agent desktop

The agent is not allowed to go to the Wrap-up state.

No state transition buttons are enabled as long as the
call is on the agent desktop.

Buttons Enabled - Default behavior.

Agent desk setting configuration is set toNot Allowed

The Ready, NR, and Wrap-up buttons are enabled
after a call is answered and the agent is in theTalking
state.

Agent desk setting configuration is set to Optional

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
125

CTI OS ActiveX Controls
Button Controls and Grid Controls

Buttons enabled and DescriptionScenarios

No state change buttons are enabled when the agent
is talking on a call. After the call, the agent state
changes toWrap-up.

In the Wrap-up dialog box, if you select “Apply”, the
Ready and NR buttons are enabled and the agent state
changes based on the selection (button click) done by
the agent.

Supervisor assist and Emergency assist are
not present on a supervisor desktop. The
rest of the button enablement are only
applicable for different scenarios described
above.

Note

Agent desk setting configuration is set to
Required/Required with data

These are basic call scenarios and only to be used for reference. Customized desktops can have different
enablement behaviors.

Button Controls
Button Controls include the AgentStateCtl, AlternateCtl, AnswerCtl, BadLineCtl, ConferenceCtl,
EmergencyAssistCtl, HoldCtl, MakeCallCtl, ReconnectCtl, SupervisorOnlyCtl, RecordCtl, and TransferCtl.
They provide an UI to perform a certain CTI task (like logging in or answering a call). All of the Button
Controls are based on the CTI OS ButtonCtl and share the same characteristics. All CTI OS buttons enable
and disable themselves automatically based on the current state of the system. For example, if an agent is not
logged in, the only button available to click is the Login Button (see AgentStateCtl), or if a call was not
answered and is selected in the CallAppearanceCtl, the Answer Button is enabled (see AnswerCtl and
CallAppearanceCtl). All buttons can be configured via their property pages to show custom text captions,
custom icons and custom tooltip captions.

Grid Controls
Grid controls include the AgentSelectCtl, CallAppearanceCtl, AgentStatisticsCtl and SkillGroupStatisticsCtl.
The Grid Controls display data, select calls (see CallAppearanceCtl) or Agents (AgentSelectCtl), and in some
cases allow you to enter data (for example, Callvariables in the CallAppearanceCtl). You can use CTI OS to
configure the following grid properties. See the CTI OS System Manager Guide for Cisco Unified ICM.

• Columns to display

• Column header

• Column width

• Column alignment

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
126

CTI OS ActiveX Controls
Button Controls

Supervisor Status Bar
The Supervisor Softphone has a status bar that appears at the bottom of the window. The supervisor status
bar information is configurable at design time using the property pages. You can also set it programmatically
at run time.

CTI OS ActiveX Control Descriptions
This section describes the CTI OS ActiveX softphone controls listed in Table 21: CTI OS ActiveX Controls,
on page 119.

AgentGreetingCtl
The Agent Greeting control enables the Agent Greeting feature to be turned on or off by toggling the Agent
Greeting button to the on or off state. Agent Greeting is automatically in the on state at login and the icon
appears like this

Click the button to turn Agent Greeting off and the icon changes to

Click the button again to turn Agent Greeting on.

RecordGreetingCtl
The Record Agent Greeting button is used to record and manage Agent Greeting messages.

Recording an Agent Greeting is very similar to recording a personal message for your voice mail. To record
a greeting, you must be logged in to your desktop software and in the Not Ready state. After you click the
Agent Greeting Record button you hear a brief ring tone, after which you receive voice instructions for
recording a greeting. Options include selecting a greeting type (if your contact center uses more than one
greeting per agent), recording, playing back, and confirming whether to use the new greeting. There is also
an option for listening to your existing greetings.

The RecordGreeting control is basically just a MakeCall request to the appropriate DN. It places a Make Call
request to a hard coded “RecordAgentGreeting” Dialed Number and sets the Placement type
(CPT_RECORD_AGENT_GREETING) to 7.

AgentStateCtl
The agentstate control is based on the CTI OS button control and can be one of several button types. To select
the button type, bring up the property page (container dependent, for example right click in VB) and select
the desired agentstate functionality from the following:

• Login Button. Click the login button to allow the agent to select a connection profile (see the CTI OS
System Manager Guide for Cisco Unified ICM), agent ID and instrument or other switch specific fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
127

CTI OS ActiveX Controls
Supervisor Status Bar

Figure 17: Login Button

Figure 18: Login Dialog

You can configure the fields displayed. The dialog box shows a login dialog box configured for Unified CCE
. An agent logging in can select a connection profile for the Connect To: drop down box, enter an agent ID,
password and instrument and click OK to send a Login request.

• Logout Button. Click the logout button to log out the currently logged in agent. For some switches,
including Unified CCE, the agent must be in the not ready state to enable this button. If Reason Codes
are supported on the switch and configured on Unified ICM , a reason code dialog box pops up as shown
below.

Figure 19: Logout Button

Figure 20: Reason Code Dialog for Logout

Use this dialog box to select a reason code to send with the logout request. You can configure reason codes
at CTI OS server

• Ready Button. Click the ready button to put the agent in ready state (ready to accept calls).

• Not Ready Button. Click the not ready button to put the agent in not ready state (Unified ICM does not
route calls to an agent in the not ready state). If Reason Codes are supported on the switch and configured
on Unified ICM , a reason code dialog box pops up as shown below.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
128

CTI OS ActiveX Controls
AgentStateCtl

Figure 21: Reason Code Dialog for Not Ready

Use this dialog box to select a reason code to send with the not_ready request. You can configure reason codes
at the CTI OS Server.

• Work Ready Button. Click this button to put the agent in the work ready or wrapup state. The behavior
of this button depends on the wrapup mode support of the switch. On Unified CCE, the behavior is
controlled by Unified ICM AgentDeskSettings (for more information, see Administration Guide for
Cisco Unified Contact Center Enterprise).

• Work Not Ready Button. Click this button to put the agent in the work not ready or wrapup state. The
behavior of this button depends on the wrapup mode support of the switch. On Unified CCE, the behavior
is controlled by Unified ICM AgentDeskSettings (for more information, see the Administration Guide
for Cisco Unified Contact Center Enterprise).

Related Methods
The following methods may be of interest to users of the agent state ActiveX control.

ReasonCodeState

This version of the ReasonCodeState method returns the enumReasonCodeState value.

Syntax

COM
HRESULT ReasonCodeState([out, retval] enumReasonCodeState *pVal)

VB
ReasonCodeState()As AgentStateCtlLib.enumReasonCodeState

.NET
AgentStateCtlLib.enumReasonCodeState ReasonCodeState()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
129

CTI OS ActiveX Controls
Related Methods

Parameters

None

Return Value

Return value is enumReasonCodeState (this returns an Integer type).

ReasonCodeState

This version of the ReasonCodeState method sets the enumReasonCodeState value.

Syntax

COM
HRESULT ReasonCodeState([in] enumReasonCodeState newVal)

VB
ReasonCodeState = AgentStateCtlLib.enumReasonCodeState

.NET
ReasonCodeState = AgentStateCtlLib.enumReasonCodeState

Parameters

None

Return Value

None.

Following are the enumerated values for ReasonCodeState:

typedef enum {
eNotUsed,
eRequested,
eRequired,

} enumReasonCodeState;

Related Events
The agent state control handles the following events.

OnAgentStateChanged

The OnAgentStateChanged message is generated when an agent state change event is fired.

Syntax

COM
HRESULT OnAgentStateChanged([in] LPDISPATCH vEventParam)

Parameters

vEventParam

Event fired to change the Agent state.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
130

CTI OS ActiveX Controls
ReasonCodeState

Return Value

None.

OnCtlEnabledChanged

The OnCtlEnabledChanged message is generated when control enabled is changed.

Syntax

COM
HRESULT OnCtlEnabledChanged(BOOL enabled)

Parameters

enabled

This is a control enabled changed value and returns a Boolean value.

OnEnableControlReceived

The OnEnableControlReceived message is generated when button enablement is changed.

Syntax

COM
void OnEnableControlReceived(BOOL enabled)

Parameters

enabled

This is a control enabled changed value and returns a Boolean value.

Following are the Button enablement masks return by OnEnableControlReceived method.

AgentSelectCtl
Table 23: OnEnableControlReceived Button Enablement Masks

nButtonMaskm_eButtonType

ENABLE_LOGINeLoginAgentBtn

ENABLE_LOGINeLoginSupervisorBtn

ENABLE_LOGOUTorENABLE_LOGOUT_WITH_
REASON

eLogoutBtn

ENABLE_READYeReadyBtn

ENABLE_NOTREADY or
ENABLE_NOTREADY_WITH_REASON

eNotReadyBtn

ENABLE_WORKREADYeWorkReadyBtn

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
131

CTI OS ActiveX Controls
OnCtlEnabledChanged

nButtonMaskm_eButtonType

ENABLE_WORKNOTREADYeWorkNotReadyBtn

The agent select control is used for supervising agents and becomes active if the currently logged in agent is
a supervisor. When a supervisor logs in, this grid based control displays all agent teammembers of a supervisor
(configured by Unified ICM), including agent name, AgentID, AgentState, TimeInState, and SkillGroups.
The TimeInState column resets in real-time as the agents change state. If an agent remains in a state for more
than 10 minutes, the TimeInState figure displays in red.
Figure 22: Agent Select Grid Populated with Sample Data

The agent select control handles the following events:

• OnNewTeamMember. Informs the supervisor of a new team member or a team member change. This
updates a row in the agentselect grid (add/remove agent).

• OnMonitoredAgentStateChange. Informs the supervisor of an agent state change. The new agentstate
displays in the State column and the TimeInState Column is set to zero.

• OnAgentInfo Event.

A supervisor can select a “currently monitored agent” by clicking on an agent displayed in the grid. This
causes a set monitored agent method call on the Agent object. Any supervisory action (for example logout
monitored agent—see SupervisorOnlyCtl) is performed on the “currently monitored” agent.

Methods

Table 24: Available Methods for AgentSelectCtl

DescriptionMethod

If the column type is user defined, gets the text from
the requested cell.

get_UserDefinedCell

Gets the text from the requested cell in requested row.GetCellText

Gets the information about the requested column.GetColumnInfo

Gets the selected row index.GetSelectedRow

Sets the requested row as selected.SelectRow

Sets the column header of requested column with
given text.

set_ColumnHeader

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
132

CTI OS ActiveX Controls
Methods

DescriptionMethod

Sets the column type of requested column with given
value.

set_ColumnType

Sets the columnwidth of requested columnwith given
value.

set_ColumnWidth

Sets the given text into the requested cell.set_ UserDefinedCell

Sets the given information for the requested column.SetColumnInfo

get_UserDefinedCell

If the column type is user defined, gets the text from the requested cell.

Syntax

COM
HRESULT UserDefinedCell(short nIndex, [out, retval] BSTR *pVal)

VB
get_UserDefinedCell(nIndex As Short) As String

.NET
System.String get_UserDefinedCell(System.Int16 nIndex)

Parameters

nIndex

This is a cell index number and an input parameter as type Short.

Return Value

Return type is String.

If the requested cell is not user defined type, it throws an Invalid Argument error.

GetCellText

Gets the text from the requested cell in requested row.

Syntax

COM
HRESULT GetCellText([in] int nRow, [in] int nCol, [out,retval] BSTR* bstrContent)

VB
GetCellText(nRow As Integer, nCol As Integer) As String

.NET
System.String GetCellText(System.Int16 nRow, System.Int16 nCol)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
133

CTI OS ActiveX Controls
get_UserDefinedCell

Parameters

nRow

This is a row index number and an input parameter as type Integer.

nCol

This is a column index number and an input parameter as type Integer.

Return Values

Return type is String.

GetColumnInfo

Gets the information about the requested column.

Syntax

COM
HRESULT GetColumnInfo([in] short nCol, [out] long *plColType, [out] int *iColWidth,

[out] int *iColTextAlign, [out] BSTR *bstrColTitle)

VB
GetColumnInfo(nCol As Short, ByRef plcoltype As Integer, ByRef icolwidth As Integer,

ByRef bstrcoltitle As String)

.NET
GetColumnInfo(System.Int16 nCol, System.Int32 plcoltype, System.Int32 icolwidth,

System.String bstrcoltitle)

Parameters

nCol

This is a column index number and an input parameter as type Short.

plcoltype

This is a column type value and an output parameter as type Integer.

icolwidth

This is a column width value and an output parameter as Integer.

bstrcoltitle

This is a column title text and an output parameter as type String.

Return Values

None.

GetSelectedRow

Gets the selected row index.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
134

CTI OS ActiveX Controls
GetColumnInfo

Syntax

COM
HRESULT GetSelectedRow([out,retval] int *nRow)

VB
GetSelectedRow() As Integer

.NET
System.Int32 GetSelectedRow()

Parameters

None

Return Values

Return type is Integer.

SelectRow

Sets the requested row as selected.

Syntax

COM
HRESULT SelectRow([in] int nRow, [out,retval] VARIANT_BOOL * bStatus)

VB
SelectRow(nRow As Integer) As Boolean

.NET
System.Boolean SelectRow(System.Int32 nRow)

Parameters

nRow

This is a row index number and an input parameter as type Integer.

Return Values

Return type is Boolean.

set_ColumnHeader

Sets the column header of requested column with given text.

Syntax

COM
HRESULT ColumnHeader(short nCol, [in] BSTR newVal)

VB
set_ColumnHeader(nCol As Short, newVal As String)

.NET
set_ColumnHeader(System.Int16 nCol, System.String newVal)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
135

CTI OS ActiveX Controls
SelectRow

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing header text and an input parameter as type String.

Return Values

None.

set_ColumnType

Sets the column type of requested column with given value.

Syntax

COM
HRESULT ColumnType(short nCol, [in] short newVal)

VB
set_ColumnType(nCol As Short, newVal As Short)

.NET
set_ColumnType(System.Int16 nCol, System.Int16 newVal)

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing column type value and an input parameter as type Short.

Return Values

None.

set_ColumnWidth

Sets the column width of requested column with given value.

Syntax

COM
HRESULT ColumnWidth(short nCol, [in] short newVal)

VB
set_ColumnWidth(nCol As Short, newVal As Short)

.NET
set_ColumnWidth(System.Int16 nCol, System.Int16 newVal)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
136

CTI OS ActiveX Controls
set_ColumnType

Parameters

nCol

This is a column index value and an input parameter as type Short.

newVal

This is a user passing column width value and an input parameter as type Short.

Return Values

None.

set_ UserDefinedCell

Sets the given text into the requested cell.

Syntax

COM
HRESULT UserDefinedCell(short nIndex, [in] BSTR newVal);

VB
set_UserDefinedCell(nindex As Short, newVal As String)

.NET
set_UserDefinedCell(System.Int16 nindex, System.String newVal)

Parameters

nindex

This is a cell index number and an input parameter as type Short.

newVal

This is a user passing text and an input parameter as type String.

Return Values

None.

SetColumnInfo

Sets the given information for the requested column.

Syntax

COM
HRESULT SetColumnInfo([in] short nCol, [in] long lColType, [in] int iColWidth, [in] int

iColTextAlign, [in] BSTR bstrColTitle)

VB
SetColumnInfo(nCol As Short, iColType As Integer,iColWidth As Integer, iColTextAlign

As Integer, bstrColTitle As String)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
137

CTI OS ActiveX Controls
set_ UserDefinedCell

.NET
SetColumnInfo(System.Int16 nCol, System.Int32 iColType, System.Int32 iColWidth,

System.Int32 iColTextAlign, System.String bstrColTitle)

Parameters

nCol

This is a column index number and an input parameter as type Short.

iColType

This is a column type value and an input parameter as type Integer.

iColWidth

This is a column width value and an input parameter as type Integer.

iColTextAlign

This is a column text align value and an input parameter as type Integer.

bstrColTitle

This is a column title text and an input parameter as type String.

Return Values

None.

AgentStatisticsCtl
The AgentStatistics control is a grid based control displaying Unified ICM agent real time statistics. You can
configure the displayed columns at CTI OS server (for more information, see the CTI OS System Manager
Guide for Cisco Unified ICM). Also, you can adjust the update interval, which defaults to 10 seconds.
Figure 23: Agent Statistics Grid

Methods

Table 25: Available methods for AgentStatisticsCtl

DescriptionMethod

If the column type is user defined, gets the text from
the requested cell.

get_UserDefinedCell

Gets the text from the requested cell in requested row.GetCellText

Gets the information about the requested column.GetColumnInfo

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
138

CTI OS ActiveX Controls
AgentStatisticsCtl

DescriptionMethod

Sets the column header of requested column with
given text.

set_ColumnHeader

Sets the column type of requested column with given
value.

set_ColumnType

Sets the columnwidth of requested columnwith given
value.

set_ColumnWidth

Sets the given text into the requested cell.set_ UserDefinedCell

Sets the given information for the requested column.SetColumnInfo

get_UserDefinedCell

If the column type is user defined, gets the text from the requested cell.

Syntax

COM: HRESULT UserDefinedCell(short nIndex, [out, retval] BSTR *pVal)

VB: get_UserDefinedCell(nIndex As Short) As String

.NET: System.String get_UserDefinedCell(System.Int16 nIndex)

Parameters

nIndex

This is a cell index number and an input parameter as type Short.

Return Value

Return type is String.

If the requested cell is not user defined type, it throws an Invalid Argument error.

GetCellText

Gets the text from the requested cell in requested row.

Syntax

COM: HRESULT GetCellText([in] int nRow, [in] int nCol, [out,retval] BSTR* bstrContent)

VB: GetCellText(nRow As Integer, nCol As Integer) As String

.NET: System.String GetCellText(System.Int16 nRow, System.Int16 nCol)

Parameters

nRow

This is a row index number and an input parameter as type Integer.

nCol

This is a column index number and an input parameter as type Integer.

Return Value

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
139

CTI OS ActiveX Controls
get_UserDefinedCell

Return type is String.

GetColumnInfo

Gets the information about the requested column.

Syntax

COM: HRESULT GetColumnInfo([in] short nCol, [out] long *plColType, [out] int *iColWidth, [out] int
*iColTextAlign, [out] BSTR *bstrColTitle)

VB: GetColumnInfo(nCol As Short, ByRef plcoltypeAs Integer, ByRef icolwidth As Integer, ByRef bstrcoltitle
As String)

.NET: GetColumnInfo(System.Int16 nCol, System.Int32 plcoltype, System.Int32 icolwidth, System.String
bstrcoltitle)

Parameters

nCol

This is a column index number and an input parameter as type Short.

plcoltype

This is a column type value and an output parameter as type Integer.

icolwidth

This is a column width value and an output parameter as Integer.

bstrcoltitle

This is a column title text and an output parameter as type String.

Return Value

None.

set_ColumnHeader

Sets the column header of requested column with given text.

Syntax

COM: HRESULT ColumnHeader(short nCol, [in] BSTR newVal)

VB: set_ColumnHeader(nCol As Short, newVal As String)

.NET: set_ColumnHeader(System.Int16 nCol, System.String newVal)

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing header text and an input parameter as type String.

Return Value

None.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
140

CTI OS ActiveX Controls
GetColumnInfo

set_ColumnType

Sets the column type of requested column with given value.

Syntax

COM: HRESULT ColumnType(short nCol, [in] short newVal)

VB: set_ColumnType(nCol As Short, newVal As Short)

.NET: set_ColumnType(System.Int16 nCol, System.Int16 newVal)

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing column type value and an input parameter as type Short.

Return Value

None.

set_ColumnWidth

Sets the column width of requested column with given value.

Syntax

COM: HRESULT ColumnWidth(short nCol, [in] short newVal)

VB: set_ColumnWidth(nCol As Short, newVal As Short)

.NET: set_ColumnWidth(System.Int16 nCol, System.Int16 newVal)

Parameters

nCol

This is a column index value and an input parameter as type Short.

newVal

This is a user passing column width value and an input parameter as type Short.

Return Value

None.

set_ UserDefinedCell

Sets the given text into the requested cell.

Syntax

COM: HRESULT UserDefinedCell(short nIndex, [in] BSTR newVal);

VB: set_UserDefinedCell(nindex As Short, newVal As String)

.NET: set_UserDefinedCell(System.Int16 nindex, System.String newVal)

Parameters

nindex

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
141

CTI OS ActiveX Controls
set_ColumnType

This is a cell index number and an input parameter as type Short.

newVal

This is a user passing text and an input parameter as type String.

Return Value

None.

SetColumnInfo

Sets the given information for the requested column.

Syntax

COM:HRESULT SetColumnInfo([in] short nCol, [in] long lColType, [in] int iColWidth, [in] int iColTextAlign,
[in] BSTR bstrColTitle)

VB: SetColumnInfo(nCol As Short, iColType As Integer,iColWidth As Integer,iColTextAlign As Integer,
bstrColTitle As String)

.NET: SetColumnInfo(System.Int16 nCol, System.Int32 iColType, System.Int32 iColWidth, System.Int32
iColTextAlign, System.String bstrColTitle)

Parameters

nCol

This is a column index number and an input parameter as type Short.

iColType

This is a column type value and an input parameter as type Integer.

iColWidth

This is a column width value and an input parameter as type Integer.

iColTextAlign

This is a column text align value and an input parameter as type Integer.

bstrColTitle

This is a column title text and an input parameter as type String.

Return Value

None.

AlternateCtl
Figure 24: AlternateCtl

The AlternateCtl is a button type control allowing the agent to send an alternate call request. Alternate is a
compound action of placing an active call on hold and then retrieving a previously held call or answering an
alerting (ringing) call on the same device. Alternate is a useful feature during a consult call.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
142

CTI OS ActiveX Controls
SetColumnInfo

AnswerCtl
The Answer Control is a button that provides UI for sending answer and release call requests. You can set
the behavior (answer or release) via the ButtonType set from the property page as explained under AgentState
controls.
Figure 25: Answer Icon:

Figure 26: Release Icon:

BadLineCtl
Figure 27: BadineCtl

The Bad Line Control is a button that provides a UI for reporting a Bad Line. This request generates a database
entry in Unified ICM and is an indicator for voice/equipment problems.

CallAppearanceCtl
The CallAppearance Control is a grid based control displaying call information, including call status and call
context data (for example, CallVariable1 through CallVariable10 and ECC variables).
Figure 28: CallAppearance Control Displaying Two Calls

Each incoming or outgoing call appears in one row in the grid. When a call first arrives, it usually shows a
status of “Ringing” until it is answered. You can answer a call by a double click in the grid, similar to a click
on the Answer Button. You can edit some columns in the CallAppearance grid if so configured (for example,
the Columns displaying Callvariables) by selecting the cell you want to edit.

The grid can display multiple calls (see above). If the grid is displaying multiple calls, a user can click and
select a call anywhere on the row where the call appears. This highlights the whole row displaying this call
(for example, in the above figure the call with ID 16777886 is currently selected). Any button controls (for
example, Answer, Release, Hold) enable or disable themselves based on the state the newly selected call is
in.

The CallAppearance grid handles most call related events. It displays a call as soon as it receives an
eCallBeginEvent. It updates the CallStatus and CallContext (CallVariables and ECC variables) on

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
143

CTI OS ActiveX Controls
AnswerCtl

eCallDataUpdate and other call events (eServiceInitiated, eCallEstablished,). It erases the call from the grid
when it receives an eCallEnd event.

The CallAppearance grid can be in one of two modes. In “normal” mode it shows any calls for the
agent/supervisor logged in; in “monitored” mode (only for supervisor), the CallAppearance grid displays all
calls for a currently monitored agent (see Agent Select grid). A supervisor can click and then select a “monitored
call” on a row in the grid to perform supervisory functions like barge-in or intercept (see SupervisorOnly
control).

Related Methods
The following methods may be of interest to users of the call appearance control.

Answer

For more information, see Call Object, on page 389

GetValueInt

For more information, see CtiOs Object, on page 291

GetValueString

For more information, see CtiOs Object, on page 291

Related Events
The call appearance control handles the following events.

OnSetCurrentCallAppearance

The OnSetCurrentCallAppearance event is generated when the current call appearance object is changed.

Syntax

void OnSetCurrentCallAppearance([in] IDispatch * pCall);

Parameters

pCall

A Pointer to ICall COM Call object (pCall is a pointer to ICall).

Return Value

None.

Methods

Table 26: Available methods for CallAppearanceCtl

DescriptionMethod

Gets the text from the requested cell in requested row.GetCellText

Gets the selected row index.GetSelectedRow

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
144

CTI OS ActiveX Controls
Related Methods

DescriptionMethod

Sets the requested row as selected.SelectRow

Sets the column ECC name of requested column with
given text.

set_ColumnECCName

Sets the column Offset value of requested column
with given value.

set_ColumnECCOffset

Sets the column header of requested column with
given text.

set_ColumnHeader

Sets the columnwidth of requested columnwith given
value.

set_ColumnWidth

Sets the given text to the requested cell in requested
row.

SetCellText

GetCellText

Gets the text from the requested cell in requested row.

Syntax

COM: HRESULT GetCellText([in] int nRow, [in] int nCol, [out,retval] BSTR* bstrContent)

VB: GetCellText(nRow As Integer, nCol As Integer) As String

.NET: System.String GetCellText(System.Int16 nRow, System.Int16 nCol)

Parameters

nRow

This is a row index number and an input parameter as type Integer.

nCol

This is a column index number and an input parameter as type Integer.

Return Value

Return type is String.

GetSelectedRow

Gets the selected row index.

Syntax

COM: HRESULT GetSelectedRow([out,retval] int *nRow)

VB: GetSelectedRow() As Integer

.NET: System.Int32 GetSelectedRow()

Parameters

None.

Return Value

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
145

CTI OS ActiveX Controls
GetCellText

Return type is Integer.

SelectRow

Sets the requested row as selected.

Syntax

COM: HRESULT SelectRow([in] int nRow, [out,retval] VARIANT_BOOL * bStatus)

VB: SelectRow(nRow As Integer) As Boolean

.NET: System.Boolean SelectRow(System.Int32 nRow)

Parameters

nRow

This is a row index number and an input parameter as type Integer.

Return Value

Return type is Boolean.

set_ColumnECCName

Sets the column ECC name of requested column with given text.

Syntax

COM: HRESULT ColumnECCName(short nCol, [in] BSTR newVal)

VB: set_ColumnECCName(nCol As Short, newVal As String)

.NET: set_ ColumnECCName (System.Int16 nCol, System.String newVal)

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing ECC Name text and an input parameter as type String.

Return Value

None.

set_ColumnECCOffset

Sets the column Offset value of requested column with given value.

Syntax

COM: HRESULT ColumnECCOffset(short nCol, [in] short nNewValue)

VB: set_ColumnECCOffset(nCol As Short, nNewValue As Short)

.NET: set_ColumnWidth(System.Int16 nCol, System.Int16 nNewValue)

Parameters

nCol

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
146

CTI OS ActiveX Controls
SelectRow

This is a column index number and an input parameter as type Short.

nNewVal

This is a user passing column width value and an input parameter as type Short.

Return Value

None.

set_ColumnHeader

Sets the column header of requested column with given text.

Syntax

COM: HRESULT ColumnHeader(short nCol, [in] BSTR newVal)

VB: set_ColumnHeader(nCol As Short, newVal As String)

.NET: set_ColumnHeader(System.Int16 nCol, System.String newVal)

Parameters

nCol

This is a column index number and an input parameter as type Short.

nNewVal

This is a user passing header text and an input parameter as type String.

Return Value

None.

set_ColumnWidth

Sets the column width of requested column with given value.

Syntax

COM: HRESULT ColumnWidth(short nCol, [in] short newVal)

VB: set_ColumnWidth(nCol As Short, newVal As Short)

.NET: set_ColumnWidth(System.Int16 nCol, System.Int16 newVal)

Parameters

nCol

This is a column index value and an input parameter as type Short.

newVal

This is a user passing column width value and an input parameter as type Short.

Return Value

None.

SetCellText

Sets the given text to the requested cell in requested row.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
147

CTI OS ActiveX Controls
set_ColumnHeader

Syntax

COM: HRESULT SetCellText([in] int nRow, [in] int nCol, [in] BSTR bstrContent, [out,retval]
VARIANT_BOOL * bStatus)

VB: SetCellText(nRow As Integer, nCol As Integer, bstrContent As String) As Boolean

.NET: System. Boolean SetCellText(System.Int16 nRow, System.Int16 nCol, System.String bstrContent)

Parameters

nRow

This is a row index number and an input parameter as type Integer.

nCol

This is a column index number and an input parameter as type Integer.

bstrContent

This is a user passing cell text and an input parameter as type String.

Return Value

Return type is Boolean.

ChatCtl
The Chat Control provides a UI to formulate and send text messages to a supervisor or (if allowed) other
agents. The chat privileges are configurable at CTI OS server (for more information, see CTI OS System
Manager Guide for Cisco Unified ICM).
Figure 29: Chat Control

You can specify an AgentID in the Send to AgentID field and then enter a message in the Edit Outgoing
Message box. Click the SendButton to send the message. Incomingmessages appear in theMessage Display.
Click the Clear button to clear the display.

The ChatCtl does not implement a button directly, but you can link it to a button through Visual Basic so that
a click on the button pops up the ChatCtl.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
148

CTI OS ActiveX Controls
ChatCtl

Methods

Table 27: Available methods for ChatCtl

DescriptionMethod

Gets the current Addressee from the Send to Agent
ID Combo box.

GetAddressee

Gets the all chat messages from the Message Display
Text Area.

GetAllChatMessages

Gets the chat message from the Edit Outgoing
Message Text Area.

GetChatMessageText

When message received from an Agent, appends the
received message to the Message Display Text Area.

OnMsgReceived

Sends the chat message to current Addressee in the
Send to Agent ID Combo box.

SendChatMessage

Sets the current Addressee to the Send to Agent ID
Combo box.

SetAddressee

Sets the chat message to the Edit Outgoing Message
Text Area.

SetChatMessageText

GetAddressee

Gets the current Addressee from the Send to Agent ID Combo box.

Syntax

COM: HRESULT GetAddressee ([out,retval] BSTR* addressee)

VB: GetAddressee()As String

.NET: System.String GetAddressee()

Parameters

None.

Return Value

Return type is String.

GetAllChatMessages

Gets the all chat messages from the Message Display Text Area.

Syntax

COM: HRESULT GetAllChatMessages ([out, retval] BSTR* Messages)

VB: GetAllChatMessages() As String

.NET: System.String GetAllChatMessages()

Parameters

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
149

CTI OS ActiveX Controls
Methods

None.

Return Value

Return type is String.

GetChatMessageText

Gets the chat message from the Edit Outgoing Message Text Area.

Syntax

COM: HRESULT GetChatMessageText ([out, retval] BSTR* MessageText)

VB: GetChatMessageText() As String

.NET: System.String GetChatMessageText()

Parameters

None.

Return Value

Return type is String.

OnMsgReceived

When message is received from an Agent, appends the received message to the Message Display Text Area.

Syntax

COM: HRESULT OnMsgReceived ([in]BSTR from,[in]BSTR msg)

VB: OnMsgReceived(from As String, msg As String)

.NET: OnMsgReceived(System.String from, System.String msg)

Parameters

from

This is an Agent ID, who sends the message and is an input parameter as type String.

msg

This is a message text received form an Agent and is an input parameter as type String.

Return Value

None.

SendChatMessage

Sends the chat message to current Addressee in the Send to Agent ID Combo box.

Syntax

COM: HRESULT SendChatMessage([in] BSTR addressee, [in] BSTR msg)

VB: SendChatMessage(addressee As String, msg As String)

.NET: SendChatMessage (System.String addressee, System.String msg)

Parameters

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
150

CTI OS ActiveX Controls
GetChatMessageText

addressee

This is as Agent ID, who receives the message and is an input parameter as type String.

msg

This is a message text sent to an Agent and is an input parameter as type String.

Return Value

None.

SetAddressee

Sets the current Addressee to the Send to Agent ID Combo box.

Syntax

COM: HRESULT SetAddressee ([in] BSTR addressee)

VB: SetAddressee(addressee As String)

.NET: SetAddressee(System.String addressee)

Parameters

addressee

This is as Agent ID, who receives the message and is an input parameter as type String.

Return Value

None.

SetChatMessageText

Sets the chat message to the Edit Outgoing Message Text Area.

Syntax

COM: HRESULT SetChatMessageText ([in] BSTR MessageText)

VB: SetChatMessageText(messageText As String)

.NET: SetChatMessageText (System.String messageText)

Parameters

messageText

This is an out going message text and is an input parameter as type String.

Return Value

None.

ConferenceCtl
You can use the conference control to create a conference call. You can do this in either single step or
consultative mode.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
151

CTI OS ActiveX Controls
SetAddressee

Figure 30: Icon for ConferenceInit:

Figure 31: Icon for Conference Complete:

Depending on the call status, selecting the Conference button once brings up the dialog box shown in the
figure below (see also MakeCall dialog):
Figure 32: Conference Init Dialog

This dialog box is similar to the Make Call dialog box; you can initiate a consultative Conference (Conf Init)
or place a Single Step Conference call.

Enter the number you wish to dial by either typing it into the Number to Dial text box or by clicks on the
displayed keypad. After you enter the number you can click Conf Init to place a consultative conference call
or Single Step to initiate a single step conference. This closes this dialog. If you choose to place a consultative
call, the conference button changes to Conference Complete. You must click this button to complete the
conference after talking to the consult agent.

The conference dialog box also has aMute Tones section that you can use to suppress audio output of selected
or all tones.

TheMore button brings up an additional section of the dialog displaying all CallVariables with any values
set in the original call. The agent can double click the appropriate line in the Value column to change or add
values to send with the consult call (see the figure below).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
152

CTI OS ActiveX Controls
ConferenceCtl

Figure 33: Expanded Dialog

EmergencyAssistCtl
The EmergencyAssistCtl is a button that provides a UI to place emergency or supervisor assist calls to a
supervisor. On the Unified ICM side this functionality is implemented with a script (for more information,
see CTI OS System Manager Guide for Cisco Unified ICM). The main difference between the emergency call
and supervisor assist request is the script to be run. An agent can click this control whether they have a call
or not. If the agent has an active customer call, clicking this button places a consult call to the supervisor. The
“Conference Complete” as well as the “Transfer Complete” is enabled to allow the agent to either conference
the supervisor into the call or to transfer the call to the supervisor. If configured, clicking this button can also
cause a single step conference. You can set the behavior (emergency call or supervisor assist) via the ButtonType
property set from the Property Page, as described under AgentState controls.
Figure 34: Emergency icon:

Figure 35: Supervisor Assist Icon:

HoldCtl
The HoldCtl is a button that provides a UI for sending hold and retrieve call requests. You can set the behavior
(hold or retrieve) via the ButtonType property set from the Property Page, as described under AgentState
controls.
Figure 36: Hold Icon

Figure 37: Retrieve Icon

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
153

CTI OS ActiveX Controls
EmergencyAssistCtl

MakeCallCtl
Figure 38: Make Call Icon

You use the MakeCallCtl to place calls and to generate DTMF tones. When you click this button it brings up
the dialing pad dialog box to enter data and place a makecall request.
Figure 39: Dial Dialog

Enter the number you wish to dial by either typing it into the Number to Dial text box or click the numbers
on the displayed keypad. After you enter the number you can clickMake Call to send the MakeCall request.

This dialog box also has aMute Tones section that allows you to suppress audio output of selected or all
tones.

You can enter values for CallVariable1 through CallVariable10 and ECC Call Variables via the Dial Dialog.
Click theMore button on the dialog extends to display a grid listing all possible Call Variables. You can enter
a value for each of these variables by double clicking the appropriate line in the Value column.
Figure 40: Expanded Dialog

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
154

CTI OS ActiveX Controls
MakeCallCtl

If the agent is on a call while selecting theMake Call button, the dialpad appears without the MakeCall
feature. The agent can then use the dialpad to play DTMF tones.

ReconnectCtl

The ReconnectCtl is a button control allowing the agent to send a Reconnect Call request. Reconnect is a
useful feature during a consult call. If an agent has Call A held and Call B active, reconnect hangs up Call B
and makes Call A active. In a consult call scenario, reconnect hangs up the consult call and returns to the
original call.

SkillgroupStatisticsCtl
The SkillGroupStatistics control is a grid based control displaying Unified ICM real time SkillGroup statistics.

You can configure the displayed columns at CTI OS server (for more information seeCTI OS SystemManager
Guide for Cisco Unified ICM). You can configure the update interval, which defaults to 10 seconds.

If an agent belongs to multiple SkillGroups, each row displays statistics for one SkillGroup. For a supervisor
this control displays all skillgroups in the team.
Figure 41: SkillgroupStatisticsCtl Displaying Sample Data for Three SkillGroups

Methods

Table 28: Available methods for SkillgroupStatisticsCtl

DescriptionMethod

If the column type is user defined, gets the text from
the requested cell.

get_UserDefinedCell

Gets the text from the requested cell in requested row.GetCellText

Gets the information about the requested column.GetColumnInfo

Sets the column header of requested column with
given text.

set_ColumnHeader

Sets the column type of requested column with given
value.

set_ColumnType

Sets the columnwidth of requested columnwith given
value.

set_ColumnWidth

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
155

CTI OS ActiveX Controls
ReconnectCtl

DescriptionMethod

Sets the given text into the requested cell.set_ UserDefinedCell

Sets the given information for the requested column.SetColumnInfo

get_UserDefinedCell

If the column type is user defined, gets the text from the requested cell.

Syntax

COM: HRESULT UserDefinedCell(short nIndex, [out, retval] BSTR *pVal)

VB: get_UserDefinedCell(nIndex As Short) As String

.NET: System.String get_UserDefinedCell(System.Int16 nIndex)

Parameters

nIndex

This is a cell index number and an input parameter as type Short.

Return Value

Return type is String.

If the requested cell is not user defined type, it throws an Invalid Argument error.

GetCellText

Gets the text from the requested cell in requested row.

Syntax

COM: HRESULT GetCellText([in] int nRow, [in] int nCol, [out,retval] BSTR* bstrContent)

VB: GetCellText(nRow As Integer, nCol As Integer) As String

.NET: System.String GetCellText(System.Int16 nRow, System.Int16 nCol)

Parameters

nRow

This is a row index number and an input parameter as type Integer.

nCol

This is a column index number and an input parameter as type Integer.

Return Value

Return type is String.

GetColumnInfo

Gets the information about the requested column.

Syntax

COM: HRESULT GetColumnInfo([in] short nCol, [out] long *plColType, [out] int *iColWidth, [out] int
*iColTextAlign, [out] BSTR *bstrColTitle)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
156

CTI OS ActiveX Controls
get_UserDefinedCell

VB:GetColumnInfo(nCol As Short, ByRef plcoltypeAs Integer, ByRef icolwidth As Integer, ByRef bstrcoltitle
As String)

.NET: GetColumnInfo(System.Int16 nCol, System.Int32 plcoltype, System.Int32 icolwidth, System.String
bstrcoltitle)

Parameters

nCol

This is a column index number and an input parameter as type Short.

plcoltype

This is a column type value and an output parameter as type Integer.

icolwidth

This is a column width value and an output parameter as Integer.

bstrcoltitle

This is a column title text and an output parameter as type String.

Return Value

None.

set_ColumnHeader

Sets the column header of requested column with given text.

Syntax

COM: HRESULT ColumnHeader(short nCol, [in] BSTR newVal)

VB: set_ColumnHeader(nCol As Short, newVal As String)

.NET: set_ColumnHeader(System.Int16 nCol, System.String newVal)

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing header text and an input parameter as type String.

Return Value

None.

set_ColumnType

Sets the column type of requested column with given value.

Syntax

COM: HRESULT ColumnType(short nCol, [in] short newVal)

VB: set_ColumnType(nCol As Short, newVal As Short)

.NET: set_ColumnType(System.Int16 nCol, System.Int16 newVal)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
157

CTI OS ActiveX Controls
set_ColumnHeader

Parameters

nCol

This is a column index number and an input parameter as type Short.

newVal

This is a user passing column type value and an input parameter as type Short.

Return Value

None.

set_ColumnWidth

Sets the column width of requested column with given value.

Syntax

COM: HRESULT ColumnWidth(short nCol, [in] short newVal)

VB: set_ColumnWidth(nCol As Short, newVal As Short)

.NET: set_ColumnWidth(System.Int16 nCol, System.Int16 newVal)

Parameters

nCol

This is a column index value and an input parameter as type Short.

newVal

This is a user passing column width value and an input parameter as type Short.

Return Value

None.

set_ UserDefinedCell

Sets the given text into the requested cell.

Syntax

COM: HRESULT UserDefinedCell(short nIndex, [in] BSTR newVal);

VB: set_UserDefinedCell(nindex As Short, newVal As String)

.NET: set_UserDefinedCell(System.Int16 nindex, System.String newVal)

Parameters

nindex

This is a cell index number and an input parameter as type Short.

newVal

This is a user passing text and an input parameter as type String.

Return Value

None.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
158

CTI OS ActiveX Controls
set_ColumnWidth

SetColumnInfo

Sets the given information for the requested column.

Syntax

COM:HRESULT SetColumnInfo([in] short nCol, [in] long lColType, [in] int iColWidth, [in] int iColTextAlign,
[in] BSTR bstrColTitle)

VB: SetColumnInfo(nCol As Short, iColType As Integer,iColWidth As Integer,iColTextAlign As Integer,
bstrColTitle As String)

.NET: SetColumnInfo(System.Int16 nCol, System.Int32 iColType, System.Int32 iColWidth, System.Int32
iColTextAlign, System.String bstrColTitle)

Parameters

nCol

This is a column index number and an input parameter as type Short.

iColType

This is a column type value and an input parameter as type Integer.

iColWidth

This is a column width value and an input parameter as type Integer.

iColTextAlign

This is a column text align value and an input parameter as type Integer.

bstrColTitle

This is a column title text and an input parameter as type String.

Return Value

None.

StatusBarCtl
The CTI OS statusbar control displays information about the logged in agent as well as CTI OS specific details
(see the following figure).
Figure 42: StatusBar Control Displaying Sample Data

The statusbar is separated into several panes. The panes are defined as follows:

• Pane 1: displays current extension and instrument.

• Pane 2: displays Agent ID.

• Pane 3: Message Waiting Indicator. If media termination is used and Voicemail is active, this pane
displays “Voicemail” to indicate a Voicemail was left.

• Pane 4: displays Agent State.

• Pane 5: displays the CTI OS server currently connected to.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
159

CTI OS ActiveX Controls
SetColumnInfo

• Pane 6: displays overall status (online, offline).

SupervisorOnlyCtl
The SupervisorOnly Control provides buttons for Supervisor functions including Barge-In, Intercept, Logout
Monitored Agent and make Monitored Agent Ready. You can set the behavior of the button in the General
tab of the Property Page.

Logout Monitored Agent: Logs out the currently monitored agent (set for example via the AgentselectCtl).
If the currently monitored agent has a call active, the request is queued and the agent is logged out as soon as
the call ends:

Set Monitored Agent Ready: Forces the currently monitored agent from the “not ready” state into the ready
state:

Barge-In: Allows the supervisor to participate in the currently monitored call. The currently monitored call
is selected via the CallAppearanceCtl (in monitor mode). Barge-in is really a conference on behalf of the
monitored agent:

Intercept: You can only apply Intercept on a previously barged in call. The monitored agent is dropped out
of the call and the supervisor is left with the customer in a call:

Together with the AgentSelectCtl and the CallAppearanceCtl (in monitor mode), you use the SupervisorOnlyCtl
in the CTI OS Supervisor Desktop application to build the Agent Real Time Status window, as shown in the
following figure.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
160

CTI OS ActiveX Controls
SupervisorOnlyCtl

Figure 43: Supervisor Softphone Agent-RealTime Status Window

This window shows the AgentSelectCtl and the CallappearanceCtl in monitor mode on the right side and four
instances of the SupervisorOnlyCtl on the left side. From top to bottom they are: “Make Monitored Agent
Ready” (disabled, since Agent 5101 is talking), “Logout monitored Agent”, Barge-in, and Intercept.

Start Silent Monitor: Initiates a silent monitor session with the currently monitored agent:

Stop Silent Monitor: Terminates the currently ongoing silent monitored session:

RecordCtl
The RecordCtl is a button that provides UI for Call Recording requests (start/stop recording). The requests
are forwarded to CTI Server and are handled by a configured call recording service. To record a call you must
select a current call (e.g. via the CallAppearanceCtl). After you click the record button it turns into record
stop button.

Icon for Record Start:

Icon for Record Stop:

TransferCtl
The TransferCtl is a button that provides UI to transfer a call in single step or consultativemode. Themechanism
is the same as explained for the conference control.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
161

CTI OS ActiveX Controls
RecordCtl

Icon for TransferInit:

Icon for Transfer Complete:

Depending on call status, selecting the Transfer button once brings up the dialog box shown in the following
figure (see also MakeCall dialog box):
Figure 44: Dial Dialog

This dialog box is similar to the Make Call dialog box. You can initiate a consultative Transfer (Transfer Init)
or place a Single Step Transfer call.

Enter the number you wish to dial by either typing it into the Number to Dial text box or click the numbers
on the displayed keypad. After you enter the number you can click Conf Init to place a consultative transfer
call or Single Step to initiate a single step transfer. This closes this dialog box. If you choose to place a
consultative call, the transfer button changes to Transfer Complete. You must click this button to complete
the transfer after talking to the consult agent.

The transfer dialog box also has aMute Tones section that allows you to suppress audio output of selected
or all tones.

TheMore button brings up an additional section of the dialog box displaying all CallVariables and any values
set in the original call. The agent can change or add values to send with the consult call by double clicking
the appropriate line in the Value column (see the following figure).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
162

CTI OS ActiveX Controls
TransferCtl

Figure 45: Expanded Dialog

The Silent Monitor StandAlone ActiveX Control
The Silent Monitor StandAlone ActiveX Control provides an interface for easy integration with the CTI OS
Silent Monitor functionality. You can use the ComObject in Visual Basic 6.0 as well as other host containers.
This section demonstrates the use of this control in Visual Basic 6.0.

The Silent Monitor StandAlone ComObject is supported for use on Unified CCE only.Note

The Standalone ComObject wraps calls to the CTI OS Session as well as SilentMonitor manager. It provides
the following methods (displayed in IDL format; IDL is the language used to define COM interfaces).

interface ISilentMonitor : IDispatch
{

[id(1), helpstring("method Connect to CTIOS")] HRESULT Connect ([in] IArguments *
args, [out] int* returnvalue);

[id(2), helpstring("method Disconnect to CTIOS")] HRESULT Disconnect (/*[in]
IArguments * args, [out] int* returnvalue*/);

[id(3), helpstring("method StartMonitoring to CTIOS")] HRESULT StartMonitoring
([in] IArguments * args, [out] int* returnvalue);

[id(4), helpstring("method StopMonitoring to CTIOS")] HRESULT StopMonitoring ([in]
IArguments * args, [out] int* returnvalue);

};

Connect
The Connect method establishes a Monitor Mode Session with the specified CTI OS Server. The syntax and
parameters are the same as the CTI OS session object Connect method (for more information, see Returns,
on page 312 under AddEventListener method).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
163

CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control

Disconnect
The Disconnect method disconnects an established session. This method has no required parameters. For
more information about syntax and optional parameters, see CreateSilentMonitorManager, on page 315 in
Session Object, on page 307.

StartMonitoring
The StartMonitoring method starts a Silent Monitor Session.The StartMonitoring Arguments array contains
the following parameters:

Table 29: StartMonitoring Arguments Array Parameters

ValueKeyword

AgentID of the agent to be monitored.AgentID

PeripheralID of the Peripheral to which the Agent is
logged in.

Peripheralnumber

If a pointer to the Agent object is available (for example, a m_MonitoredAgent), you can retrieve the
PeripheralID via m_MonitoredAgent.GetValueInt ("PeripheralID").

Note

StopMonitoring
The StopMonitoring method stops a Silent Monitor Session.The StopMonitoring Arguments array contains
the same parameters as the StartMonitoring method (StartMonitoring, on page 164).

SilentMonitor Com Object Events
The ComObject fires the following events via a COM connection point event interface (again in IDL):

dispinterface _ISilentMonitorCtlEvents
{

properties:
methods:

[id(1)] void OnConnection([in] IArguments *pIArguments);
[id(2)] void OnConnectionFailure([in] IArguments *pIArguments);
[id(5)] void OnMonitorModeEstablished([in] IArguments *pIArguments);
[id(39)] void OnConnectionClosed([in] IArguments *pIArguments);
[id(41)] void OnControlFailureConf([in] IArguments *pIArguments);
[id(304)] void OnCtiOsFailure([in] IArguments *pIArguments);
[id(502)] void OnCallRTPStartedEvent([in] IArguments *pIArguments);
[id(503)] void OnCallRTPStoppedEvent([in] IArguments *pIArguments);
[id(802)] void OnSilentMonitorStatusReportEvent([in] IArguments

*pIArguments);
[id(803)] void OnStartSilentMonitorConf([in] IArguments *pIArguments);
[id(804)] void OnStopSilentMonitorConf([in] IArguments *pIArguments);
[id(805)] void OnSilentMonitorSessionDisconnected([in] IArguments

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
164

CTI OS ActiveX Controls
Disconnect

*pIArguments);
//
};

Following is a brief description of each event. These events are described in detail in the Session Object and
Silent Monitor Object sections of Event Interfaces and Events, on page 167

Table 30: SilentMonitor Com Object Events

DescriptionEvent

Indicates that the connect method was successful in
establishing a connection.

OnConnection

Indicates that an active connection has failed. Can
also indicate a bad parameter in the Connect method.

OnConnectionFailure

Signals a successful call to SetMsgFilte. The call to
Setmsgfilter is hidden by the Standalone control.

OnMonitorModeEstablished

Disconnect was called and the connection is now
closed.

OnConnectionClosed

A ControlFailureConf was received and can be
handled.

OnControlFailureConf

A CtiosFailure event was received. This could be
Silent Monitor specific error code.

OnCtiOsFailure

RTP events have been received signaling the start and
stop of the RTP streams.

OnCallRTPStartedEvent, OnCallRTPStoppedEvent

Reports status from a monitored client to the
monitoring application.

OnSilentMonitorStatusReport Event

Acknowledge that CTI OS handled the
StartMonitoring and StopMonitoring request,
respectively.

OnStartSilentMonitorConf,OnStopSilentMonitorConf

Indicates that the Silent Monitor session has timed
out on the monitoring side.

OnSilentMonitorSession Disconnected

Deployment
The StandAlone Com Object is a COM dll that you must register on the client system via the Regsvr32
Silentmonitorctl.dll. You also require, ccnsmt.dll and the two standard CTI OS COM dlls (CTIOSClient.dll
and Arguments.dll).

Sample Usage in Visual Basic 6.0
The following sample code assumes a VB 6.0 form with 4 buttons (Connect, Disconnect, StartMonitoring,
and StopMonitoring). If the parameters are based on edit fields, the source code below is all that is needed to

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
165

CTI OS ActiveX Controls
Deployment

silent monitor via CTI OS. It is important to note that this control does not require supervisor privileges or
even any login. The only event handler shown below (OnSessionDisconnected) is the one for a timed out
Silent Monitor session.
Dim WithEvents SilentMonitorCtl As SILENTMONITORCTLLib.SilentMonitor
Dim m_Args As New Arguments
Const CIL_OK = 1

Private Sub btnConnect_Click()
m_Args.clear
m_Args.AddItem “CtiosA”, “localhost”
m_Args.AddItem “portA”, “42028”
Dim nRetVal As Long
SilentMonitorCtl.Connect m_Args, nRetVal
If nRetVal <> CIL_OK Then

MsgBox “Connect returned error ” + Str(nRetVal)
End If

End Sub

Private Sub btnDisconnect_Click()
Dim nRetVal As Long
SilentMonitorCtl.Disconnect

End Sub

Private Sub btnStartMonitoring_Click()
m_Args.clear
m_Args.AddItem “AgentId”, “1000”
m_Args.AddItem “PeripheralID”, “5004”
Dim nRetVal As Long
SilentMonitorCtl.StartMonitoring m_Args, nRetVal
If nRetVal <> CIL_OK Then

MsgBox “StartMonitoring returned error ” + Str(nRetVal)
End If

End Sub

Private Sub btnStopMonitoring_Click()
m_Args.clear
m_Args.AddItem “AgentId”, “1000”
m_Args.AddItem “PeripheralID”, “5004”

Dim nRetVal As Long
SilentMonitorCtl.StopMonitoring m_Args, nRetVal
If nRetVal <> CIL_OK Then

MsgBox “StopMonitoring returned error ” + Str(nRetVal)
End If

End Sub

Private Sub SilentMonitorCtl_OnSessionDisconnected(ByVal pIArguments As
SILENTMONITORCTLLib.IArguments)

MsgBox “SilentMonitorSession Disconnected Event”
End Sub

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
166

CTI OS ActiveX Controls
Sample Usage in Visual Basic 6.0

C H A P T E R 6
Event Interfaces and Events

• Event Interfaces and Events, on page 167
• Event Publication Model, on page 168
• ISessionEvents Interface, on page 168
• ICallEvents Interface, on page 187
• IAgentEvents Interface, on page 228
• ISkillGroupEvents Interface, on page 256
• IButtonEnablementEvents, on page 258
• IMonitoredAgentEvents Interface, on page 262
• IMonitoredCallEvents Interface, on page 262
• ISilentMonitorEvents, on page 263
• IGenericEvents Interface, on page 280
• Java Adapter Classes, on page 280
• Events in Java CIL, on page 281
• Events in .NET CIL, on page 282
• Event Parameters, on page 283

Event Interfaces and Events
This chapter describes the CTI OS Client Interface Library event publications mechanism. Programs written
to take advantage of CTI interfaces are generally event driven, meaning that a code module in the application
is executed when an external event arrives. The CIL interface provides a rich set of event interfaces and events
for use by client programmers.

Events are generated asynchronously, either by the telephony equipment (for example, phone, PBX, and ACD)
or by the CTI environment (CTI Server, or CTI OS Server). Each event passes an Arguments structure of
key-value pairs that contains all of the event parameters. These parameters are discussed in greater detail in
this chapter.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
167

Event Publication Model

The CIL event interfaces discussed in this section and the following sections apply only to the C++, COM,
and VB interfaces. For more information about a discussion of Java CIL counterpart events and event handling
in the Java CIL, see Events in Java CIL, on page 281. For more information about a discussion of .NET CIL
event handling, see Events in .NET CIL, on page 282.

Note

The Client Interface Library provides a publisher-subscriber model for notifying clients of events. Client
applications using the CIL can subscribe to one or more of the CIL event interfaces. For more information
and examples on how to subscribe and unsubscribe for events, see Building Your Custom CTI Application,
on page 33

The published CIL event interfaces are organized around the different classes of CTI objects that the CIL
provides. The event interfaces described in this chapter are:

• ISessionEvents. This interface publishes the events that relate to actions on the Session object.

• ICallEvents. This interface publishes the events that relate to actions on Call objects.

• IAgentEvents. This interface publishes the events that relate to actions on Agent objects.

• ISkillGroupEvents. This interface publishes the events that relate to actions on SkillGroup objects.

• IButtonEnablementEvents. This interface publishes the events that relate to changes in the enable-disable
status of softphone buttons.

• ISilentMonitorEvents. This interface sends events to subscribers of the Silent Monitor interface.

• IMonitoredAgentEventsInterface. This interface fires Agent events to a supervisor for his teammembers.

• IMonitoredCallEventsInterface. This interface sends Call events to a supervisor for one of his agent
team members.

• LogEventsAdapter (Java only). This class provides the default implementation for the message handlers
in ILogEvents.

• IGenericEvents. This interface sends generic events to subscribers of the IGenericEvents interface.

The remainder of this chapter provides the detailed description of each event interface available from the CIL.

The data type listed for each keyword is the standardized data type discussed in the section CTI OS CIL Data
Types, on page 19 in CIL Coding Conventions, on page 19 For more information about the appropriate
language specific types for these keywords, see Table 5: CTI OS CIL Data Type, on page 20.

Note

ISessionEvents Interface
The Session object fires events on the ISessionEvents interface. The following events are published to
subscribers of the ISessionEvents interface.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
168

Event Interfaces and Events
Event Publication Model

OnConnection
The OnConnection event is generated after the Connect method succeeds. It returns the name of the connected
server and the connection time of day. The client application need not take any special action but can use it
to display connection status.

Syntax

C++: void OnConnection(Arguments& args)
COM: void OnConnection (IArguments * args)
VB: session_OnConnection (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 31: ISession Event Parameters

DescriptionTypeKeyword

Integer value with time of day
expressed in milliseconds.

INTEventTime

Name or TCP/IP address of the
current connected CTI OS server.

STRINGCurrentServer

OnConnectionClosed
The OnConnectionClosed message is generated when a connection is terminated by the client. This message
has no fields. This event indicates successful completion of an action that the client (CIL or application using
the CIL) initiated. By contrast, the OnConnectionFailure event is generated when the connection terminated
for reasons other than that the client closed the connection.

OnConnectionFailure
The OnConnectionFailure event is generated when an established connection fails. It returns the name of the
failed connected server and the failure time of day. Retry is automatic and is followed by an OnConnection
event when connection is successfully reestablished. The client application need not take any special action
but can use this event to display connection status.

Syntax

C++
void OnConnectionFailure(Arguments& args)

COM
void OnConnectionFailure (IArguments * args)

VB
session_OnConnectionFailure (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
169

Event Interfaces and Events
OnConnection

Parameters

args

Arguments array containing the following fields.

Table 32: OnConnectionFailure Event Parameters

DescriptionTypeKeyword

Integer value with time of day
expressed in milliseconds.

INTEventTime

Name or TCP/IP address of the
server that failed to respond. See
ReasonCode.

STRINGFailedServer

Reason code 0 : eProtocolMismatch

Reason code 1 : eMissedHeartbeats

Reason code 2 : eTransportError

Reason code 3 : eConnectFail

Reason code 4 : eOtherError

SHORTReasonCode

OnConnectionRejected
The OnConnectionRejected event indicates that the client tried to make a connection using incompatible
versions of the CTI OS Server and CTI OS CIL.

Syntax

C++: void OnConnectionRejected (Arguments& args)
COM: void OnConnectionRejected (IArguments * args)
VB: Session_OnConnectionRejected (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Not currently used, reserved for future use.

OnCTIOSFailure
The OnCTIOSFailure event indicates that the CTI Server fired either a FailureConf or a SystemEvent.

CTI OS CIL sends the disconnect request to CTI OS Server when the login attempt fails. Hence, CTI OS
Server closes the client connection.

Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
170

Event Interfaces and Events
OnConnectionRejected

Syntax

C++: void OnCTIOSFailure (Arguments& args)
COM: void OnCTIOSFailure (IArguments * args)
VB: Session_OnCTIOSFailure (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 33: OnCTIOSFailure Event Parameters

DescriptionTypeKeyword

Avalue according to an enumerated
value, as shown immediately
following this table.

INTFailureCode

Present only if FailureCode equals
ServerConnectionStatus. Contains
a value according to an enumerated
value, as shown immediately
following this table.

INTSystemEventID

Present only if SystemEventID
equals SysPeripheralOnline or
SysPeripheralOffline. Contains the
peripheral ID of the affected
peripheral.

INTSystemEventArg1

An error message.STRINGErrorMessage

Following are the enumerated values for FailureCode:
enum enumCTIOS_FailureCode
{
eDriverOutOfService = 1,
eServiceNotSupported = eDriverOutOfService + 1,
eOperationNotSupported = eServiceNotSupported + 1,
eInvalidPriviledge = eOperationNotSupported + 1,
eUnknownRequestID = eInvalidPriviledge + 1,
eUnknownEventID = eUnknownRequestID + 1,
eUnknownObjectID = eUnknownEventID + 1,
eRequiredArgMissing = eUnknownObjectID + 1,
eInvalidObjectState = eRequiredArgMissing + 1,
eServerConnectionStatus = eInvalidObjectState + 1,
eInconsistentAgentData = eServerConnectionStatus + 1,
eAgentAlreadyLoggedIn = eInconsistentAgentData + 1,
eForcedNotReadyForConfigError = eAgentAlreadyLoggedIn + 1
eMonitorModeConnectionDenied = eForcedNotReadyForConfigError + 1
};

Following are the enumerated values for SystemEventID:
enum enumCTIOS_SystemEventID
{ eSysCentralControllerOnline = 1,
eSysCentralControllerOffline = 2,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
171

Event Interfaces and Events
OnCTIOSFailure

eSysPeripheralOnline = 3,
eSysPeripheralOffline = 4,
eSysTextFYI = 5,
eSysPeripheralGatewayOffline = 6,
eSysCtiServerOffline = 7,
eSysCTIOSServerOnline = 8,
eSysHalfHourChange = 9,
eSysInstrumentOutOfService = 10,
eSysInstrumentBackInService = 11,
eSysCtiServerDriverOnline = eSysInstrumentBackInService + 1,
eSysCtiServerDriverOffline = eSysCtiServerDriveOnline + 1,
eSysCTIOSServerOffline = eSysCtiServerDriverOffline + 1,
eSysCTIOSServerOnline = eSysCTIOSServerOffline + 1,
eSysAgentSummaryStatusOnline = eSysCTIOSServerOnline + 1,
eSysAgentSummaryStatusOffline = eSysAgentSummaryStatusOnline + 1
}

Remarks

See the descriptions of the CtiOs_Enums.FailureCode and CtiOs_Enums.SystemEvent interfaces in the Javadoc
for information on Java CIL enumerations.

OnCurrentAgentReset
The OnCurrentAgentReset message is generated when the current agent is removed from the session.

Syntax

C++
void OnCurrentAgentReset(Arguments& args)

COM
void OnCurrentAgentReset (IArguments * args)

VB
session_OnCurrentAgentReset (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 34: OnCurrentAgentReset Parameters

DescriptionTypeKeyword

Unique object ID (if any) of the old current agent that was
just removed.

STRINGUniqueObjectID

OnCurrentCallChanged
The OnCurrentCallChanged message is generated when the current call changes to another call.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
172

Event Interfaces and Events
OnCurrentAgentReset

Syntax

C++
void OnCurrentCallChanged(Arguments& args)

COM
void OnCurrentCallChanged (IArguments * args)

VB
session_OnCurrentCallChanged (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 35: OnCurrentCallChanged Parameters

DescriptionTypeKeyword

Unique object ID (if any) of the new current call.STRINGUniqueObjectID

OnFailure Event
Not supported.

OnGlobalSettingsDownloadConf
You can configure the client after you are in the CTI OS Server and then download this configuration to each
CTI OS client desktop.When an application executes the RequestDesktopSettingsmethod call on the Session,
an eGlobalSettingsDownloadRequest event is sent to the server.

In response, the server sends an OnGlobalSettingsDownloadConf event back to the calling application. The
Arguments object passed as a parameter in this event contains the Desktop Settings configuration information.
The Arguments object is an array that can contain up to seven elements, each of which has the value of a
nested Arguments array in a hierarchy that closely matches that of the CTI OS server configuration in the
Windows registry.

Each of these Arguments arrays is a packed version of the configuration contained in the CTI OS Server. For
more information, see CTI OS System Manager Guide for Cisco Unified ICM.

This section describes the contents of the Arguments array returned in the OnGlobalSettingsDownloadConf
event. Custom applications can add values at the lowest level under each key. Custom values added in this
way are passed to the client in this event. This section also identifies which keys and values in the CTI OS
registry are passed to the client in this event.

For more information about what is available and how to configure these items, see the following sections in
the CTI OS System Manager Guide for Cisco Unified ICM:

• MainScreen

• Defining Connection Profiles

• Declaring ECC Variables

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
173

Event Interfaces and Events
OnFailure Event

• Configuring the Call Appearance Grid

• Automatic Agent Statistics Grid Configuration

• Automatic Skill Group Statistics Grid Configuration

Syntax

C++
void OnGlobalSettingsDownloadConf(Arguments & args)

COM
void OnGlobalSettingsDownloadConf(IArguments * args)

VB
session_OnGlobalSettingsDownloadConf(ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

An Arguments array containing the Enterprise Desktop Settings configuration from a CTI OS server.
For more information about the Enterprise Desktop Settings values listed below, see the CTI OS System
Manager Guide for Cisco Unified ICM.

The following are the top level elements in the Enterprise Desktop Settings registry key. The CTI OS server
passes configuration data for these elements to the client in the OnGlobalSettingsConf event:

• ECC (Expanded Call Context) variables

• Grid

• IPCCSilentMonitor

• Login

• ScreenPreferences

• SoundPreferences

Other keys or values that are added to the EnterpriseDesktopSettings/All Desktops key in the CTI OS server
registry are passed to the client in the DesktopSettings Arguments array as empty Arguments arrays.

The following sections describe the contents of the args array:

• ECC – Arguments array that contains the Expanded Call Context (ECC) variables declared on the CTI
OS server in the “ECC/Name” registry subtree (the following figure).

The CTI OS server does not send any registry information contained in the CTI OS registry keys
representing the ECC scalar and array names. Thus the ECC Arguments arrays are empty in the
OnGlobalSettingsDownloadConf event, regardless of the contents of those keys.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
174

Event Interfaces and Events
OnGlobalSettingsDownloadConf

Figure 46: ECC Arguments Array

Each ECC scalar configured in the CTI OS server registry is represented as an empty Arguments array
with keyword “user.<name>”, where <name> is the ECC name as configured on CTI OS server.

Each ECC array configured in the CTI OS server registry is represented as multiple empty Arguments
arrays with keywords “user.<name>[0]” to “user.<name>[n-1]”, where <name> is the ECC name as
configured on the CTI OS server and n is the size of the array as configured on the CTI OS server.

• Grid – Arguments array contains information from the CTI OS server registry's Grid subtree. The grid
element contains an Arguments array of up to three Arguments arrays:

• AgentStatistics

• CallAppearance

• SkillGroupStatistics

Each of these arrays contains the keyword “columns,” an Arguments array that contains multiple nested
Arguments arrays with key=<column_number>, where <column_number> corresponds to the name of
a key within the Columns/Number registry subtree.

The configuration information for any key or value added to the SkillGroupStatistics, AgentStatistics,
or CallAppearance registry keys is not passed to the client in the OnGlobalSettingsDownloadConf event.

The value for each column number in the AgentStatistics and SkillGroupStatistics element is an Arguments
array containing the following key-value pairs:

Table 36: Agent Statistics Column Number: Key Values

Data TypeKeyword

stringType

stringHeader

customCustom values1

1 Other registry values added to the <column_number> registry key are passed in the
OnGlobalSettingsDownloadConf event. Subkeys added to the <column_number> registry key are
not passed in this event.

The value for each column number in the CallAppearance element is an Arguments array containing the
following key-value pairs:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
175

Event Interfaces and Events
OnGlobalSettingsDownloadConf

Table 37: CallAppearance Column Number: Key Values

Data TypeKeyword

stringType

stringHeader

booleaneditable

integermaxchars

customCustom values2

2 Other registry values added to the <column_number> registry key are passed in the
OnGlobalSettingsDownloadConf event. Subkeys added to the <column_number> registry key are
not passed in this event.

You can add custom keys in the CTI OS Server registry's Grid subtree at the same level as the
SkillGroupStatistics, AgentStatistics, and CallAppearance keys. The Grid Arguments array (see the
following figure) within this event contain items corresponding to these custom keys. Any custom element
that you addmust follow the same hierarchy in the registry as that used by the existing top level elements.

The custom element hierarchy format is as follows:
Figure 47: Grid Arguments Array

• IPCCSilentMonitor – Arguments array that contains configuration information from the CTI OS server
registry's IPCCSilentMonitor/ Name subtree.

The IPCCSilentMonitor Arguments array contains a nested Arguments array with key=“settings.” This
array contains the following key-value pairs:

Table 38: IPCCSilentMonitor: Key Values

ValueKeyword

integerMediaTerminationPort

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
176

Event Interfaces and Events
OnGlobalSettingsDownloadConf

ValueKeyword

integerHeartBeatInterval

booleanTOS

integerMonitoringIPPort

integerHeartbeatTimeout

booleanCCMBasedSilentMonitor

Configuration information for registry values added to the IPCCSilentMonitor/Settings registry key is
passed to the client in the OnGlobalSettingsConf event. Configuration information for subkeys added to
the Settings registry key is not passed in this event.

You can add custom keys to the CTI OS registry in the IPCCSilentMonitor subtree at the same level as
the Settings key. The IPCCSilentMonitor Arguments array within this event contain items corresponding
to these custom keys. Any custom element that you add must follow the same hierarchy in the registry
as that used by the existing top level elements.

Two silent monitoring types are supported for Unified CCE:

• CTI OS based

• CCM based

You configure the silent Monitor type used by CTI OS using the CCMBasedSilentMonitor registry key.

If CCMBasedSilentMonitor is present and set to true, CTI OS is using Call Manager's silent monitor
implementation. When this is the case, supervisor applications must initiate silent monitor using the
Agent.SuperviseCall() method. Agent applications do not need to do anything. If CCMBasedSilentMonitor
is not present or set to 0, CTI OS implementation of silent monitor is in use. When this is the case,
supervisor and agent applications must invoke silent monitor using the SilentMonitorManager object.

The format of the IPCCSilentMonitor Arguments array is shown in the following figure.
Figure 48: IPCCSilentMonitor Arguments Array

• Login – Arguments array that contains the information from the CTI OS server registry's Login subtree.
This array contains a nested Arguments array with key=“ConnectionProfiles” and with an Arguments
array value for each connection profile. The keyword of each array is the name for the Connection Profile
listed in the CTI OS server's registry. The value is another Arguments array.

The following key-value pairs are contained in each connection profile Arguments array:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
177

Event Interfaces and Events
OnGlobalSettingsDownloadConf

Table 39: Unified CCE Agent Statistics: Key Values

ValueKeyword

stringCtiOsA

stringCtiOsB

integerPortA

integerPortB

integerHeartbeat

integerMaxHeartbeats

booleanAutoLogin

booleanWarnIfAlreadyLoggedIn

integerShowFieldBitMask

booleanRejectIfAlreadyLoggedIn

integerPeripheralID

booleanIPCCSilentMonitorEnabled

booleanTOS

integerSwitchCapabilityBitMask

booleanWarnIfSilentMonitored

integerRasCallMode3

3 Applicable only to RAS enabled Unified CCE Profiles

Configuration information for keys or values that are added to the Login registry key in the CTI OS
server's registry does not appear in the Login Arguments array.

The format of the Login Arguments array is shown in the following figure.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
178

Event Interfaces and Events
OnGlobalSettingsDownloadConf

Figure 49: Login Arguments Array

SilentMonitorService Subkey

The <profile_name>/SilentMonitorService subkey contains parameters that clients use to connect to one
of a set of silent monitor services. It contains the following keys:

The SilentMonitorService subkey is only applicable to CTI OS based silent
monitor.

Note

Table 40: SilentMonitorService Parameters

DescriptionValueKeyword

Port on which the silent monitor
service is listening for incoming
connections.

integerListenPort

QOS setting for the connection.integerTOS

Amount of time in milliseconds
between heartbeats.

integerHeartbeatInterval

Number of missed heartbeats
before the connection is
abandoned.

integerHeartbeatRetries

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
179

Event Interfaces and Events
OnGlobalSettingsDownloadConf

DescriptionValueKeyword

A key that contains a list of silent
monitor services to which the CIL
tries to connect. The CIL
randomly chooses one of the
services in this list. This key
contains two subkeys:

• 1 - index of the first silent
monitor service

• N - index of the Nth silent
monitor service

All subkeys contain the following
keyword:

• SilentMonitorService - host
name or IP adress of the
silent monitor service.

Cluster

The following figure illustrates the hierarchy of the SilentMonitorService subkey.
Figure 50: SilentMonitorService Subkey Hierarchy

• ScreenPreferences – Arguments array that contains the information configured in the CTI OS server
registry's ScreenPreferences/Name subtree. The ScreenPreferences array contains an elementMainScreen,
which is an Arguments array that contains the following key-value pairs:

Table 41: ScreenPreferences: Key Values

ValueKeyword

integerAgentStatisticsIntervalSec

booleanBringToFrontOnCall

booleanFlashOnCall

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
180

Event Interfaces and Events
OnGlobalSettingsDownloadConf

ValueKeyword

booleanRecordingEnabled

You can add custom keys to the CTI OS registry in the ScreenPreferences subtree at the same level as
the “MainScreen” key. The ScreenPreferences Arguments array within this event contains items
corresponding to these custom keys. Any custom key that you add must follow the same hierarchy in
the registry as that used by the existing top level keys.

Registry values added to the MainScreen registry key on the CTI OS server are passed to the client in
the OnGlobalSettingsDownloadConf event. Subkeys added to theMainScreen registry key are not passed
in this event.

The format of the ScreenPreferences Arguments array is shown in the following figure.
Figure 51: ScreenPreferences Arguments Array

• SoundPreferences – Arguments array that contains information configured on the CTI OS server in the
SoundPreferences/Name subtree. This array includes a nested Arguments array that includes a setting
for each sound, including .wav files to be played, and whether or not each one is mute. It can also include
custom name/value pairs for a custom application.

The SoundPreferences array contains the following key-value pairs:

Table 42: SoundPreferences: Key Values

SubtreeValueKeyword

SoundPreferences/Name/DTMFArguments arrayDTMF*

SoundPreferences/Name/DialToneArguments arrayDialTone*

SoundPreferences/Name/OriginatingToneArguments arrayOriginatingTone*

SoundPreferences/Name/RingInToneArguments arrayRingInTone*

SoundPreferences/Name/AllArguments arrayAll*

* Registry values added to this registry key in the CTI OS server registry are included in the Arguments
array. Subkeys added to this registry key are not present.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
181

Event Interfaces and Events
OnGlobalSettingsDownloadConf

The DTMF, DialTone, OriginatingTone, RingInTone, and All arrays each contain the keyword Mute,
which has a boolean value. Custom registry values added to the DialTone DTMF, DialTone,
OriginatingTone, RingInTone, and All registry keys are present in the array. Subkeys added to the these
registry keys are not present in the array.

You can add custom keys in the SoundPreferences subtree at the same level as the All, DTMF, DialTone,
OriginatingTone, and RingInTone keys. The SoundPreferences array contains items corresponding to
these custom keys. Any custom element that you add must follow the same hierarchy in the registry as
that used by the existing top level elements.

The format of the SoundPreferences Arguments array is shown in the following figure.
Figure 52: SoundPreferences Arguments Array

This configuration is stored in the Windows System Registry database and many of the values are set
when the CTI OS Server Setup is run. You can set custom configuration at a later time by using the
Windows Registry Editor.

OnHeartbeat
The OnHeartbeat event is generated when a heartbeat response is received from a CTI OS server. It returns
the time of day.

Syntax

C++
void OnHeartbeat(Arguments& args)

COM
void Onheartbeat (IArguments * args)

VB
session_OnHeartbeat (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 43:

DescriptionTypeKeyword

Integer value with time of day expressed in milliseconds.INTEventTime

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
182

Event Interfaces and Events
OnHeartbeat

OnMissingHeartbeat
The OnMissingHeartbeat event is generated when an expected heartbeat is not received. It returns the number
of consecutive heartbeats missed and time of day. When the number of heartbeats missed equals or exceeds
the maximum number of heartbeats allowed (set in the MaxHeartbeats property), an OnConnectionFailure
event is generated instead of an OnMissingHeartbeat event, and the CIL automatically attempts to reconnect
to the CTI OS server, alternating between the CtiosA and CtiosB servers passed as parameters in the Connect
method.

Syntax

C++
void OnMissingHeartbeat(Arguments& args)

COM
void OnMissingHeartbeat (IArguments * args)

VB
session_OnMissingHeartbeat (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 44: OnMissingHeartbeat Parameters

DescriptionTypeKeyword

Integer value with time of day
expressed in milliseconds.

INTEventTime

Integer value with the number of
heartbeats missed.

INTConsecutive MissedHeartbeats

Integer value with the heartbeat
interval, in milliseconds.

INTHeartbeatInterval

OnMonitorModeEstablished
The OnMonitorModeEstablished event is generated when Monitor Mode is established.

Syntax

C++
void OnMonitorModeEstablished(Arguments& args)

COM
void OnMonitorModeEstablished (IArguments * args)

VB
session_OnMonitorModeEstablished (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
183

Event Interfaces and Events
OnMissingHeartbeat

Parameters

args

Arguments array containing the following fields.

Table 45: OnMonitorModeEstablished Parameters

DescriptionTypeKeyword

ID of the client connection on the
server.

STRINGCIL ConnectionID

Arguments array containing the
following elements:

• StatusCTIServer
• StatusCtiServerDriver
• StatusCentralController
• StatusPeripherals (Arguments
array with a peripheral ID for
each key and a boolean
true/false value indicating if
that peripheral is online.)

ARGUMENTSStatusSystem

OnSnapshotDeviceConf
The OnSnapshotDeviceConf confirmation message is fired to the client as part of a snapshot operation. For
AgentMode clients, the OnSnapshotDeviceConf arrives at startup time, after the OnQueryAgentStateConf
message. The OnSnapshotDeviceConf indicates the number of calls present at the device, and their
UniqueObjectIDs.

Syntax

C++
void OnSnapshotDeviceConf (Arguments & args);

COM
HRESULT OnSnapshotDeviceConf ([in] IArguments * args);

VB
OnSnapshotDeviceConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
184

Event Interfaces and Events
OnSnapshotDeviceConf

Table 46: OnSnapshotDeviceConf Parameters

TypeDescriptionKeyword

STRINGUnique ID of the device object on
the server. There are no device
objects in the CIL, so this keyword
cannot be used to retrieve a device
object at this point.

UniqueObjectID

SHORTThe number of active calls
associated with this device, up to a
maximum of 16.

NumCalls

ARGUMENTSAnArguments array containing the
list of calls on the device. The
Unique ObjectID of each call is a
key in the Arguments object. The
value is a boolean indicating if the
call is valid. Calls not listed are not
valid calls on the device.

ValidCalls

Remarks

The CIL uses this event to rectify the list of calls on a device when logging in after a failover, in case the
status of calls on the device changes during the failure period. An example of such a scenario is an agent
talking on a call on a hardphone and a CTI failure occurs. The agent hangs up the call before CTI is recovered.
After CTI and the CIL recover, they use the snapshot to discover that the call it currently has is no longer on
the device. CTI then fires an EndCall event to remove the call from its call list.

OnSnapshotSkillGroupList
Not supported.

OnTranslationRoute
The OnTranslationRoute event is a pre-call indication. The event indicates the pending arrival of a call, and
provides early access to the call context information. From a call flow perspective, this event can be used to
begin an application or database lookup for the call context data before the call actually arrives at the agent's
teleset.

The contact is uniquely identified by the ICMEnterpriseUniqueID, which is a field based on the Unified
ICM 64-bit unique key (RouterCallKeyDay and RouterCallKeyCallID). This event does not indicate the
creation of a Call object on the CTI OS server—only that the contact is being tracked. This is sufficient to get
and set data, which enables some powerful data-prefetching applications. When a OnCallBeginEvent follows
for this same contact, the ICMEnterpriseUniqueID field is sent with the call data. At that point, a custom
application can set the call data on the appropriate call object.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
185

Event Interfaces and Events
OnSnapshotSkillGroupList

Syntax

C++
void OnTranslationRoute(Arguments& args)

COM
oid OnTranslationRoute(IArguments * args)

VB
session_OnTranslationRoute(ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 47: OnTranslationRoute Parameters

DescriptionTypeKeyword

This string is a globally unique key
for this contact, which corresponds
to the Unified ICM 64 bit key. You
can use this parameter to match this
contact to a follow-on call event.

STRINGICMEnterpriseUniqueID

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

The call key created by the Unified
ICM . The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

Together with RouterCallKeyDay
and RouterCallKeyCallID fields
forms the TaskID.

INTRouterCallKey SequenceNumber

Number of Named variables.SHORTNumNamedVariables

Number of Named Arrays.SHORTNumNamedArrays

The calling line ID of the caller.STRINGANI

The ISDN user-to-user information
element.

STRINGUserToUserInfo

The DNIS number to which this
call will arrive on the ACD/PBX.

STRINGDNIS

The number dialed.STRINGDialedNumber

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
186

Event Interfaces and Events
OnTranslationRoute

DescriptionTypeKeyword

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits

Call-related variable data.STRINGCallVariable1

...STRING...

Call-related variable data.STRINGCallVariable10

A nested Arguments structure of
key-value pairs for all of the ECC
data arriving with this call.

ARGUMENTSECC

ICallEvents Interface
The Call object fires events on the ICallEvents interface. The following events are published to subscribers
of the ICallEvents interface.

Many of the parameters that CTI OS receives from the CTI Server are inconsequential to most customer
applications. The most important parameters for doing a screenpop are included with the events described in
this section. The more inconsequential parameters are suppressed at the CTI OS Server, to minimize network
traffic to the clients. However, you can enable the complete set of available event arguments by setting the
following registry setting:

Note

[HKLM\Cisco Systems\CTIOS\Server\CallObject\MinimizeEventArgs = 0].Note

OnAgentPrecallEvent

The OnAgentPrecallEvent event is applicable to Unified CCE only. The equivalent on all other TDM events
is TranslationRouteEvent.

Note

The OnAgentPrecallEvent event is a pre-call indication that indicates the pending arrival of a call and provides
early access to the call context information. From a call flow perspective, you can use this event to begin an
application or database lookup for the call context data before the call actually arrives at the agent's teleset.

The contact is uniquely identified by the ICMEnterpriseUniqueID, which is a field based on the Unified ICM
64-bit unique key (RouterCallKeyDay and RouterCallKeyCallID). This event does not indicate the creation
of a Call object on the CTI OS server—only that the contact is being tracked. This is sufficient to get and set
data, which enables some powerful data-prefetching applications. When an OnCallBeginEvent follows for
this same contact, the ICMEnterpriseUniqueID field is sent along with the call data. At that point, a custom
application can set the call data on the appropriate call object.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
187

Event Interfaces and Events
ICallEvents Interface

Syntax

C++
void OnAgentPrecallEvent(Arguments& args)

COM
void OnAgentPrecallEvent (IArguments * args)

VB
session_OnAgentPrecallEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 48: OnAgentPrecallEvent Parameters

DescriptionTypeKeyword

This string is a globally unique key
for this contact, which corresponds
to the Unified ICM 64 bit key. You
can use this parameter to match this
contact to a follow-on call event.

STRINGICMEnterpriseUniqueID

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

The agent instrument that the call
is routed to.

STRINGAgentInstrument

Number of Named variables.SHORTNumNamedVariables

Number of Named Arrays.SHORTNumNamedArrays

The service that the call is
attributed to, as known to the
peripheral.

INTServiceNumber

The Unified ICM ServiceID of the
service that the call is attributed to.

INTServiceID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
188

Event Interfaces and Events
OnAgentPrecallEvent

DescriptionTypeKeyword

An optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral.

INTSkillGroupNumber

The system-assigned identifier of
the agent SkillGroup the call is
attributed to.

INTSkillGroupID

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority

The calling line ID of the caller.STRINGANI

The ISDN user-to-user information
element.

STRINGUserToUserInfo

The DNIS number to which this
call will arrive on the ACD/PBX.

STRINGDNIS

The number dialed.STRINGDialedNumber

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits

Call-related variable data.STRINGCallVariable1

...STRING...

Call-related variable data.STRINGCallVariable10

A nested Arguments structure of
key-value pairs for all of the ECC
data arriving with this call.

ARGUMENTSECC

Specifies CallType of the call and
indicates that the agent is reserved
via LegacyPreCall.

INTCallTypeIDTag

Specifies the invoking of the
LegacyPreCall.

INTPreCallInvokeIDTag

OnAgentPrecallAbortEvent

The OnAgentPrecallAbortEvent event is applicable to Unified CCE only.Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
189

Event Interfaces and Events
OnAgentPrecallAbortEvent

TheOnAgentPrecallAbortEvent event is received only if a previously indicated routing (OnAgentPrecallEvent)
decision is reversed. The contact is uniquely identified by the ICMEnterpriseUniqueID, which is a field based
on the Unified ICM 64-bit unique key (RouterCallKeyDay and RouterCallKeyCallID). Upon receipt of an
OnAgentPrecallAbortEvent, any data pre-fetch work that was started on an OnAgentPrecallEvent should be
cleaned up.

Syntax

C++
void OnAgentPrecallAbortEvent(Arguments& args)

COM
void OnAgentPrecallAbortEvent (IArguments * args)

VB
session_OnAgentPrecallAbortEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 49: OnAgentPrecallAbortEvent Parameters

DescriptionTypeKeyword

This string is a globally unique key
for this contact, which corresponds
to the Unified ICM 64 bit key. You
can use This parameter to match
this contact to a follow-on call
event.

STRINGICMEnterpriseUniqueID

Together with the RouterCallKey
CallID field forms the unique 64-bit
key for locating this call's records
in the Unified ICM database. Only
provided for Post-routed and
Translation- routed calls.

INTRouterCallKeyDay

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

The agent instrument that the call
will be routed to.

STRINGAgentInstrument

OnAlternateCallConf
The OnAlternateCallConf event is fired to the client to indicate that an Alternate request was received by the
CTI Server

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
190

Event Interfaces and Events
OnAlternateCallConf

Syntax

C++
void OnAlternateCallConf (Arguments & args);

COM
HRESULT OnAlternateCallConf ([in] IArguments * args);

VB
Session_ OnAlternateCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 50: OnAlternateCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnAnswerCallConf
The OnAnswerCallConf event is fired to the client to indicate that an Answer request was received by the
CTI Server.

Syntax

C++
void OnAnswerCallConf (Arguments & args);

COM
HRESULT OnAnswerCallConf ([in] IArguments * args);

VB
Session_ OnAnswerCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 51: OnAnswerCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
191

Event Interfaces and Events
OnAnswerCallConf

OnCallBegin
The OnCallBegin event is generated at the first association between a call and the CTI Client. The event passes
the call identifier and the initial call context data. The ConnectionCallID identifies the call. This message
always precedes any other event messages for that call.

Subsequent changes to the call context data (if any) are signaled by an OnCallDataUpdate event containing
the changed call data.

There can be multiple calls with the same ConnectionCallID value.Note

Syntax

C++
void OnCallBegin(Arguments& args)

COM
void OnCallBegin (IArguments * args)

VB
session_OnCallBegin (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 52: OnCallBegin Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

The general classification of the
call type.

SHORTCallType

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
192

Event Interfaces and Events
OnCallBegin

DescriptionTypeKeyword

The call key created by the Unified
ICM . The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

Together with RouterCallKeyDay
and RouterCallKeyCallID fields
forms the TaskID.

INTRouterCallKey SequenceNumber

The Call ID value assigned to this
call by the peripheral or the Unified
ICM .

UINTConnectionCallID

The calling line ID of the caller.STRINGANI (optional)

The DNIS provided with the call.STRINGDNIS (optional)

The ISDN user-to-user information
element. unspecified, up to 131
bytes.

STRINGUserToUserInfo (Optional)

The number dialed.STRINGDialedNumber (Optional)

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits (Optional)

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber (Optional)

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID (Optional)

An optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-generated identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
193

Event Interfaces and Events
OnCallBegin

DescriptionTypeKeyword

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Call-related wrap-up data.STRINGCallWrapupData (Optional)

Call-related variable data.STRINGCallVariable1 (Optional)

...STRING...

Call-related variable data.STRINGCallVariable10 (Optional)

The current status of the call.SHORTCallStatus (optional)

Arguments array that contains all
of the Expanded Call Context
variables in use; for example:
user.ArrayVariable[0]user.ArrayVariable[1]
...user.ArrayVariable[n]user.ScalarVariable

ARGUMENTSECC (optional)

Arguments array that contains the
information about the number of
clients that are using the Call
object; for example:

CTIClient[1]

CTIClientSignatureCTIClientTimestamp

ARGUMENTSCTIClients (optional)

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID (optional)

OnCallCleared
An OnCallCleared event is generated when the voice portion of all parties on a call is terminated, normally
when the last device disconnects from a call. With this event the connection status becomes LCS_NULL.

If the CallCleared event is received after having received a CallFailed event, the event does not include a
CallStatus because it is important to preserve the fact that the call failed (maintaining the CallStatus of
LSC_Fail). Because of this exception, the CallStatus of the CallCleared event is optional.

Note

Syntax

C++
void OnCallDelivered(Arguments& args)

COM
void OnCallCleared (IArguments * args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
194

Event Interfaces and Events
OnCallCleared

VB
session_OnCallCleared (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 53: OnCallCleared Parameters

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

Required only when the call is
pre-routed.

STRINGICMEnterprise UniqueID
(Optional)

OnCallConnectionCleared
AnOnCallConnectionCleared event is generated when a party drops from a call.With this event the connection
status becomes LCS_NULL.

If the CallConnectionCleared event is received after having received a CallFailed event, the event does not
include a CallStatus because it is important to preserve the fact that the call failed (maintaining the CallStatus
of LSC_Fail). Because of this exception, the CallStatus of the CallConnectionCleared event is optional.

Note

Syntax

C++
void OnCallConnectionCleared(Arguments& args)

COM
void OnCallConnectionCleared (IArguments * args)

VB
session_OnCallConectionCleared (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
195

Event Interfaces and Events
OnCallConnectionCleared

Table 54: OnCallConnectionCleared Parameters

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

Required only when the call is
pre-routed.

STRINGICMEnterprise UniqueID
(Optional)

OnCallConferenced
The joining of calls into a conference call or the adding of a new call joining a conference can generate an
OnCallConferenced event. With this event, the connections at the controller's device merge to become one
connection with a status of LCS_CONNECT, and the status of the connections at the original caller's device
and at the consulted device remain unchanged.

Syntax

C++
void OnCallConferenced(Arguments& args)

COM
void OnCallConferenced (IArguments * args)

VB
session_OnCallConferenced (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 55: OnCallConferenced Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

The general classification of the
call type.

SHORTCallType

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
196

Event Interfaces and Events
OnCallConferenced

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

The Call ID value assigned to this
call by the peripheral or the Unified
ICM.

UINTConnectionCallID

The calling line ID of the caller.STRINGANI (optional)

The DNIS provided with the call.STRINGDNIS (optional)

The ISDN user-to-user information
element. unspecified, up to 131
bytes.

STRINGUserToUserInfo (Optional)

The number dialed.STRINGDialedNumber (Optional)

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits (Optional)

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber (Optional)

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID (Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
197

Event Interfaces and Events
OnCallConferenced

DescriptionTypeKeyword

An optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Call-related wrap-up data.STRINGCallWrapupData (Optional)

Call-related variable data.STRINGCallVariable1 (Optional)

...STRING...

Call-related variable data.STRINGCallVariable10 (Optional)

The current status of the call.SHORTCallStatus (optional)

Arguments array that contains all
of the Expanded Call Context
variables in use; for example:
user.ArrayVariable[0]user.ArrayVariable[1]
...user.ArrayVariable[n]user.ScalarVariable

ARGUMENTSECC (optional)

Arguments array that contains the
information about the number of
clients that are using the Call
object; for example:

CTIClient[1]

CTIClientSignatureCTIClientTimestamp

ARGUMENTSCTIClients (Optional)

Required only when the call is
pre-routed.

STRINGICMEnterpriseUnique ID
(Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
198

Event Interfaces and Events
OnCallConferenced

OnCallDataUpdate
Changes to the call context data generate an OnCallDataUpdate event. Only the changed items are in the event
argument array. The initial call context is provided in the OnCallBegin event.

Syntax

C++
void OnCallDataUpdate(Arguments& args)

COM
void OnCallDataUpdate (IArguments * args)

VB
session_OnCallDataUpdate (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 56: OnCallUpdate Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

The general classification of the
call type.

SHORTCallType

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

Together with RouterCallKeyDay
and RouterCallKeyCallID fields
forms the TaskID.

INTRouterCallKey SequenceNumber

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
199

Event Interfaces and Events
OnCallDataUpdate

DescriptionTypeKeyword

The Call ID value assigned to this
call by the peripheral or the Unified
ICM.

UINTConnectionCallID

The calling line ID of the caller.STRINGANI (optional)

The DNIS provided with the call.STRINGDNIS (optional)

The ISDN user-to-user information
element. unspecified, up to 131
bytes.

STRINGUserToUserInfo (Optional)

The number dialed.STRINGDialedNumber (Optional)

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits (Optional)

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber (Optional)

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID (Optional)

An optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Call-related wrap-up data.STRINGCallWrapupData (Optional)

Call-related variable data.STRINGCallVariable1 (Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
200

Event Interfaces and Events
OnCallDataUpdate

DescriptionTypeKeyword

...STRING...

Call-related variable data.STRINGCallVariable10 (Optional)

The current status of the call.SHORTCallStatus (optional)

Arguments array that contains all
of the Expanded Call Context
variables in use; for example:
user.ArrayVariable[0]user.ArrayVariable[1]...user.
ArrayVariable[n]user.ScalarVariable

ARGUMENTSECC (optional)

Arguments array that contains the
information about the number of
clients that are using the Call
object; for example:

CTIClient[1]

CTIClientSignatureCTIClientTimestamp

ARGUMENTSCTIClients (Optional)

Required only when the call is
pre-routed.

STRINGICMEnterprise UniqueID
(Optional)

OnCallDelivered
The OnCallDelivered event may be generated when the call arrives at the agent's teleset. Both parties (call
connections) receive this event.With this event, the called party's connection status becomes LCS_ALERTING
but the calling party's connection status remains LCS_INITIATE.

With certain switches, when a call is made outside of the ACD, this event may not be received. For more
information, see OnCallReachedNetwork.

Note

Syntax

C++
void OnCallDelivered(Arguments& args)

COM
void OnCallDelivered (IArguments * args)

VB
session_OnCallDelivered (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
201

Event Interfaces and Events
OnCallDelivered

Table 57: OnCallDelivered Parameters

DescriptionTypeKeyword

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID

An optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Indicates the type of the teleset line.SHORTLineType

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call. See Table 6: CIL Error
Codes, on page 21.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID (Optional)

The number representing a trunk.INTTrunkNumber (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
202

Event Interfaces and Events
OnCallDelivered

DescriptionTypeKeyword

The number representing a trunk
group.

INTTrunkGroup Number (optional)

OnCallDequeuedEvent
The explicit removal of a call from the ACD queue can generate a OnCallDequeuedEvent message to the CTI
Client.

Syntax

C++
void OnCallDequeuedEvent(Arguments& args)

COM
void OnCallDequeuedEvent (IArguments * args)

VB
session_OnCallDequeuedEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 58: OnCallDequeuedEvent Parameters

DescriptionTypeKeyword

The identifier of the connection
between the call and the device.

INTConnection DeviceID

Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID.

SHORTConnectionDevice IDType

The state of the local end of the
connection.

SHORTLocalConnection State

Indicates a reason or explanation
for the occurrence of the event.

SHORTEventCause

Identifies the teleset line being
used.

SHORTLineHandle

Indicates the type of the teleset line.SHORTLineType

The Unified ICM ServiceID of the
service that the call is attributed to.

INTServiceID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
203

Event Interfaces and Events
OnCallDequeuedEvent

DescriptionTypeKeyword

The service that the call is
attributed to, as known to the
peripheral.

INTServiceNumber

The number of calls in the queue
for this service.

SHORTNumQueued

The number of Skill Groups that
the call has been removed from, up
to a maximum of 99.

SHORTNumSkillGroups

OnCallDiverted
The removal of a call from one delivery target and forwarded to a different target can generate an
OnCallDiverted event.

Syntax

C++
void OnCallDiverted(Arguments& args)

COM
void OnCallDiverted (IArguments * args)

VB
session_OnCallDiverted (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 59: OnCallDiverted Parameters

DescriptionTypeKeyword

Unique reference generated for a
call at client.

STRINGUniqueObjectID

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

Indicates the type of
ConnectionDeviceID value.

SHORTConnectionDevice IDType

The device identifier of the
connection between the call and the
device.

INTConnection DeviceID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
204

Event Interfaces and Events
OnCallDiverted

DescriptionTypeKeyword

The Call ID value assigned to this
call by the peripheral or the Unified
ICM.

UINTConnectionCallID

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID

Indicates the type of the device
identifier supplied in the
DivertingDeviceID field.

SHORTDivertingDevice Type

Indicates the type of the device
identifier supplied in the
CalledDeviceID field.

SHORTCalledDeviceType

The state of the local end of the
connection.

SHORTLocalConnection State

Indicates a reason or explanation
for the occurrence of the event.

SHORTEventCause

The device identifier of the device
from which the call was diverted.

STRINGDivertingDeviceID (Optional)

The device identifier of the device
to which the call was diverted.

STRINGCalledDeviceID (Optional)

OnCallEnd
The OnCallEnd event is generated when the association between a call and the CTI Client is dissolved. The
OnCallEnd event is the last event received for a Call.

Syntax

C++
void OnCallEnd(Arguments& args)

COM
void OnCallEnd (IArguments * args)

VB
session_OnCallEnd (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
205

Event Interfaces and Events
OnCallEnd

Parameters

args

Arguments array containing the following fields.

Table 60: OnCallEnd Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus (optional)

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID (optional)

OnCallEstablished
The OnCallEstablished event is generated when the call is answered at the agent's teleset. Both parties (call
connections) receive this event when the call is answered. With this event, the call status of both parties
becomes LCS_CONNECT.

With certain switches, when a call is made outside of the ACD, this event may not be received. See
OnCallReachedNetwork for more detail.

Note

Syntax

C++
void OnCallEstablished(Arguments& args)

COM
void OnCallEstablished (IArguments * args)

VB
session_OnCallEstablished (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
206

Event Interfaces and Events
OnCallEstablished

Table 61: OnCallEstablished Parameters

DescriptionTypeKeyword

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_ SERVICE when not
applicable or not available.

INTServiceNumber

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID

An optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Indicates the type of the teleset line.SHORTLineType

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call. See Table 6: CIL Error
Codes, on page 21.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID (Optional)

The number representing a trunk.INTTrunkNumber (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
207

Event Interfaces and Events
OnCallEstablished

DescriptionTypeKeyword

The number representing a trunk
group.

INTTrunkGroup Number (optional)

OnCallFailed
The OnCallFailed event is generated when a call is not completed. With this event the connection status
becomes LCS_FAIL. This usually happens as a result of a MakeCall or a MakeConsultCall request, but can
occur at any other point in the call's lifetime if the call fails on an ACD. In this case, you should perform any
required cleanup prior to arrival of an EndCall event.

The events (CallConnectionCleared and CallCleared) received after the CallFailed event does not include a
CallStatus because, until the call has ended, it is important to preserve the fact that this is a failed call.

Note

Syntax

C++
void OnCallFailed(Arguments& args)

COM
void OnCallFailed (IArguments * args)

VB
session_OnCallFailed (ByVal args As CtiosCLIENTLib.IArguments

Parameters

args

Arguments array containing the following fields.

Table 62: OnCallFailed Parameters

DescriptionTypeKeyword

Contains the bit mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
208

Event Interfaces and Events
OnCallFailed

OnCallHeld
Placing a call on hold at the agent's teleset can generate an OnCallHeld event. With this event the connection
status becomes LCS_HELD.

Syntax

C++
void OnCallHeld(Arguments& args)

COM
void OnCallHeld (IArguments * args)

VB
session_OnCallHeld (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 63: OnCallHeld Parameters

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID (Optional)

OnCallOriginated
The initiation of a call from the peripheral can generate an OnCallOriginated event. Only the connection
making the call receives this event. With this event the connection status becomes LCS_INITIATE.

Syntax

C++
void OnCallOriginated(Arguments& args)

COM
void OnCallOriginated (IArguments * args)

VB
session_OnCallOriginated (ByVal args As CtiosCLIENTLib.IArguments

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
209

Event Interfaces and Events
OnCallHeld

Parameters

args

Arguments array containing the following fields.

Table 64: OnCallOriginated Parameters

DescriptionTypeKeyword

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID

The user-defined number of the
agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value NULL_SKILL_
GROUPwhen not applicable or not
available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Indicates the type of the teleset line.SHORTLineType

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
210

Event Interfaces and Events
OnCallOriginated

OnCallQueuedEvent
The placing of a call in a queue pending the availability of some resource can generate an OnCallQueuedEvent
message to the CTI Client. Clients with Client Events Service can receive this message when an outbound
call is queued waiting for a trunk or other resource. Clients with All Events Service can also receive this
message when inbound calls are queued.

Syntax

C++
void OnCallQueuedEvent(Arguments& args)

COM
void OnCallQueuedEvent (IArguments * args)

VB
session_OnCallQueuedEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 65: OnCallQueuedEvent Parameters

DescriptionTypeKeyword

The identifier of the connection
between the call and the device.

INTConnection DeviceID

Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID.

SHORTConnectionDevice IDType

The device identifier of the queuing
device.

STRINGQueuedDeviceID

Indicates the type of the device
identifier supplied in the
QueuedDeviceID.

SHORTQueuedDeviceIDType

The device identifier of the calling
device.

STRINGCallingDeviceID

Indicates the type of the device
identifier supplied in the
CalledDeviceID.

SHORTCallingDeviceIDType

The device identifier of the called
device.

STRINGCalledDeviceID

Indicates the type of the device
identifier supplied in the
CalledDeviceID.

SHORTCalledDeviceIDType

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
211

Event Interfaces and Events
OnCallQueuedEvent

DescriptionTypeKeyword

The device identifier of the
redirecting device.

STRINGLastRedirectedDeviceID

Indicates the type of the device
identifier supplied in the
LastRedirectDeviceID.

SHORTLastRedirected DeviceIDType

The state of the local end of the
connection.

SHORTLocalConnection State

Indicates a reason or explanation
for the occurrence of the event.

SHORTEventCause

Identifies the teleset line being
used.

SHORTLineHandle

Indicates the type of the teleset line.SHORTLineType

The Unified ICM ServiceID of the
service that the call is attributed to.

INTServiceID

The service that the call is
attributed to, as known to the
peripheral.

INTServiceNumber

The number of calls in the queue
for this service.

SHORTNumQueued

The number of Skill Group queues
that the call has queued to, up to a
maximum of 50.

SHORTNumSkillGroups

OnCallReachedNetworkEvent
The connection of an outbound call to another network can generate an OnCallReachedNetworkEvent. With
some switches outside the ACD, this can be the last event the outbound connection receives. For these switches,
you cannot assume that when the called party receives and answers the call that the OnCallDelivered and
OnCallEstablished events is received.

Syntax

C++
void OnCallReachedNetworkEvent(Arguments& args)

COM
void OnCallReachedNetworkEvent (IArguments * args)

VB
session_OnCallReachedNetworkEvent (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
212

Event Interfaces and Events
OnCallReachedNetworkEvent

Parameters

args

Arguments array containing the following fields.

Table 66: OnCallReachedNetworkEvent Parameters

DescriptionTypeKeyword

The identifier of the connection
between the call and the device.

STRINGConnection DeviceID

Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID.

SHORTConnectionDevice IDType

The device identifier of the selected
trunk.

STRINGTrunkUsedDeviceID

Indicates the type of the device
identifier supplied in the
TrunkUsedDeviceID.

SHORTTrunkUsedDeviceIDType

The device identifier of the called
device.

STRINGCalledDeviceID

Indicates the type of the device
identifier supplied in the
CalledDeviceID.

SHORTCalledDeviceIDType

The state of the local end of the
connection.

SHORTLocalConnection State

Indicates a reason or explanation
for the occurrence of the event.

SHORTEventCause

Identifies the teleset line being
used.

SHORTLineHandle

Indicates the type of the teleset line.SHORTLineType

The number representing a trunk.INTTrunkNumber (optional)

The number representing a trunk
group.

INTTrunkGroup Number (optional)

OnCallRetrieved
Resuming a call previously placed on hold at the agent's teleset can generate an OnCallRetrieved event. With
this event the connection status becomes LCS_CONNECT.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
213

Event Interfaces and Events
OnCallRetrieved

Syntax

C++
void OnCallRetrieved(Arguments& args)

COM
void OnCallRetrieved (IArguments * args)

VB
session_OnCallRetrieved (ByVal args As CtiosCLIENTLib.IArguments

Parameters

args

Arguments array containing the following fields.

Table 67: OnCallRetrieved Parameters

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

OnCallServiceInitiatedEvent
The initiation of telecommunications service (“dial tone”) at the agent's teleset can generate an
OnCallServiceInitiatedEvent to the CTI Client. However, when the call is made through the software, there
is no way to detect the equivalent of the phone off hook. Therefore, after a call is made this event is received
in sequence along with the OnCallOriginated and OnCallDelivered events. With this event the connection
status becomes LCS_INITIATE.

Syntax

C++
void OnCallServiceInitiatedEvent(Arguments& args)

COM
void OnCallServiceInitiatedEvent (IArguments * args)

VB
session_OnCallServiceInitiatedEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
214

Event Interfaces and Events
OnCallServiceInitiatedEvent

Table 68: OnCallServiceInitiatedEvent Parameters

DescriptionTypeKeyword

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID

The optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Indicates the type of the teleset line.SHORTLineType

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call.

INTEnablementMask

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The current status of the call.SHORTCallStatus

OnCallStartRecordingConf
The OnCallStartRecordingConf event is fired to the client to indicate that the CTI server received a StartRecord
request.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
215

Event Interfaces and Events
OnCallStartRecordingConf

Syntax

C++
void OnCallStartRecordingConf (Arguments & args);

COM
HRESULT OnCallStartRecordingConf ([in] IArguments * args);

VB
Session_ OnCallStartRecordingConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 69: OnCallStartRecordingConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnCallStopRecordingConf
TheOnCallStopRecordingConf event is fired to the client to indicate that a the CTI server received a StopRecord
request.

Syntax

C++
void OnCallStopRecordingConf (Arguments & args);

COM
HRESULT OnCallStopRecordingConf ([in] IArguments * args);

VB
Session_ OnCallStopRecordingConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 70: OnCallStopRecordingConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
216

Event Interfaces and Events
OnCallStopRecordingConf

OnCallTransferred
The transfer of a call to another destination can generate an OnCallTransferred event. With this event the two
connections at the controller's device end and the status of the connections at the original caller's device and
the consulted device are unchanged.

Syntax

C++
void OnCallTransferred(Arguments& args)

COM
void OnCallTransferred (IArguments * args)

VB
session_OnCallTransferred (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 71: OnCallTransferred Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

The general classification of the
call type.

SHORTCallType

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight.

INTRouterCalKeyCallID

The Call ID value assigned to this
call by the peripheral or the Unified
ICM.

UINTConnectionCallID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
217

Event Interfaces and Events
OnCallTransferred

DescriptionTypeKeyword

The calling line ID of the caller.STRINGANI (optional)

The DNIS provided with the call.STRINGDNIS (optional)

The ISDN user-to-user information
element. unspecified, up to 131
bytes.

STRINGUserToUserInfo (Optional)

The number dialed.STRINGDialedNumber (Optional)

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits (Optional)

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber (Optional)

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID (Optional)

The optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber (Optional)

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID (Optional)

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority (Optional)

Call-related wrap-up data.STRINGCallWrapupData (Optional)

Call-related variable data.STRINGCallVariable1 (Optional)

...STRING...

Call-related variable data.STRINGCallVariable10 (Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
218

Event Interfaces and Events
OnCallTransferred

DescriptionTypeKeyword

The current status of the call.SHORTCallStatus (Optional)

Arguments array that contains all
of the Expanded Call Context
variables in use; for example:
user.ArrayVariable[0]user.ArrayVariable[1]
...user.ArrayVariable[n]user.ScalarVariable

ARGUMENTSECC (optional)

Arguments array that contains the
information about the number of
clients that are using the Call
object; for example:

CTIClient[1]

CTIClientSignatureCTIClientTimestamp

ARGUMENTSCTIClients (Optional)

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID (Optional)

OnClearCallConf
The OnClearCallConf event is fired to the client to indicate that the CTI server received a Clear request.

Syntax

C++
void OnClearCallConf (Arguments & args);

COM
HRESULT OnClearCallConf ([in] IArguments * args);

VB
OnClearCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 72: OnClearCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
219

Event Interfaces and Events
OnClearCallConf

OnClearConnectionConf
The OnClearConnectionConf event is fired to the client to indicate that the CTI server received a
ClearConnection request.

Syntax

C++
void OnClearConnectionConf (Arguments & args);

COM
HRESULT OnClearConnectionConf ([in] IArguments * args);

VB
Session_ OnClearConnectionConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 73: OnClearConnectionConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnConferenceCallConf
The OnConferenceCallConf event is fired to the client to indicate that the CTI server received a ConferenceCall
or SingleStepConferenceCall request.

Syntax

C++
void OnConferenceCallConf (Arguments & args);

COM
HRESULT OnConferenceCallConf ([in] IArguments * args);

VB
Session_ OnConferenceCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
220

Event Interfaces and Events
OnClearConnectionConf

Table 74: OnConferenceCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnConsultationCallConf
The OnConsultationCallConf event is fired to the client to indicate that the CTI server received a
MakeConsultCall request.

Syntax

C++
void OnConsultationCallConf (Arguments & args);

COM
HRESULT OnConsultationCallConf ([in] IArguments * args);

VB
OnConsultationCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)Parameters

Parameters

args

Arguments array containing the following field.

Table 75: OnConsulationCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnControlFailureConf
The OnControlFailureConf event is generated when a request to the peripheral (the ACD) fails.

Syntax

C++
void OnControlFailureConf(Arguments& args)

COM
void OnControlFailureConf (IArguments * args)

VB
session_OnControlFailureConf (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
221

Event Interfaces and Events
OnConsultationCallConf

Parameters

args

Arguments array containing the following fields.

Table 76: OnControlFailureConf Parameters

DescriptionTypeKeyword

Peripheral ID.INTPeripheralID

Code ID.SHORTFailureCode

Peripheral-specific error data, if
available. Zero otherwise.

INTPeripheralError Code

Agent ID that represents a specific
client.

STRINGAgentID

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

Contains the CTI OS Command
Request ID that failed to execute.
The message types included in this
parameter are those to used to
control Call, Agent State and
Supervisor actions. For more
information, see CTI OSKeywords
and Enumerated Types, on page
499.

INTMessageType

String text containing the
description of the failure.

STRINGErrorMessage

OnHoldCallConf
The OnHoldCallConf event is fired to the client to indicate that the CTI server received a Hold request.

Syntax

C++
void OnHoldCallConf (Arguments & args);

COM
HRESULT OnHoldCallConf ([in] IArguments * args);

VB
Session_ OnHoldCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
222

Event Interfaces and Events
OnHoldCallConf

Parameters

args

Arguments array containing the following field.

Table 77: OnHoldCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnMakePredictiveCallConf
Not supported.

OnReconnectCallConf
The OnReconnectCallConf event is fired to the client to indicate that the CTI server received a Reconnect
request.

Syntax

C++
void OnReconnectCallConf (Arguments & args);

COM
HRESULT OnReconnectCallConf ([in] IArguments * args);

VB
OnReconnectCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 78: OnMakePredictiveCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnReleaseCallConf
Not supported.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
223

Event Interfaces and Events
OnMakePredictiveCallConf

OnRetrieveCallConf
The OnRetrieveCallConf event is fired to the client to indicate that the CTI server received a RetrieveCall
request.

Syntax

C++
void OnRetrieveCallConf (Arguments & args);

COM
HRESULT OnRetrieveCallConf ([in] IArguments * args);

VB
Session_ OnRetrieveCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 79: OnReleaseCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnSendDTMFConf
The OnSendDTMFConf event is fired to the client to indicate that the CTI server received a SendDTMF
request.

Syntax

C++
void OnSendDTMFConf (Arguments & args);

COM
HRESULT OnSendDTMFConf ([in] IArguments * args);

VB
Session_ OnSendDTMFConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Not used; reserved for future use.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
224

Event Interfaces and Events
OnRetrieveCallConf

OnSetCallDataConf
The OnSetCallDataConf event is fired to the client to indicate that the CTI server received a SetCallData
request.

Syntax

C++
void OnSetCallConf (Arguments & args);

COM
HRESULT OnClearCallConf ([in] IArguments * args);

VB
OnClearCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 80: OnReleaseCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

OnSnapshotCallConf
The OnSnapshotCallConf event is generated when a SnapshotCall request for a specific call is successful. It
contains all the information known about the specific connection at that point in time.

Syntax

C++
void OnSnapshotCallConf(Arguments& args)

COM
void OnSnapshotCallConf (IArguments * args)

VB
session_OnSnapshotCallConf (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
225

Event Interfaces and Events
OnSetCallDataConf

Table 81: OnSnapShotCallConf Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The general classification of the
call type.

SHORTCallType

An object ID that uniquely
identifies the call object.

STRINGUniqueObjectID

The number dialed.STRINGDialedNumber

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits

Call-related wrap-up data.STRINGCallWrapupData

Call-related variable data.STRINGCallVariable1 (Optional)

...STRING...

Call-related variable data.STRINGCallVariable10 (Optional)

The customer phone number
associated with the call.

STRINGCustomerPhone Number

The customer account number
associated with the call.

STRINGCustomerAccount Number

Arguments array that contains all
of the Expanded Call Context
variables in use; for example:
user.ArrayVariable[0]user.ArrayVariable[1]
...user.ArrayVariable[n]user.ScalarVariable

ARGUMENTSECC

Arguments array that contains the
information about the number of
clients that are using the Call
object; for example:

CTIClient[1]

CTIClientSignatureCTIClientTimestamp

ARGUMENTSCTIClients (Optional)

Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call's records in the Unified
ICM database. Only provided for
Post-routed and Translation-routed
calls.

INTRouterCallKeyDay

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
226

Event Interfaces and Events
OnSnapshotCallConf

DescriptionTypeKeyword

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight.

INTRouterCallKeyCallID

Number of Named variables.SHORTNumNamedVariables

Number of Named Arrays.SHORTNumNamedArrays

Number of devices associated with
the call.

SHORTNumCallDevices

The device identifier of the called
device.

STRINGCalledDeviceID

The Call ID value assigned to this
call by the peripheral or the Unified
ICM.

UINTConnectionCallID

The current status of the call.SHORTCallStatus

The following fields appear if they have information in them.

The calling line ID of the caller.STRINGANI

The ISDN user-to-user information
element associated with the call.

STRINGUserToUserInfo

The DNIS provided with the call.STRINGDNIS

If the MinimizeEventArgs registry entry is set to 0, the SnapshotCallConf event contains the following
additional fields.

Table 82: SnapshotCallConf Additional Fields

DescriptionTypeKeyword

This string is a globally unique key
for this contact, which corresponds
to the Unified ICM 64 bit key. This
parameter can be used to match this
contact to a follow-on call event.

STRINGICMEnterpriseUnique ID

The CallID value assigned to the
call.

UINTCallConnectionCallID (optional)

Indicates the type of the connection
identifier supplied in the following
CallConnectionDeviceID floating
field. This field always immediately
follows the corresponding
CallConnectionCallID field.

SHORTCallConnectionDeviceID Type
(optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
227

Event Interfaces and Events
OnSnapshotCallConf

DescriptionTypeKeyword

The identifier of the call
connection. This field always
immediately follows the
corresponding
CallConnectionDeviceIDType
field.

STRINGCallConnectionDeviceID (optional)

The active state of the call. This
field always immediately follows
the corresponding CallConnection
DeviceID field.

SHORTCallDeviceConnection State

Indicates the type of the device
identifier supplied in the
CallDeviceID field.

SHORTCallDeviceType

OnTransferCallConf
The OnTransferCallConf event is fired to the client to indicate that the CTI server received a TransferCall or
SingleStepTransferCall request.

Syntax

C++
void OnTransferCallConf (Arguments & args);

COM
HRESULT OnTransferCallConf ([in] IArguments * args);

VB
Session_ OnTransferCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Table 83: OnTransferCallConf Parameters

DescriptionTypeKeyword

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

IAgentEvents Interface
The Agent object fires events on the IAgentEvents interface. The following events are published to subscribers
of the IAgentEvents interface.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
228

Event Interfaces and Events
OnTransferCallConf

OnAgentDeskSettingsConf
The OnAgentDeskSettingsConf event confirms successful completion of the request and provides the query
response.

Syntax

C++
void OnAgentDeskSettings(Arguments& args)

COM
void OnAgentDeskSettings (IArguments * args)

VB
session_OnAgentDeskSettings (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 84: OnAgentDeskSettingsConf Parameters

DescriptionTypeKeyword

Set to the same value as the InvokeID from the
corresponding request message.

UINTInvokeID

The Unified ICMPeripheralID of the ACDwhere the
device is located.

UINTPeripheralID

A bitwise combination of the Boolean desk setting
Masks listed in the table below.

UINTDeskSettingsMask

Indicates whether the agent is allowed or required to
enter wrap-up data after an inbound call: 0 = Required,
1 = Optional, 2 = Not allowed, 3 = Required With
WrapupData.

UINTWrapupData IncomingMode

Indicates whether the agent is allowed or required to
enter wrap-up data after an outbound call: 0 =
Required, 1 = Optional, 2 = Not allowed.

UINTWrapupData OutgoingMode

Number of seconds of non-activity at the desktop after
which the Unified ICM automatically logs out the
agent.

UINTLogoutNon ActivityTime

Indicates how frequently calls to the agent are
recorded.

UINTQualityRecordingRate

Number of seconds a call can ring at the agent's station
before being redirected.

UINTRingNoAnswer Time

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
229

Event Interfaces and Events
OnAgentDeskSettingsConf

DescriptionTypeKeyword

Set for a warning message box to prompt on agent
desktop when silent monitor starts.

UINTSilentMonitor WarningMessage

Set for an audio click at beginning of the silent
monitor.

UINTSilentMonitor AudibleIndication

Set for PIM to create a blind conference call for
supervisor assist request; otherwise creates
consultative call.

UINTSupervisorAssist CallMethod

Set for PIM to create a blind conference call for
emergency call request; otherwise creates a
consultative call.

UINTEmergencyCall Method

Set for automatically record when emergency call
request.

UINTAutoRecordOn Emergency

Set for the recording request to go through Call
Manager/PIM.

UINTRecordingMode

Auto Wrap-up time out.UINTWorkModeTimer

The dialed number identifier for new re-route
destination in the case of ring no answer.

UINTRingNoAnswer DN

Table 85: DeskSettingsMasks values

Numeric ValueDescriptionMask Name

0x00000001Set for automatically consider the
agent available after handling an
incoming call.

DESK_AVAIL_AFTER_ INCOMING_MASK

0x00000002Set for automatically consider the
agent available after handling an
outbound call.

DESK_AVAIL_AFTER_OUTGOING_MASK

0x00000004Set when calls to the agent are
automatically answered.

DESK_AUTO_ANSWER_ENABLED_MASK

0x00000008Set when the agent must enter a reason
before entering the Idle state.

DESK_IDLE_REASON_REQUIRED_MASK

0x00000010Set when the agent must enter a reason
before logging out.

DESK_LOGOUT_
REASON_REQUIRED_MASK

0x00000020Set when the agent can initiate
supervisor assisted calls.

DESK_SUPERVISOR_
CALLS_ALLOWED_MASK

0x00000040Set when calls to other agents are
allowed.

DESK_AGENT_TO_ AGENT_CALLS_
ALLOWED

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
230

Event Interfaces and Events
OnAgentDeskSettingsConf

Numeric ValueDescriptionMask Name

0x00000080Set when the agent can initiate
international calls.

DESK_OUTBOUND_ACCESS_INTERNATIONAL_MASK

0x00000100Set when the agent can initiate calls
through the public network.

DESK_OUTBOUND_ACCESS_PUBLIC_NET_MASK

0x00000200Set when the agent can initiate calls
through the private network.

DESK_OUTBOUND_ACCESS_PRIVATE_NET_MASK

0x00000400Set when the agent can initiate operator
assisted calls.

DESK_OUTBOUND_ACCESS_OPERATOR_ASSISTED_MASK

0x00000800Set when the agent can initiate
outbound PBX calls.

DESK_OUTBOUND_ACCESS_PBX_MASK

0x00001000Set when the agent can place or handle
non-ACD calls.

DESK_NON_ACD_CALLS_ALLOWED_MASK

0x00002000Set when the agent can select which
groups they are logged into.

DESK_AGENT_CAN_SELECT_GROUP_MASK

OnAgentGreetingControlConf
The OnAgentGreetingControlConf event confirms the successful completion of the SetAgentGreetingAction
request.

Syntax

C++
void OnAgentGreetingControlConf(Arguments& args)

COM
void OnAgentGreetingControlConf (IArguments * args)

VB
session_OnAgentGreetingControlConf (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 86: OnAgentIGreetingControlConfEvent Parameters

DescriptionTypeKeyword

Standard Message Header.MHDRMessageHeader

Set to the same value as the
InvokeID from the corresponding
request message.

UINTInvokeID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
231

Event Interfaces and Events
OnAgentGreetingControlConf

OnAgentInfoEvent
The OnAgentInfoEvent event is generated as a response to a query to the Agent Name Lookup Service and
carries the agent's name. The CTI OS server generates this query when it is configured to do agent name
lookup. The OnAgentInfoEvent event is sent to the client if the server obtained the information.

Syntax

C++
void OnAgentInfoEvent(Arguments& args)

COM
void OnAgentInfoEvent (IArguments * args)

VB
session_OnAgentInfoEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 87: OnAgentInfoEvent Parameters

DescriptionTypeKeyword

A unique object ID for the Agent
object.

STRINGUniqueObjectID

Agent's last name.STRINGAgentLastName

Agent's first name.STRINGAgentFirstName

OnAgentStateChange
The OnAgentStateChange event is generated when the agent state at the ACD changes. This can be as a
response to a Login, Logout, or SetAgentState request.

Syntax

C++
void OnAgentStateChange(Arguments& args)

COM
void OnAgentStateChange (IArguments * args)

VB
session_OnAgentStateChange (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
232

Event Interfaces and Events
OnAgentInfoEvent

Table 88: OnAgentIStateChange Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the agent state
change occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

One of the values in Table 89:
AgentState values, on page 234
representing the current overall
state of the associated agent.

SHORTAgentState

The optional, user-defined number
of the agent SkillGroup affected by
the state change, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber

The system-assigned identifier of
the agent SkillGroup affected by
the state change. May contain the
special value NULL_SKILL_
GROUPwhen not applicable or not
available.

INTSkillGroupID

The number of seconds since the
agent entered this state (typically
0).

INTStateDuration

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority

A peripheral-specific code
indicating the reason for the state
change.

SHORTEventReasonCode

Values representing the current
state of the associated agent with
respect to the indicated Agent Skill
Group.

SHORTSkillGroupState

The agent's ACD login ID.STRINGAgentID

The agent's ACD teleset extension.STRINGAgentExtension

The Client Signature of the CTI
Client that is associated with this
agent.

STRINGCTIClientSignature (Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
233

Event Interfaces and Events
OnAgentStateChange

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when the agent is on this
state.

Enablement Mask

A unique object ID for the Agent
object.

STRINGUniqueObjectID

The agent's ACD instrument
number.

STRINGAgentInstrument

The following table provides the AgentState values.

Table 89: AgentState values

Numeric ValueDescriptionenum Value

0The agent has logged on to the
ACD. It does not necessarily
indicate that the agent is ready to
accept calls.

eLogin

1The agent has logged out of the
ACD and cannot accept any
additional calls.

eLogout

2The agent is unavailable for any
call work.

eNotReady

3The agent is ready to accept a call.eAvailable

4The agent is currently talking on a
call (inbound, outbound, or inside).

eTalking

5The agent is performing after call
work, but will not be ready to
receive a call when completed.

eWorkNotReady

6The agent is performing after call
work, and will be ready to receive
a call when completed.

eWorkReady

7The agent is busy performing a task
associated with another active
SkillGroup.

eBusyOther

8The agent is reserved for a call that
will arrive at the ACD shortly.

eReserved

9The agent state is currently
unknown.

eUnknown

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
234

Event Interfaces and Events
OnAgentStateChange

Numeric ValueDescriptionenum Value

10The agent currently has all calls on
hold.

eHold

Not all switches support all the states listed in the above table, and you should not make any assumptions
about which states are supported on a particular switch without verification.

Note

OnAgentStatistics
The OnAgentStatistics event is fired to the client to indicate that the CTI server received a request to enable
agent statistics (via the EnableAgentStatistics method). The arrival of events event is determined by the
configuration on the server.

The table under Parameters details all the agent statistics that can be received. To optimize bandwidth, the
default configuration on the server is set to minimize the agent statistics sent. Only the statistics that the Agent
Statistics grid is configured for are sent to the client. For more information about on how to configure the
agent statistics grid and minimize agent statistics, see CTI OS System Manager's Guide for Cisco Unified
ICM/Contact Center Enterprise & Hosted.

Syntax

C++
void OnAgentStatistics (Arguments & args);

COM
HRESULT OnAgentStatistics ([in] IArguments * args);

VB
Session_ OnAgentStatistics (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 90: OnAgentStatistics Parameters

TypeDescriptionKeyword

INTThe Unified ICM PeripheralID of
the ACDwhere the agent is located.

PeripheralID

STRINGThe agent's ACD teleset extension.AgentExtension (required)

STRINGThe agent's ACD login ID.AgentID (required)

STRINGThe agent's ACD instrument
number.

AgentInstrument (required)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
235

Event Interfaces and Events
OnAgentStatistics

The OnAgentStatistics event contains all the agent statistics fields necessary to display the statistics configured
on the CTI OS server.

OnChatMessage
The OnChatMessage event is generated when an asynchronous text message is received from another user
(agent).

Syntax

C++
void OnChatMessage(Arguments& args)

COM
void OnChatMessage (IArguments * args)

VB
session_OnChatMessage (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 91: OnChatMessage Parameters

DescriptionTypeKeyword

Currently the only supported value
is “agent”.

STRINGDistribution

The AgentID of the message target.STRINGAgentID

The AgentID of the message target.STRINGTarget

The text message provided by the
sender.

STRINGMessage

The AgentID of the message
sender.

STRINGSource

OnControlFailureConf
The OnControlFailureConf event is generated when the previously issued request, identified by the InvokeID
field failed. It is sent in place of the corresponding confirmation message for that request.

Syntax

C++
void OnControlFailureConf(Arguments& args)

COM
void OnControlFailureConf (IArguments * args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
236

Event Interfaces and Events
OnChatMessage

VB
session_OnControlFailureConf (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 92: OnControlFailureConf Parameters

DescriptionTypeKeyword

InvokeID of the request that failedINTInvokeID

A value specifying the reason that
the request failed. For a list of the
Control Failure Code see the table
below.

SHORTFailureCode

Peripheral-specific error data, if
available. Zero otherwise.

INTPeripheralError Code

Agent ID that represents a specific
client.

STRINGAgentID

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

Contains the CTI OS Command
Request ID that failed to execute.
The message types included in this
parameter are those to used to
control Call, Agent State and
Supervisor actions. For more
information, see CTI OSKeywords
and Enumerated Types, on page
499.

INTMessageType

String text containing the
description of the failure.

STRINGErrorMessage

Table 93: Control Failure Codes

ValueDescriptionStatus Code

0No error occurred.E_CTI_NO_ERROR

1The CTI Server does not support the protocol version
number requested by the CTI client.

E_CTI_INVALID_ VERSION

2A message with an invalid message type field was
received.

E_CTI_INVALID_MESSAGE_TYPE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
237

Event Interfaces and Events
OnControlFailureConf

ValueDescriptionStatus Code

3A message with an invalid floating field tag was
received.

E_CTI_INVALID_ FIELD_TAG

4No session is currently open on the connection.E_CTI_SESSION_ NOT_OPEN

5A session is already open on the connection.E_CTI_SESSION_ALREADY_OPEN

6The request did not include one or more floating items
that are required.

E_CTI_REQUIRED_ DATA_
MISSING

7A message with an invalid PeripheralID value was
received.

E_CTI_INVALID_ PERIPHERAL_ID

8The provided agent data items are invalid.E_CTI_INVALID_ AGENT_ DATA

9The indicated agent is not currently logged in.E_CTI_AGENT_NOT_LOGGED_ON

10The indicated agent teleset is already associated with
a different CTI client.

E_CTI_DEVICE_IN_ USE

11This session is being terminated due to a new session
open request from the client.

E_CTI_NEW_ SESSION_ OPENED

12A request message was received for a function or
service that was not granted to the client.

E_CTI_FUNCTION_ NOT_
AVAILABLE

13A request message was received with an invalid
CallID value.

E_CTI_INVALID_ CALLID

14The CTI client cannot update the requested variable.E_CTI_PROTECTED_ VARIABLE

15The CTI Server cannot function normally. The CTI
client closes the session upon receipt of this error.

E_CTI_CTI_SERVER_ OFFLINE

16The CTI Server failed to respond to a request message
within the time-out period, or no messages were
received from the CTI client within the IdleTimeout
period.

E_CTI_TIMEOUT

17An unspecified error occurred.E_CTI_UNSPECIFIED_FAILURE

18The IdleTimeout field contains a value that is less
than 20 seconds (4 times the minimum heartbeat
interval of 5 seconds).

E_CTI_INVALID_ TIMEOUT

19The ServicesRequested field has unused bits set. All
unused bit positions must be zero.

E_CTI_INVALID_ SERVICE_MASK

20The CallMsgMask field has unused bits set. All
unused bit positions must be zero.

E_CTI_INVALID_
CALL_MSG_MASK

21The AgentStateMask field has unused bits set. All
unused bit positions must be zero.

E_CTI_INVALID_ AGENT_ STATE_
MASK

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
238

Event Interfaces and Events
OnControlFailureConf

ValueDescriptionStatus Code

22A Reserved field has a non-zero value.E_CTI_INVALID_ RESERVED_
FIELD

23A floating field exceeds the allowable length for that
field type.

E_CTI_INVALID_ FIELD_ LENGTH

24A STRING field contains characters that are not digits
(“0” through “9”).

E_CTI_INVALID_ DIGITS

25The message is improperly constructed. This can be
caused by omitted or incorrectly sized fixed message
fields.

E_CTI_BAD_ MESSAGE_ FORMAT

26A floating field tag is present that specifies a field that
does not belong in this message type.

E_CTI_INVALID_ TAG_FOR_MSG_
TYPE

27A DeviceIDType field contains an invalid value.E_CTI_INVALID_ DEVICE_ID_
TYPE

28A LocalConnectionState field contains an invalid
value.

E_CTI_INVALID_ LCL_CONN_
STATE

29An EventCause field contains an invalid value.E_CTI_INVALID_ EVENT_ CAUSE

30The NumParties field contains a value that exceeds
the maximum (16).

E_CTI_INVALID_ NUM_ PARTIES

31The SystemEventID field contains an invalid value.E_CTI_INVALID_ SYS_ EVENT_ID

32The provided agent extension, agent ID, and/or agent
instrument values are inconsistent with each other.

E_CTI_ INCONSISTENT_
AGENT_DATA

33AConnectionDeviceIDType field contains an invalid
value.

E_CTI_INVALID_
CONNECTION_ID_ TYPE

34The CallType field contains an invalid value.E_CTI_INVALID_ CALL_TYPE

35A CallDataUpdate or Release Call request specified
a call that the client is not a party to.

E_CTI_NOT_CALL_ PARTY

36The ClientID and Client Password provided in an
OPEN_REQ message is incorrect.

E_CTI_INVALID_ PASSWORD

37The client TCP/IP connection was disconnected
without a CLOSE_REQ.

E_CTI_CLIENT_ DISCONNECTED

38An invalid object state value was provided.E_CTI_INVALID_ OBJECT_ STATE

39An invalid NumSkillGroups value was provided.E_CTI_INVALID_ NUM_
SKILL_GROUPS

40An invalid NumLines value was provided.E_CTI_INVALID_ NUM_LINES

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
239

Event Interfaces and Events
OnControlFailureConf

ValueDescriptionStatus Code

41An invalid LineType value was provided.E_CTI_INVALID_ LINE_TYPE

42An invalid AllocationState value was provided.E_CTI_INVALID_
ALLOCATION_STATE

43An invalid AnsweringMachine value was provided.E_CTI_INVALID_ ANSWERING_
MACHINE

44An invalid CallMannerType value was provided.E_CTI_INVALID_CALL_MANNER_
TYPE

45An invalid CallPlacementType value was provided.E_CTI_INVALID_
CALL_PLACEMENT_ TYPE

46An invalid ConsultType value was provided.E_CTI_INVALID_CONSULT_TYPE

47An invalid FacilityType value was provided.E_CTI_INVALID_ FACILITY_TYPE

48The provided MessageType is invalid for the opened
protocol version.

E_CTI_INVALID_ MSG_TYPE_
FOR_ VERSION

49A floating field tag value is invalid for the opened
protocol version.

E_CTI_INVALID_ TAG_FOR_
VERSION

50An invalid AgentWorkMode value was provided.E_CTI_INVALID_ AGENT_WORK_
MODE

51An invalid call option value was provided.E_CTI_INVALID_ CALL_OPTION

52An invalid destination country value was provided.E_CTI_INVALID_ DESTINATION_
COUNTRY

53An invalid answer detect mode value was provided.E_CTI_INVALID_
ANSWER_DETECT_ MODE

54A peripheral monitor request cannot specify both a
call and a device.

E_CTI_MUTUALLY_
EXCLUS_DEVICEID_ TYPES

55An invalid monitorID value was provided.E_CTI_INVALID_ MONITORID

56A requested session monitor was already created.E_CTI_SESSION_ MONITOR_
ALREADY_EXISTS

57A client may not monitor its own session.E_CTI_SESSION_ MONITOR_IS_
CLIENTS

58An invalid call control mask value was provided.E_CTI_INVALID_
CALL_CONTROL_ MASK

59An invalid feature mask value was provided.E_CTI_INVALID_FEATURE_MASK

60An invalid transfer conference setup mask value was
provided.

E_CTI_INVALID_ TRANSFER_
CONFERENCE_ SETUP_MASK

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
240

Event Interfaces and Events
OnControlFailureConf

ValueDescriptionStatus Code

61An invalid named array index value was provided.E_CTI_INVALID_ ARRAY_INDEX

62An invalid character value was provided.E_CTI_INVALID_ CHARACTER

63There is no open session with a matching ClientID.E_CTI_CLIENT_NOT_FOUND

64The agent's supervisor is unknown or does not have
an open CTI session.

E_CTI_SUPERVISOR_NOT_FOUND

65The agent is not a member of an agent team.E_CTI_TEAM_NOT_ FOUND

66The specified agent does not have an active call.E_CTI_NO_CALL_ ACTIVE

67The specified named variable is not configured in the
Unified ICM database.

E_CTI_NAMED_ VARIABLE_NOT_
CONFIGURED

68The specified named array is not configured in the
Unified ICM database.

E_CTI_NAMED_ ARRAY_NOT_
CONFIGURED

69The specified call variable mask in not valid.E_CTI_INVALID_
CALL_VARIABLE_ MASK

70An internal error occurred manipulating a named
variable or named array element.

E_CTI_ELEMENT_ NOT_FOUND

71The specified distribution type is invalid.E_CTI_INVALID_
DISTRIBUTION_TYPE

72The specified skill group is invalid.E_CTI_INVALID_ SKILL_GROUP

73The total combined size of named variables and
named arrays cannot exceed the limit of 2000 bytes.

E_CTI_TOO_MUCH_ DATA

74The value of the specified named variable or named
array element exceeds the maximum permissible
length.

E_CTI_VALUE_TOO_LONG

75A NamedArray was specified with a NamedVariable
tag.

E_CTI_SCALAR_ FUNCTION_ON_
ARRAY

76A NamedVariable was specified with a NamedArray
tag.

E_CTI_ARRAY_ FUNCTION_ON_
SCALAR

77The value in the NumNamedVariables field is
different than the number of NamedVariable floating
fields in the message.

E_CTI_INVALID_ NUM_NAMED_
VARIABLES

78The value in the NumNamedArrays field is different
than the number of NamedArray floating fields in the
message.

E_CTI_INVALID_ NUM_NAMED_
ARRAYS

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
241

Event Interfaces and Events
OnControlFailureConf

OnEmergencyCall
TheOnEmergencyCall event indicates that a CTI client (with Supervisory capabilities) is handling the indicated
call as an emergency call. This event only applies to ACDs with Supervisor capabilities.

Syntax

C++
void OnEmergencyCall(Arguments& args)

COM
void OnEmergencyCall (IArguments * args)

VB
session_OnEmergencyCall (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 94: OnEmergencyCall Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the call is located.

INTPeripheralID

The Call ID value assigned to the
call by the peripheral or the Unified
ICM.

INTConnection CallID

Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID floating field.

SHORTConnectionDevice IDType

The CTI client SessionID of the
CTI client making the notification.

INTSessionID

The identifier of the connection
between the call and the agent's
device.

INTConnection DeviceID

The ClientID of the client making
the notification.

STRINGClientID (required)

The IP address of the client making
the notification.

STRINGClientAddress (Required)

The agent's teleset extension.STRINGAgentExtension (Required)

The agent's ACD login ID.STRINGAgentID (required)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
242

Event Interfaces and Events
OnEmergencyCall

DescriptionTypeKeyword

The agent's ACD instrument
number.

STRINGAgentInstrument (required)

Remarks

Supported for use with Unified CCE only.

OnLogoutFailed
The OnLogoutFailed is always generated before (or with) an OnControlFailureConf event and is identical to
it but is generated only when a Logout request fails.

Syntax

C++: void OnLogoutFailed (Arguments& args)
COM: void OnLogoutFailed (IArguments * args)
VB: session_OnLogoutFailed (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 95: OnLogoutFailed Parameters

DescriptionTypeKeyword

InvokeID of the request that failed.INTInvokeID

A value specifying the reason that
the request failed. For a list of the
Control Failure Codes see Table
92: OnControlFailureConf
Parameters, on page 237.

SHORTFailureCode

Peripheral-specific error data, if
available. Zero otherwise.

INTPeripheral ErrorCode

OnMakeCallConf
The OnMakeCallConf event confirms the successful completion of the MakeCall request. It conveys the
information detailed in the table under Parameters.

Syntax

C++
C++: int OnMakeCallConf (Arguments & args);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
243

Event Interfaces and Events
OnLogoutFailed

COM
HRESULT OnMakeCallConf ([in] IArguments * args);

VB
Session_ OnMakeCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Java
void OnMakeCallConf (Arguments args);

Parameters

args

Arguments array containing the following fields.

Table 96: OnMakeCallConf Parameters

TypeDescriptionKeyword

UINTThe Call ID value assigned to the
call by the peripheral or the Unified
ICM.

NewConnectionCallID

SHORTIndicates the type of the connection
identifier supplied in the New
ConnectionDeviceID floating field.

NewConnectionDevice IDType

SHORTIdentifies the teleset line used, if
known. Otherwise this field is set
to 0xffff.

LineHandle

SHORTIndicates the type of the teleset line
given in the LineHandle field.

LineType

STRINGThe identifier of the connection
between the call and the device.

NewConnectionDeviceID
(required)

OnNewAgentTeamMember
The OnNewAgentTeamMember event informs the supervisor about a new agent team member. The event is
typically received in response to a RequestAgentTeamList request from the supervisor object. It is also received
when CTI OS Server receives an AGENT_TEAM_CONFIG_EVENT indicating a change in agent team
configuration (add/remove).

Syntax

C++
void OnNewAgentTeamMember (Arguments& args)

COM
void OnNewAgentTeamMember (IArguments * args)

VB
session_OnNewAgentTeamMember (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
244

Event Interfaces and Events
OnNewAgentTeamMember

Parameters

args

Arguments array that can contain the following fields. Not all fields are always returned. Skillgroup and
AgentInstrument are not returned if the agent is not logged in.

Table 97: OnNewAgentTeamMember Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of the agent's ACD.STRINGPeripheralID

Unique object ID of the Agent object for this agent.STRINGUniqueObjectID

One of the values in Table 89: AgentState values, on
page 234 representing the current state of the
associated agent.

SHORTAgentState

The number of skill groups that the agent is currently
associated with, up to a maximum of 99.

INTNumSkillGroups

Agent's ACD login.STRINGAgentID

Agent's ACD teleset extension.STRINGAgentExtension

Agent's ACD instrument number.STRINGAgentInstrument

Agent's last name.STRINGAgentLastName

Agent's first name.STRINGAgentFirstName

Agent's full name.STRINGAgentName

The current status of the agent's availability to take a
call.

SHORTAgentAvailability Status

A peripheral-specific code indicating the reason for
the change in agent state to NotReady.

SHORTEventReasonCode

Contains the bit-mask that specifies what buttons can
be enabled or disabled when the agent is on the state
specified in the AgentState field.

INTEnablementMask

The ID of the agent's supervisor.STRINGSupervisorID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
245

Event Interfaces and Events
OnNewAgentTeamMember

DescriptionTypeKeyword

Used to describe the agent carried in this event. The
possible values for this field as well as their meanings
are as follows:

• TeamMemberFlags.AGENT_FLAG_REGULAR_AGENT
- Value is 0. The agent is a regular agent.

• TeamMemberFlags.AGENT_FLAG_PRIMARY_SUPERVISOR
- Value is 1. The agent is a primary supervisor.

• TeamMemberFlags.AGENT_FLAG_TEMPORARY_AGENT
- Value is 2. The agent is a temporary agent.

• TeamMemberFlags.AGENT_FLAG_SUPERVISOR
- Value is 4. The agent is a supervisor.

INTAgentFlags

Arguments array containing information about the
agent's first skillgroup. The array contains the
following arguments:

• SkillGroupNumber
• SkillGroupID
• StateDuration
• SkillGroupPriority

ARGUMENTSSkillgroup[1}

Arguments array containing information about the
agent's nth skillgroup.

ARGUMENTSSkillgroup[n]

Used to describe a change to the team. The possible
values for this field as well as their meanings are as
follows:

• TeamMemberFlags.CONFIG_OPERATION_ADD_AGENT
- Value is 1 - The agent belongs to the team.

• TeamMemberFlags.CONFIG_OPERATION_REMOVE_AGENT
- Value is 2 - The agent no longer belongs to the
team.

USHORTConfigOperation

OnPostLogout
The OnPostLogout event is generated after the agent has logged out. Arrival of this event guarantees that the
agent state event signalling the agent's transition to logout state was received and handled by all interested
event listeners.

Syntax

C++
void OnPostLogout(Arguments& args)

COM
void OnPostLogout (IArguments * args)

VB
session_OnPostLogout (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
246

Event Interfaces and Events
OnPostLogout

Parameters

args

Arguments array containing the following fields.

Table 98: OnPostLogout Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the agent state
change occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

One of the values in Table 89:
AgentState values, on page 234
representing the current overall
state of the associated agent.

SHORTAgentState

The optional, user-defined number
of the agent SkillGroup affected by
the state change, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber

The system-assigned identifier of
the agent SkillGroup affected by
the state change. May contain the
special value NULL_SKILL_
GROUPwhen not applicable or not
available.

INTSkillGroupID

The number of seconds since the
agent entered this state (typically
0).

INTStateDuration

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority

A peripheral-specific code
indicating the reason for the state
change.

SHORTEventReasonCode

Values representing the current
state of the associated agent with
respect to the indicated Agent Skill
Group.

SHORTSkillGroupState

The agent's ACD login ID.STRINGAgentID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
247

Event Interfaces and Events
OnPostLogout

DescriptionTypeKeyword

The agent's ACD teleset extension.STRINGAgentExtension

The Client Signature of the CTI
Client that is associated with this
agent.

STRINGCTIClientSignature (Optional)

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when the agent is on this
state.

INTEnablementMask

A unique object ID for the Agent
object.

STRINGUniqueObjectID

The agent's ACD instrument
number.

STRINGAgentInstrument

Remarks

When PG failover occurs, the client application can receive an OnPostLogout event with an EventReasonCode
of CTIOS_FORCED_LOGOUT_REASON_CODE. For example, this can happen on an Unified CCE system
after reconnecting to a different server during a failover, because there is a race condition of the PG logging
the agent out and the client reconnecting to the other server before it happens. If this happens, the client
application should not disconnect from CTI OS Server.

OnPreLogout
The OnPreLogout event just before the agent is logged out. It allows for any cleanup or logic that needs to
be done before logout is completed.

Syntax

C++
void OnPreLogout(Arguments& args)

COM
void OnPreLogout (IArguments * args)

VB
session_OnPreLogout (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
248

Event Interfaces and Events
OnPreLogout

Table 99: OnPreLogout Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the agent state
change occurred.

INTPeripheralID

The type of the peripheral.SHORTPeripheralType

One of the values in Table 89:
AgentState values, on page 234
representing the current overall
state of the associated agent.

SHORTAgentState

The optional, user-defined number
of the agent SkillGroup affected by
the state change, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber

The system-assigned identifier of
the agent SkillGroup affected by
the state change. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupID

The number of seconds since the
agent entered this state (typically
0).

INTStateDuration

The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

SHORTSkillGroupPriority

A peripheral-specific code
indicating the reason for the state
change.

SHORTEventReasonCode

Values representing the current
state of the associated agent with
respect to the indicated Agent Skill
Group.

SHORTSkillGroupState

The agent's ACD login ID.STRINGAgentID

The agent's ACD teleset extension.STRINGAgentExtension

The Client Signature of the CTI
Client that is associated with this
agent.

STRINGCTIClientSignature (Optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
249

Event Interfaces and Events
OnPreLogout

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when the agent is on this
state.

Enablement Mask

A unique object ID for the Agent
object.

STRINGUniqueObjectID

The agent's ACD instrument
number.

STRINGAgentInstrument

OnQueryAgentStateConf
The OnQueryAgentStateConf event is generated and returned by the server at login as a response to the
QueryAgentState() request. A user cannot issue this request.

Syntax

C++
void OnQueryAgentStateConf(Arguments& args)

COM
void OnQueryAgentStateConf (IArguments * args)

VB
session_OnQueryAgentStateConf (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 100: OnQueryAgentStateConf Parameters

DescriptionTypeKeyword

Agent's ACD login.STRINGAgentID

Agent's ACD teleset extension.STRINGAgentExtension

Agent's ACD instrument number.STRINGAgentInstrument

One of the values in Table 89:
AgentState values, on page 234
representing the current state of the
associated agent.

SHORTAgentState

The number of skill groups that the
agent is currently associated with,
up to a maximum of 20.

INTNumSkillGroups

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
250

Event Interfaces and Events
OnQueryAgentStateConf

DescriptionTypeKeyword

Argument array that contains Skill
Group information for the j-th
element less than NumSkillGroups.
The message contains
NumSkillGroups elements of this
type.

ARGUMENTSSkillGroup[j]

Media Routing Domain ID as
configured in Unified ICM and the
ARM client.

INTMRDID

The number of tasks currently
assigned to the agent—this is the
number that Unified ICM compares
to the MaxTaskLimit to decide if
the agent is available to be assigned
additional tasks. This includes
active tasks as well as those that are
offered, paused, and in wrapup.

INTNumTasks

The mode that the agent is not in
when the login completes.
ROUTABLE = 0, NOT
ROUTABLE = 1

SHORTAgentMode

Themaximum number of tasks that
the agent can simultaneously work
on.

INTMaxTaskLimit

The Unified ICM Skill Target ID,
a unique agent identifier for Unified
ICM.

INTICMAgentID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
251

Event Interfaces and Events
OnQueryAgentStateConf

DescriptionTypeKeyword

An agent is available to work on a
task in this Media Routing Domain
if the agent meets all of these
conditions:

• The agent is routable for this
Media Routing Domain.

• The agent is not in Not Ready
state for skill groups in other
Media Routing Domain.

• The agent is temp routable,
meaning that the agent is not
in Reserved, Active,
Work-Ready, or Work-Not
Ready state on a
non-interruptible task in
another Media Routing
Domain.

• The agent has not reached the
maximum task limit for this
Media Routing Domain.

An available agent is eligible to be
assigned a task. Who can assign a
task to the agent is determined by
whether or not the agent is
Routable.

An agent is ICMAvailable in MRD
X if he is available in X and
Routable with respect to X. An
agent is ApplicationAvailable in
MRD X if he is available in X and
not Routable with respect to X.
Otherwise an agent is NotAvailable
in MRD X.

NOT AVAILABLE = 0,

ICM AVAILABLE = 1,

APPLICATION AVAILABLE=2

INTAgent Availability Status

Each SkillGroup[j] field in the message contains the following information.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
252

Event Interfaces and Events
OnQueryAgentStateConf

Table 101: SkillGroup Parameters

DescriptionTypeKeyword

The optional, user-defined number
of an agent SkillGroup queue that
the call was added to, as known to
the peripheral. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

INTSkillGroupNumber

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or available.

INTSkillGroupID

The priority of the skill group, or 0
when the skill group priority is not
applicable or not available.

SHORTSkillGroupPriority

One of the values representing the
current state associated agent with
respect to the skill group.

SHORTSkillGroupState

OnSetAgentModeEvent
The OnSetAgentModeEvent event indicates that the client made a successful AgentMode connection.

Syntax

C++
void OnSetAgentModeEvent (Arguments& args)

COM
void OnSetAgentModeEvent (IArguments * args)

VB
Session_OnSetAgentModeEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 102: OnSetAgentModeEven Parameters

DescriptionTypeKeyword

ID of the Unified ICM Peripheral
ACD associated with the agent.

STRINGPeripheralID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
253

Event Interfaces and Events
OnSetAgentModeEvent

DescriptionTypeKeyword

The agent's ID.STRINGAgentID

The new unique object ID for the
Agent object.

STRINGUniqueObject ID

Temporary ID used before server
passes the new unique object ID.

STRINGClientAgent TemporaryID

ID of the client's connection on the
server.

STRINGCIL ConnectionID

Arguments array containing the
following elements:

• StatusCTIServer
• StatusCtiServerDriver
• StatusCentralController
• StatusPeripherals (Arguments
array with a peripheral ID for
each key and a boolean
true/false value indicating if
that peripheral is online.)

ARGUMENTSStatusSystem

OnSetAgentStateConf
The OnSetAgentStateConf confirmation message is fired to the client to indicate that the CTI server received
the SetAgentState request. This confirmation message does not indicate that the agent has changed to the
desired state; rather, the programmer should expect one or more OnAgentStateChange events to indicate the
change of state.

Syntax

C++
int OnSetAgentStateConf (Arguments & args);

COM
HRESULT OnSetAgentStateConf ([out] IArguments * args);

VB
Session_ OnSetAgentStateConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Java
void OnSetAgentStateConf (Arguments args);

Parameters

args

Not used; reserved for future use.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
254

Event Interfaces and Events
OnSetAgentStateConf

OnStartMonitoringAgent
The OnStartMonitoringAgent event is generated when a new agent is selected to be monitored in response to
a StartMonitoringAgent() request.

Syntax

C++
void OnStartMonitoringAgent (Arguments& args)

COM
void OnStartMonitoringAgent (IArguments * args)

VB
session_OnStartMonitoringAgent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 103: OnStartMonitoringAgent Parameters

DescriptionTypeKeyword

Unique object ID for the supervisor
object.

STRINGUniqueObjectID

String containing the Agent ID for
the agent to be monitored.

STRINGAgentReference

String containing the supervisor's
AgentID.

STRINGSupervisorID

Supervisor's unique object ID.STRINGSupervisorKey

If the supervisor has barged in on
the agent's call, the unique object
ID of that call.

STRINGBargedInCallID

The supervisor's agent state.STRINGSupervisor AgentState

Remarks

This is a Supervisor specific event. It is supported for use with Unified CCE only.

OnStopMonitoringAgent
The OnStopMonitoringAgent event is generated when monitoring of an agent is dropped in response to a
StopMonitoringAgent() request.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
255

Event Interfaces and Events
OnStartMonitoringAgent

Syntax

C++
void OnStopMonitoringAgent (Arguments& args)

COM
void OnStopMonitoringAgent (IArguments * args)

VB
session_OnStopMonitoringAgent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 104: OnStopMonitoringAgent Parameters

DescriptionTypeKeyword

Unique object ID for the supervisor
object.

STRINGUniqueObjectID

String containing the Agent ID for
the agent to be monitored.

STRINGAgentReference

String containing the supervisor's
AgentID.

STRINGSupervisorID

Supervisor's unique object ID.STRINGSupervisorKey

If the supervisor has barged in on
the agent's call, the unique object
ID of that call.

STRINGBargedInCallID

The supervisor's agent state.STRINGSupervisor AgentState

Remarks

This is a Supervisor specific event. It is supported for use with Unified CCE only.

OnUserMessageConf
Not supported.

ISkillGroupEvents Interface
The SkillGroup object fires events on the ISkillGroupEvents interface. The following events are published
to subscribers of the ISkillGroupEvents interface.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
256

Event Interfaces and Events
OnUserMessageConf

OnSkillGroupStatisticsUpdated
The OnSkillGroupStatisticsUpdated event is generated when skill group statistics are reported. You can
connfigure the update frequency of OnSkillGroupStatisticsUpdated on the CTIOS server (for more information,
see CTI OS System Manager's Guide for Cisco Unified ICM/Contact Center Enterprise & Hosted).

Syntax

C++
void OnSkillGroupStatisticsUpdated (Arguments& args)

COM
void OnSkillGroupStatisticsUpdated (IArguments * args)

VB
skillgroup_ OnSkillGroupStatisticsUpdated (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 105: OnSkillGroupStatisticsUpdated Parameters

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD on which the agent
resides.

INTPeripheralID

The optional, user-defined number
of the agent skill group as known
to the peripheral. May contain the
special value
NULL_SKILL_GROUP when not
available.

INTSkillGroupNumber

The system-assigned identifier of
the skill group. May contain the
special value
NULL_SKILL_GROUP when not
available.

INTSkillGroupID

The statistics event also contains all the statistics fields listed in Table 157: SkillGroup Statistics, on page 424
in a nested Arguments array named STATISTICS.

OnSkillInfoEvent
Provides information about a particular skill group. This event is sent to any client that has enabled skill group
statistics.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
257

Event Interfaces and Events
OnSkillGroupStatisticsUpdated

Syntax

C++
void OnSkillInfoEvent(Arguments& args)

COM
void OnSkillInfoEvent(IArguments * args)

VB
skillgroup_OnSkillInfoEvent(ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 106: OnSkillInfoEVent Parameters

DescriptionTypeKeyword

Skill group number.INTSkillGroupNumber

Skill group name associated with
the skill group number above.

STRINGSkillGroupName

IButtonEnablementEvents
This interface allows a client application to receive events that indicate what buttons you can enable on the
user interface, given the current agent and current call states.

OnButtonEnablementChange
The OnButtonEnablementChange event is received by a client in agent mode whenever CIL receives an agent
or call event that carries the EnablementMask field in its parameters. This event allows the client application
to enable or disable elements on the user interface. The fields in the event are the same as in
OnButtonEnablementChange.

C++
void OnButtonEnablementChange (Arguments& args)

COM
void OnButtonEnablementChange (IArguments * args)

VB
session_ OnButtonEnablementChange (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
258

Event Interfaces and Events
IButtonEnablementEvents

Table 107: OnButtonEnablementChange Parameters

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call. For more information,
see the table below.

INTEnablementMask

ID of the object (for example,
agent, call) that the event is meant
for.

STRINGUniqueObjectID

The event that triggered the button
enablement change.

INTMessageID

The following table represents the C++/COM/VB enumerations. Enumerations for Java are in the description
of CtiOs_Enums.ButtonEnablement in the Javadoc. Reference bits by the enumeration rather than the actual
number in the bit mask.

Note

Table 108: Table of Enablement Bits

Bit MaskButton

0x00400000DISABLE_ALL

0X00000001ENABLE_ANSWER

0X00000002ENABLE_RELEASE

0X00000004ENABLE_HOLD

0X00000008ENABLE_RETRIEVE

0X00000010ENABLE_MAKECALL

0X00000020ENABLE_TRANSFER_INIT

0X00000040ENABLE_TRANSFER_COMPLETE

0X00000080ENABLE_SINGLE_STEP_TRANSFER

0X00000100ENABLE_CONFERENCE_INIT

0X00000200ENABLE_CONFERENCE_COMPLETE

0X00000400ENABLE_SINGLE_STEP_ CONFERENCE

0X00000800ENABLE_ALTERNATE

0X00001000ENABLE_RECONNECT

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
259

Event Interfaces and Events
OnButtonEnablementChange

Bit MaskButton

0X00002000ENABLE_WRAPUP

0X00004000ENABLE_INSIDE_MAKECALL

0X00008000ENABLE_OUTSIDE_MAKECALL

0X00010000ENABLE_SUPERVISOR_ASSIST

0X00020000ENABLE_EMERGENCY_CALL

0X00040000ENABLE_BAD_LINE_CALL

0X00080000ENABLE_STATISTICS

0X00100000ENABLE_CHAT

0X00200000ENABLE_RECORD

0X01000000ENABLE_LOGIN

0X02000000ENABLE_LOGOUT

0x04000000ENABLE_LOGOUT_WITH_REASON

0X08000000ENABLE_READY

0X10000000ENABLE_NOTREADY

0X20000000ENABLE_NOTREADY_WITH_ REASON

0X40000000ENABLE_WORKREADY

0x80000000ENABLE_WORKNOTREADY

0xF7FFFFFFDISABLE_READY

0xCFFFFFFFDISABLE_NOTREADY

0xBFFFFFFFDISABLE_WORKREADY

Supervisor Button Enablement Masks

0x00000001ENABLE_SET_AGENT_LOGOUT

0x00000002ENABLE_SET_AGENT_READY

0x00000004ENABLE_SILENTMONITOR

0x00000004ENABLE_BARGE_IN

0x00000008ENABLE_INTERCEPT

0x00000010ENABLE_CLEAR

0x00000020ENABLE_START_SILENTMONITOR

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
260

Event Interfaces and Events
OnButtonEnablementChange

Bit MaskButton

0x00000040ENABLE_STOP_SILENTMONITOR

0xFFFFFFFEDISABLE_SET_AGENT_LOGOUT

0xFFFFFFFDDISABLE_SET_AGENT_READY

0xFFFFFFFBDISABLE_SILENTMONITOR

0xFFFFFFFBDISABLE_BARGE_IN

0xFFFFFFF7DISABLE_INTERCEPT

0xFFFFFFEFDISABLE_CLEAR

0xFFFFFFDFDISABLE_START_SILENTMONITOR

0xFFFFFFBFDISABLE_STOP_SILENTMONITOR

DISABLE_BARGE_IN & DISABLE_INTERCEPT
& DISABLE_CLEAR &
DISABLE_SILENTMONITOR &
DISABLE_START_SILENTMONITOR &
DISABLE_STOP_SILENTMONITOR

DISABLE_SUPERVISE_CALL

DISABLE_SET_AGENT_ LOGOUT,
DISABLE_SET_ AGENT_READY

DISABLE_SET_AGENT_STATE

DISABLE_BARGE_IN & DISABLE_INTERCEPT
& DISABLE_CLEAR &
DISABLE_SILENTMONITOR &
DISABLE_START_SILENTMONITOR &
DISABLE_STOP_SILENTMONITOR

DISABLE_ALL_AGENT_SELECT

OnSupervisorButtonChange
A client in agent mode working as supervisor receives the OnSupervisorButtonChange event whenever CIL
receives a Monitored Agent, Monitored call event that carries the SupervisorBtnEnablementMask field in its
parameters. This event allows the client application to enable or disable elements on the user interface. The
fields in the event are the same as in OnButtonEnablementChange.

C++
void OnSupervisorButtonChange (Arguments& args)

COM
void OnSupervisorButtonChange (IArguments * args)

VB
session_ OnSupervisorButtonChange (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
261

Event Interfaces and Events
OnSupervisorButtonChange

Parameters

args

Arguments array containing the following fields.

Table 109: OnSupervisorButtonChange Parameters

DescriptionTypeKeyword

Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the
current call. For more information,
see Table 108: Table of Enablement
Bits, on page 259.

INTSupervisorBtn EnablementMask

Remarks

Supported for use with Unified CCE only.

IMonitoredAgentEvents Interface

The events in this section are supported for use with Unified CCE only.Note

This interface fires Agent events to a supervisor for his team members. IMonitoredAgentEvents are triggered
by the supervisor sending a StartMonitoringAllAgentTeams request (for more information, see Agent Object,
on page 343). For more information about the event parameters, see the IAgentEvents interface.

The most common event handled is the OnMonitoredAgentStateChange event, which informs a supervisor
of agent state changes of agents in the supervisor's team. All the parameters are the same as the regular
OnAgentStateChange events, except for an additional keyword called CTIOS_MONITORED, which indicates
that this event is for a monitored agent.

List of Monitored Agent events:

OnMonitoredAgentStateChange([in] IArguments *pIArguments);

OnMonitoredAgentInfoEvent([in] IArguments *pIArguments);

IMonitoredCallEvents Interface

The events in this section are supported with Unified CCE only.Note

This interface fires Call events to a supervisor for one of his agent team members. When the supervisor sends
a StartMonitoringAgent request (for more information, see Agent Object, on page 343), the supervisor starts

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
262

Event Interfaces and Events
IMonitoredAgentEvents Interface

receiving MonitoredCallEvents for this “currently” monitored agent. Monitored call events are received until
the supervisor sends a StopMonitoringAgent request for this agent.

The IMonitoredCallEvents interface includes OnMonitoredCallBegin, OnMonitoredCallEnd, and
OnMonitoredCallDataUpdate as well as other call events (see list below). These events are described in detail
for the ICallEventsInterface. The only difference is that the Arguments array contains an additional keyword
call CTIOS_MONITORED, indicating that this event is for a monitored call.

List of Monitored Call events:

OnMonitoredCallBegin([in] IArguments *pIArguments);

OnMonitoredCallEnd([in] IArguments *pIArguments);

OnMonitoredCallDataUpdate([in] IArguments *pIArguments);

OnMonitoredCallDelivered([in] IArguments *pIArguments);

OnMonitoredCallEstablished([in] IArguments *pIArguments);

OnMonitoredCallHeld([in] IArguments *pIArguments);

OnMonitoredCallRetrieved([in] IArguments *pIArguments);

OnMonitoredCallCleared([in] IArguments *pIArguments);

OnMonitoredCallConnectionCleared([in] IArguments *pIArguments);

MonitoredCallReachedNetworkEvent([in] IArguments *pIArguments);

OnMonitoredCallOriginated([in] IArguments *pIArguments);

OnMonitoredCallFailed([in] IArguments *pIArguments);

OnMonitoredCallTransferred([in] IArguments *pIArguments);

OnMonitoredCallConferenced([in] IArguments *pIArguments);

OnMonitoredCallDiverted([in] IArguments *pIArguments);

OnMonitoredTranslationRoute([in] IArguments *pIArguments);

OnMonitoredCallAgentPrecallEvent([in] IArguments *pIArguments);

OnMonitoredCallAgentPrecallAbortEvent([in] IArguments *pIArguments);

MonitoredCallServiceInitiatedEvent([in] IArguments *pIArguments);

MonitoredCallQueuedEvent([in] IArguments *pIArguments);

MonitoredCallDequeuedEvent([in] IArguments *pIArguments);

ISilentMonitorEvents
The silent monitor manager object fires events on the ISilentMonitorEvents interface. The following events
are published to subscribers of the ISilentMonitorEvents interface.

The events in this section are supported with Unified CCE only.Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
263

Event Interfaces and Events
ISilentMonitorEvents

The following events apply only to CTI OS based silent monitor unless noted otherwise.Note

OnCallRTPStarted
The OnCallRTPStarted event indicates that an RTP media stream has started. This event accompanies the
Call object in an Unified CCE environment.

Syntax

C++
void OnCallRTPStarted(Arguments& args)

COM
void OnCallRTPStarted (IArguments * args)

VB
session_OnCallRTPStarted (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 110: OnCallRTPStarted Parameters

DescriptionTypeKeyword

The Monitor ID of the device or
call monitor that caused this
message to be sent to the client, or
zero if there is no monitor
associated with the event (All
Events Service).

UINTMonitorID

The Unified ICM PeripheralID of
the ACD where the device is
located.

UINTPeripheralID

The TCP/IP port number of the CTI
Client connection.

UINTClientPort

The direction of the event. One of
the following values:

0: Input;

1: Output;

2: Bi-directional.

USHORTDirection

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
264

Event Interfaces and Events
OnCallRTPStarted

DescriptionTypeKeyword

The type of the event. One of the
following values:

0: Audio;

1: Video;

2: Data.

USHORTRTPType

The media bit rate, used for g.723
payload only.

UINTBitRate

on/off.USHORTEchoCancellation

In milliseconds.UINTPacketSize

The audio codec type.USHORTPayloadType

Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID floating field.

USHORTConnectionDevice IDType

The Call ID value assigned to this
call by the peripheral or Unified
ICM.

UINTConnectionCallID

The identifier of the connection
between the call and the device.

STRINGConnection DeviceID

The IP address of the phone.STRINGClientAddress

The agent's ACD login ID.STRINGAgentID (optional)

The agent's ACD teleset extension.STRINGAgentExtension (optional)

The agent's ACD instrument
number.

STRINGAgentInstrument (optional)

OnCallRTPStopped
The OnCallRTPStopped event indicates that an RTP media has stopped. This event accompanies the Call
object in an Unified CCE environment.

Syntax

C++
void OnCallRTPStopped(Arguments& args)

COM
void OnCallRTPStopped (IArguments * args)

VB
session_OnCallRTPStopped (ByVal args As CtiosCLIENTLib.IArguments)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
265

Event Interfaces and Events
OnCallRTPStopped

Parameters

args

Arguments array containing the following fields.

Table 111: OnCallRTPStopped Parameters

DescriptionTypeKeyword

The Monitor ID of the device or
call monitor that caused this
message to be sent to the client, or
zero if there is no monitor
associated with the event (All
Events Service).

UINTMonitorID

The Unified ICM PeripheralID of
the ACD where the device is
located.

UINTPeripheralID

The TCP/IP port number of the CTI
Client connection.

UINTClientPort

The direction of the event. One of
the following values:

0: Input;

1: Output;

2: Bi-directional.

USHORTDirection

The type of the event. One of the
following values:

0: Audio;

1: Video;

2: Data.

USHORTRTPType

The media bit rate, used for g.723
payload only.

UINTBitRate

on/off.USHORTEchoCancellation

In milliseconds.UINTPacketSize

The audio codec type.USHORTPayloadType

Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID floating field.

USHORTConnectionDevice IDType

The Call ID value assigned to this
call by the peripheral or Unified
ICM.

UINTConnectionCallID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
266

Event Interfaces and Events
OnCallRTPStopped

DescriptionTypeKeyword

The identifier of the connection
between the call and the device.

STRINGConnection DeviceID

The IP address of the phone.STRINGClientAddress

The agent's ACD login ID.STRINGAgentID (optional)

The agent's ACD teleset extension.STRINGAgentExtension (optional)

The agent's ACD instrument
number.

STRINGAgentInstrument (optional)

OnStartSilentMonitorConf
The OnStartSilentMonitorConf event is sent to the monitoring application to indicate that the CTI OS server
has processed a StartSilentMonitorRequest.

Syntax

C++
void OnStartSilentMonitorConf (Arguments & args);

COM
HRESULT OnStartSilentMonitorConf ([in] Arguments* args);

VB
Session_ OnStartSilentMonitorConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 112: OnStartSilentMonitorConf Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Agent ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGAgentID

Device ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGDeviceID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
267

Event Interfaces and Events
OnStartSilentMonitorConf

DescriptionTypeKeyword

The Unified ICM PeripheralID of
the ACD where the silent monitor
start was requested.

INTPeripheralID

TCP/IP address of the monitoring
application.

STRINGMonitoringIPAddress

TCP/IP port of the monitoring
application.

INTMonitoringIPPort

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

TCP/IPAddress:Port of the CTIOS
server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

OnSilentMonitorStartedEvent

For CTI OS Based Silent Monitor
The OnSilentMonitorStartedEvent event is fired to the subscriber to indicate that a silent monitor session has
started on its behalf and that audio transmission to the monitoring client has started.

Syntax

C++
void OnSilentMonitorStartedEvent(Arguments & args);

COM
HRESULT OnSilentMonitorStartedEvent([in] Arguments* args);

VB
Session_ OnSilentMonitorStartedEvent(ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
268

Event Interfaces and Events
OnSilentMonitorStartedEvent

Table 113: OnSilentMonitorStartedEvent Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Agent ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGAgentID

Device ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGDeviceID

The Unified ICM PeripheralID of
the ACD where silent monitoring
started.

INTPeripheralID

TCP/IP address of the monitoring
application.

STRINGMonitoringIPAddress

TCP/IP port of the monitoring
application.

INTMonitoringIPPort

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

TCP/IP Address: Port of the CTI
OS server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

For CCM-Based Silent Monitor
When you configure CCM based silent monitor, this event tells the monitored application, for example an
agent desktop, that it is being monitored. This event, in addition to call events for the silent monitor call, tells
the monitoring application, for example a supervisor desktop, that silent monitor of the agent has begun.

At failover, the desktop can receive multiple OnSilentMonitorStartedEvents.Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
269

Event Interfaces and Events
For CCM-Based Silent Monitor

Syntax

C++
void OnSilentMonitorStartedEvent(Arguments & args);

COM
HRESULT OnSilentMonitorStartedEvent([in] Arguments* args);

VB
Session_ OnSilentMonitorStartedEvent(ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 114: OnSilentMonitorStartedEvent

DescriptionTypeKeyword

Unique object ID of the agent that
initiated silent monitor.

STRINGSilentMonitorInitiatingAgentUID

ID of the device that initiated silent
monitor.

STRINGSilentMonitorInitiatingDeviceID

Unique object ID of the silently
monitored agent.

STRINGSilentMonitorTargetAgentUID

ID of the silently monitored device.STRINGSilentMonitorTargetDeviceID

Unique object ID of the silent
monitor call.

STRINGSilentMonitorCallUID

OnSilentMonitorStartRequestedEvent
The OnSilentMonitorStartRequestedEvent event is fired to the subscriber to indicate that a silent monitor
session request has arrived and that it will be established on its behalf if the DoDefaultMessageHandling
parameter is set to True. The default behavior is to start sending audio and establish the session automatically.
If the subscriber wishes to process the event by itself, they must set the DoDefaultMessageHandling parameter
to False and invokeAcceptSilentMonitoringwhen it is ready to start the session and call ReportSMSessionStatus
to the monitoring client.

CTI OS server generates this event whenever a remote application calls the StartSilentMonitorRequest method.

Syntax

C++
void OnSilentMonitorStartRequestedEvent(Arguments & args);

COM
HRESULT OnSilentMonitorStartRequestedEvent([in] Arguments* args);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
270

Event Interfaces and Events
OnSilentMonitorStartRequestedEvent

VB
Session_ OnSilentMonitorStartRequestedEvent(ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 115: OnSilentMonitorStartRequestedEvent Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Agent ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGAgentID

Device ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGDeviceID

The Unified ICM PeripheralID of
the ACD where the silent monitor
start was requested.

INTPeripheralID

TCP/IP address of the monitoring
application.

STRINGMonitoringIPAddress

TCP/IP port of the monitoring
application.

INTMonitoringIPPort

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

TCP/IP Address: Port of the CTI
OS server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
271

Event Interfaces and Events
OnSilentMonitorStartRequestedEvent

DescriptionTypeKeyword

When this parameter is set to True,
it instructs the
SilentMonitorManager to
immediately start sending audio and
establish the silent monitor session.
If this parameter is set to False, it
instructs the SilentMonitorManager
to not send voice and to not
establish the silent monitor session.
In this case, it is the responsibility
of the subscriber to report this
status accordingly.

BOOLEANDoDefaultMessage Handling

OnSilentMonitorSessionDisconnected
The OnSilentMonitorSessionDisconnected event is sent to the application to report errors if the connection
fails between the monitoring and monitored clients.

Syntax

C++
void OnSilentMonitorSessionDisconnected (Arguments & args);

COM
HRESULT OnSilentMonitorSessionDisconnected ([in] Arguments* args);

VB
Session_ OnSilentMonitorSessionDisconnected (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 116: OnSilentMonitorSessionDisconnected Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

One of the ISilentMonitorEvent
status codes in Table 120:
ISilentMonitorEvent Status Codes,
on page 276.

SHORTStatusCode

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
272

Event Interfaces and Events
OnSilentMonitorSessionDisconnected

OnSilentMonitorStopRequestedEvent

For CTI OS Based Silent Monitor
The OnSilentMonitorStopRequestedEvent event is fired to the subscriber to indicate that a silent monitor
session was stopped on their behalf. CTI OS server generates this event whenever a remote application calls
the StopSilentMonitorRequest method.

Syntax

C++
void OnSilentMonitorStopRequestedEvent(Arguments & args);

COM
HRESULT OnSilentMonitorStopRequestedEvent([in] Arguments* args);

VB
Session_ OnSilentMonitorStopRequestedEvent(ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 117: OnSilentMonitorStopRequestedEvent Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Agent ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGAgentID

Device ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGDeviceID

The Unified ICM PeripheralID of
the ACD where silent monitoring
has stopped.

INTPeripheralID

TCP/IP address of the monitoring
application.

STRINGMonitoringIPAddress

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
273

Event Interfaces and Events
OnSilentMonitorStopRequestedEvent

DescriptionTypeKeyword

TCP/IPAddress:Port of the CTIOS
server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

For CCM-Based Silent Monitor
When CCMbased silent monitor is configured this event tells the monitored application, for example an agent
desktop, that it is no longer being monitored. This event in addition to call events for the silent monitor call
tells the monitoring application, for example a supervisor desktop, that silent monitor of the agent has ended.

If an error occurs, the Disposition field is set to the error returned in OnControlFailure.

Syntax

C++
void OnSilentMonitorStopRequestedEvent(Arguments & args);

COM
HRESULT OnSilentMonitorStopRequestedEvent([in] Arguments* args);

VB
Session_ OnSilentMonitorStopRequestedEvent(ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 118: OnSilentMonitorStopRequestedEvent Parameters

DescriptionTypeKeyword

Unique object ID of the agent that
initiated silent monitor.

STRINGSilentMonitorInitiatingAgentUID

ID of the device that initiated silent
monitor.

STRINGSilentMonitorInitiatingDeviceID

Unique object ID of the silently
monitored agent.

STRINGSilentMonitorTargetAgentUID

ID of the silently monitored device.STRINGSilentMonitorTargetDeviceID

Unique object ID of the silent
monitor call.

STRINGSilentMonitorCallUID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
274

Event Interfaces and Events
For CCM-Based Silent Monitor

DescriptionTypeKeyword

If the silent monitor session failed,
the event cause carried by the call
failed event is stored here.

If the silent monitor session was
either terminated by the supervisor
or the agent's call ended, this field
is set to 0.

unsigned intSilentMonitorCallDisposition

OnSilentMonitorStatusReportEvent
The OnSilentMonitorStatusReportEvent event indicates a change in status of a silent monitor session. This
event is sent only to the monitoring application.

Syntax

C++
void OnSilentMonitorStatusReportEvent (Arguments & args);

COM
HRESULT OnSilentMonitorStatusReportEvent ([in] Arguments* args);

VB
Session_ OnSilentMonitorStatusReportEvent (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 119: OnSilentMonitorStatusReportEvent Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

One of the ISilentMonitorEvent
status codes in Table 120:
ISilentMonitorEvent Status Codes,
on page 276.

SHORTStatusCode

TCP/IPAddress:Port of the CTIOS
server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
275

Event Interfaces and Events
OnSilentMonitorStatusReportEvent

DescriptionTypeKeyword

CIL Client ID of the monitoring
application.

STRINGTargetCILClientID

Table 120: ISilentMonitorEvent Status Codes

Numeric Value (Hex)enum Value

General Codes

-1eSMStatusUnknown

0eSMStatusOK

0x00000001eSMStatusFailed

0x00000002eSMStatusComError

0x00000003eSMStatusMonitorStarted

0x00000004eSMStatusMonitorStopped

0x00000005eSMStatusHeartbeatTimeout

0x00000006eSMStatusOutOfMemory

0x00000007eSMStatusPortUnavailable

0x00000008eSMStatusIncorrectStateForThisAction

0x00000009eSMStatusResourceError

0x0000000AeSMStatusRejectedBadParameter

0x0000000BeSMStatusWinsockError

0x0000000CeSMStatusMediaTerminationNotPresent

0x0000000DeSMStatusIPPhoneInformatioNotAvailable

0x0000000EeSMStatusMissingParameter

0x0000000FeSMStatusSessionNotFound

0x00000010eSMStatusSessionAlreadyExists

0x00000011eSMStatusDisconnected

0x00000012eSMStatusInvalidStateForAction

0x00000013eSMStatusInProgress

0x00000014eSMStatusMaxSessionsExceeded

0x00000015eSMStatusCCMSilentMonitor

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
276

Event Interfaces and Events
OnSilentMonitorStatusReportEvent

Numeric Value (Hex)enum Value

Silent Monitor Session Codes

0x10000000eSMStatusSessionTerminatedAbnormally

0x10000001eSMStatusRejectedAlreadyInSession

0x10000002eSMStatusRejectedWinPcapNotPresent

0x10000003eSMStatusWinPcapError

0x10000004eSMStatusMediaUnknownCodec

0x10000005eSMStatusIncorrectSessionMode

0x10000006eSMStatusPeerSilentMonitorNotEnabled

0x10000007eSMStatusSilentMonitorNotEnabled

0x10000008eSMStatusNoResponseFromPeer

0x10000009eSMStatusPeerLoggedOut

0x1000000AeSMStatusSessionTerminatedByMonitoredClient

0x1000000BeSMStatusSessionTerminatedByMonitoringClient

0x1000000CeSMStatusNoRTPPacketsReceivedFormIPPhone

0x1000000DeSMStatusSessionConnectionToDelegateLost

0x20000000eSMStatusMTError

Voice Capture-Specific Codes

0x30000000eSMStatusWPNoPacketsReceived

0x30000001eSMStatusWPFailedToOpenDevice

0x30000002eSMStatusWPFailedToSetFilterExp

0x30000003eSMStatusWPErrorInFilterExp

OnStopSilentMonitorConf
This OnStopSilentMonitorConf event is sent to the monitoring application to indicate that the CTI OS server
has processed a StopSilentMonitorRequest.

Syntax

C++
void OnStopSilentMonitorConf (Arguments & args);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
277

Event Interfaces and Events
OnStopSilentMonitorConf

COM
HRESULT OnStopSilentMonitorConf ([in] Arguments* args);

VB
Session_ OnStopSilentMonitorConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 121: OnStopSilentMonitorConf Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Agent ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGAgentID

Device ID of the agent to be
monitored. This message contains
either AgentID or DeviceID, but
not both.

STRINGDeviceID

The Unified ICM PeripheralID of
the ACD where the silent monitor
start was requested.

INTPeripheralID

TCP/IP address of the monitoring
application.

STRINGMonitoringIPAddress

TCP/IP port of the monitoring
application.

INTMonitoringIPPort

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

TCP/IPAddress:Port of the CTIOS
server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

DescriptionTypeKeyword

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
278

Event Interfaces and Events
OnStopSilentMonitorConf

Unique Object ID of the object being monitored.STRINGMonitoredUniqueObjectID

Agent ID of the agent whowasmonitored. This message
contains either AgentID or DeviceID, but not both.

STRINGAgentID

Device ID of the agent who was monitored. This
message contains either AgentID or DeviceID, but not
both.

STRINGDeviceID

The Unified ICMPeripheralID of the ACDwhere silent
monitoring has stopped.

INTPeripheralID

TCP/IP address of the monitoring application.STRINGMonitoringIPAddress

Unique identifier for the Silent Monitor Session.UNSIGNEDSHORTSMSessionKey

TCP/IP Address:Port of the CTI OS server from which
the request originated.

STRINGOriginatingServerID

Client Identification of the monitoring application.STRINGOriginatingClientID

OnRTPStreamTimedoutEvent
The OnRTPStreamTimedoutEvent event is sent to the monitored application to report that no RTP voice
packets were received from the monitored IP Phone.

Syntax

C++
void OnRTPStreamTimedoutEvent (Arguments & args);

COM
HRESULT OnRTPStreamTimedoutEvent ([in] Arguments* args);

VB
Session_ OnRTPStreamTimedoutEvent (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Table 122: OnRTPStreamlinedEvent Parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
279

Event Interfaces and Events
OnRTPStreamTimedoutEvent

DescriptionTypeKeyword

One of the ISilentMonitorEvent
status codes in Table 120:
ISilentMonitorEvent Status Codes,
on page 276.

SHORTStatusCode

IGenericEvents Interface
The IGenericEvents interface receives Generic events. Unlike other interfaces that have a callback method
for each event, the IGenericEvents interface has one method that passes the CtiOs_Enums.EventID code and
the Arguments for the event.

OnEvent
Passes the eventID code and arguments for generic events received by the IGenericEvents interface.

Syntax

Java
void OnEvent(int iEventID, Arguments rArgs

.NET
void OnEvent(int iEventID, Cisco.CtiOs.Cil.EventPublisher.EventPublisherEventArgs args)

Java Adapter Classes
The CTI OS Java CIL contains the same adapter classes as the C++ CIL plus the LogEventsAdapter class.
This class provides the default implementation for the message handlers in ILogEvents.

This section lists the methods available in the CTI OS Java CIL for event subscription and unsubscription.

IAllInOne
The following methods subscribe and unsubscribe the CTI OS Session Object for the IAllInOne interface:

Methods

• int addAllInOneEventListener(IAllInOne allInOneEvents)

• int removeAllInOneEventListener(IAllInOne allInOneEvents)

IAgentEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for the IAgentEventsinterface:

Methods

• int addAgentEventListener(IAgentEvents agentEvents)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
280

Event Interfaces and Events
IGenericEvents Interface

• int removeAgentEventListener(IAgentEvents agentEvents)

IButtonEnablementEvents
The followingmethods subscribe and unsubscribe the CTI OS Session Object for the IButtonEnablementEvents
interface:

Methods

• int addButtonEnablementEventListener(IButtonEnablementEvents buttonEvents)

• int removeButtonEnablementEventListener(IButtonEnablementEvents buttonEvents)

ICallEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for the ICallEvents interface:

Methods

• int addCallEventListener (ICallEvents callEvents)

• int removeCallEventListener (ICallEvents callEvents)

ISkillGroupEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for the ISkillGrouEvents
interface:

Methods

• int addSkillGroupEventListener (ISkillGroupEvents skillGroupEvents)

• int removeSkillGroupEventListener (ISkillGroupEvents skillGroupEvents)

Events in Java CIL
To subscribe for events in the Java CIL, use the AddEventListener method. This method has the following
syntax:

int AddEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that subscribes for events and iListID is the ID of the subscriber
list to add this listener to. Java subscriber list IDs are part of the CtiOs_Enums.SubscriberList interface; each
C++/COM/VB event interface has a corresponding Java subscriber list (for example, C++/COM/VB
ISessionEvents corresponds to Java eSessionList). For more information about the CtiOs_Enums.SubscriberList
interface, see the Javadoc file.

The IGenericEvents interface, though it contains the C++/COM/VB events documented in this chapter, does
not have a callbackmethod for each event. Instead, the OnEvent method passes the event ID code and arguments
for each event. The OnEvent method has the following syntax:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
281

Event Interfaces and Events
IButtonEnablementEvents

void OnEvent(int iEventID, Arguments rArgs)

where iEventID is the event ID code for the event and rArgs is the arguments for the event. The arguments
for each Java event are the same as for the corresponding C++/COM/VB event. For more information about
the IGenericEvents interface, see the Javadoc file.

To unsubscribe for events in the Java CIL, use the RemoveEventListener method. This method has the
following syntax:

int RemoveEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that is unsubscribing for events and iListID is the ID of the
subscriber list to remove this listener from.

Events in .NET CIL
To subscribe for events in the .NET CIL, use the AddEventListener method. This method has the following
syntax:

CilError AddEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that subscribes for events and iListID is the ID of the subscriber
list to add this listener to. Subscriber list IDs for .NET are part of the CtiOs_Enums.SubscriberList interface;
each C++/COM/VB event interface has a corresponding .NET subscriber list (for example, C++/COM/VB
ISessionEvents corresponds to .NET eSessionList).

The IGenericEvents interface, though it contains the C++/COM/VB events documented in this chapter, does
not have a callbackmethod for each event. Instead, the OnEvent method passes the event ID code and arguments
for each event. The OnEvent method has the following syntax:

void OnEvent(Object sender, Cisco.CtiOs.Cil.EventPublisher.EventPublisherEventArgs
eventArgs)

where, sender is a null object and eventArgs contains the eventID and arguments for the event. The arguments
for each .NET event are the same as for the corresponding C++/COM/VB event.

The EventPublisherEventArgs class is a data type that defines the information passed to receivers of the event.
This information includes the event ID and an Arguments array containing the arguments for the event.
Therefore, event handling code must extract the event arguments from the EventPublisherEventArgs object
as shown in the following sample code snippet, which uses the .NET CIL:

Arguments args = eventArgs.rArgs;EventID receivedEvent = (EventID)
eventArgs.iEventID;
switch(receivedEvent)
{
case EventID.eQueryAgentStatisticsConf:
ProcessQueryConf(args);
break;
...
}

To unsubscribe for events in the .NET CIL, use the RemoveEventListener method.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
282

Event Interfaces and Events
Events in .NET CIL

This method has the following syntax:

CilError RemoveEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that is unsubscribing for events and iListID is the ID of the
subscriber list from which to remove this listener.

Event Parameters

Amount of Nonessential Call Object Parameters
The MinimizeEventArgs registry value controls the amount of nonessential Call object parameters that are
sent to the client. When MinimizeEventArgs is set to 1, a minimal set of nonessential Call object parameters
are sent to the CTI OS Client. When the MinimizeEventArgs registry value is set to 0, the CTI OS server
sends to CTI OS Clients the event parameters listed in Table 6-90.

The MinimizeEventArgs value is located under the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems,

Inc.\Ctios\<Customer-Instancename>\CTIOS1\Server\CallObject

Table 123: MinimizeEventArgs Event Parameters

ParametersEvent Name

CTIOS_RETRIEVINGDEVICEID

CTIOS_RETRIEVINGDEVICEIDFULL

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_CALLSTATUS*

CTIOS_FILTERTARGET**

eCallRetrievedEvent

CTIOS_HOLDINGDEVICEID

CTIOS_HOLDINGDEVICEIDFULL

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallHeldEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
283

Event Interfaces and Events
Event Parameters

ParametersEvent Name

CTIOS_RELEASINGDEVICEID

CTIOS_RELEASINGDEVICEIDFULL

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallConnectionClearedEvent

CTIOS_PRIMARYCALLID

CTIOS_SECONDARYCALLID

CTIOS_TRANSFERRINGDEVICEID

CTIOS_TRANSFERRINGDEVICEIDFULL

CTIOS_TRANSFERREDDEVICEID

CTIOS_TRANSFERREDDEVICEIDFULL

CTIOS_NUMPARTIES

ConnectedParty[PartyNumber]

CTIOS_ISTRANSFERCONTROLLER

GenerateCallDataUpdateArgs()***

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallTransferredEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
284

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

ParametersEvent Name

CTIOS_PRIMARYCALLID

CTIOS_SECONDARYCALLID

CTIOS_CONTROLLERDEVICEID

CTIOS_CONTROLLERDEVICEIDFULL

CTIOS_ADDEDPARTYDEVICEID

CTIOS_ADDEDPARTYDEVICEIDFULL

CTIOS_PRIMARYDEVICEID

CTIOS_PRIMARYDEVICEIDFULL

CTIOS_SECONDARYDEVICEID

CTIOS_SECONDARYDEVICEIDFULL

CTIOS_NUMPARTIES

ConnectedParty[PartyNumber]

GenerateCallDataUpdateArgs()***

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallConferencedEvent

GenerateCallDataUpdateArgs()***

CTIOS_DEVICEID

CTIOS_DIVERTINGDEVICEID

CTIOS_DIVERTINGDEVICEIDFULL

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallBeginEvent,

eCallDataUpdateEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
285

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

ParametersEvent Name

GenerateCallDataUpdateArgs()***

CTIOS_DIVERTINGDEVICEID

CTIOS_DIVERTINGDEVICEIDFULL

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallDivertedEvent

Includes all the parameters except for:

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_CALLCONNECTIONCALLID

CTIOS_CALLCONNECTIONDEVICEIDTYPE

CTIOS_CALLCONNECTIONDEVICEID

CTIOS_CALLDEVICECONNECTIONSTATE

CTIOS_CALLDEVICETYPE

eSnapshotCallConf

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
286

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

ParametersEvent Name

CTIOS_ANSWERINGDEVICEID

CTIOS_ANSWERINGDEVICEIDFULL

CTIOS_CALLINGDEVICEID

CTIOS_CALLINGDEVICEIDFULL

CTIOS_CALLEDDEVICEID

CTIOS_CALLEDDEVICEIDFULL

CTIOS_SKILLGROUPID

CTIOS_SKILLGROUPNUMBER

CTIOS_SKILLGROUPPRIORITY

CTIOS_SERVICEID

CTIOS_SERVICENUMBER

CTIOS_LINETYPE

CTIOS_MEASUREDCALLQTIME

CTIOS_CAMPAIGNID

CTIOS_QUERYRULEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallEstablishedEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
287

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

ParametersEvent Name

CTIOS_ALERTINGDEVICEID

CTIOS_ALERTINGDEVICEIDFULL

CTIOS_CALLINGDEVICEID

CTIOS_CALLEDDEVICEID

CTIOS_CALLINGDEVICEIDFULL

CTIOS_CALLEDDEVICEIDFULL

CTIOS_SKILLGROUPID

CTIOS_SKILLGROUPNUMBER

CTIOS_SKILLGROUPPRIORITY

CTIOS_SERVICEID

CTIOS_SERVICENUMBER

CTIOS_LINETYPE

CTIOS_MEASUREDCALLQTIME

CTIOS_CAMPAIGNID

CTIOS_QUERYRULEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallDeliveredEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
288

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

ParametersEvent Name

CTIOS_CALLINGDEVICEIDFULL

CTIOS_CALLEDDEVICEIDFULL

CTIOS_CALLINGDEVICEID

CTIOS_CALLEDDEVICEID

CTIOS_SKILLGROUPID

CTIOS_SKILLGROUPNUMBER

CTIOS_SKILLGROUPPRIORITY

CTIOS_SERVICEID

CTIOS_SERVICENUMBER

CTIOS_LINETYPE

CTIOS_MEASUREDCALLQTIME

CTIOS_CAMPAIGNID

CTIOS_QUERYRULEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallServiceInitiatedEvent,

eCallOriginatedEvent,

eCallQueuedEvent,

eCallDequeuedEvent

CTIOS_PERIPHERALERRORCODE

CTIOS_ERRORMESSAGE

CTIOS_FAILURECODE

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eControlFailureConf

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
289

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

ParametersEvent Name

CTIOS_ERRORMESSAGE

CTIOS_FAILURECODE

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eFailureConf,

eFailureEvent,

eCallFailedEvent

CTIOS_DEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallEndEvent

* If the eCallFailedEvent notification is received, the CTIOS_CALLSTATUS parameter is not added to any
more events for the call ID specified in the eCallFailedEvent.

** If there is an agent on the device, then CTIOS_FILTERTARGET is added to all events listed in table 6-90.

*** The GenerateCallDataUpdateArgs() method adds the following parameters to the event:

CTIOS_PERIPHERALID,CTIOS_PERIPHERALTYPE,CTIOS_CALLTYPE,CTIOS_UNIQUEOBJECTID,
CTIOS_ROUTERCALLKEYDAY,CTIOS_ROUTERCALLKEYCALLID,CTIOS_CONNECTIONCALLID,
CTIOS_ANI, CTIOS_USERTOUSERINFO, CTIOS_DNIS, CTIOS_DIALEDNUMBER,
CTIOS_CALLERENTEREDDIGITS, CTIOS_SERVICENUMBER, CTIOS_SERVICEID,
CTIOS_SKILLGROUPNUMBER, CTIOS_SKILLGROUPPRIORITY, CTIOS_CALLWRAPUPDATA,
CTIOS_CAMPAIGNID,CTIOS_QUERYRULEID,CTIOS_CALLVARIABLE1,CTIOS_CALLVARIABLE2,
CTIOS_CALLVARIABLE3, CTIOS_CALLVARIABLE4, CTIOS_CALLVARIABLE5,
CTIOS_CALLVARIABLE6, CTIOS_CALLVARIABLE7, CTIOS_CALLVARIABLE8,
CTIOS_CALLVARIABLE9, CTIOS_CALLVARIABLE10, CTIOS_CUSTOMERPHONENUMBER,
CTIOS_CUSTOMERACCOUNTNUMBER, CTIOS_NUMNAMEDVARIABLES,
CTIOS_NUMNAMEDARRAYS, CTIOS_ECC, CTIOS_CTICLIENTS

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
290

Event Interfaces and Events
Amount of Nonessential Call Object Parameters

C H A P T E R 7
CtiOs Object

• CtiOs Object, on page 291
• Methods, on page 291

CtiOs Object
All of the interface objects in the CTI OS Client Interface Library support some common features, such as
the IsValid and GetValue methods. This chapter describes these common features.

The CCtiOsObject class is the common base class for the objects in the CTI OS client interface library. You
implement it as follows:

• In C++: All interface objects (CAgent, CCall, CCtiOsSession, CSkillGroup) derive from the CtiOS
object. Thus, all the interface methods described in this chapter are directly available in the C++ objects.

• In COM (VB and C++): The COM objects for Agent, Call, Session, and SkillGroup publish a subset of
these methods (as appropriate for the language), and the underlying implementation of the objects uses
the C++ CCtiOsObject class to provide these features.

• In Java: All CTI OS interface objects (Agent, Call, Session, and SkillGroup) derive from the CtiOS
object. Thus, all the interface methods described in this chapter are directly available in the Java objects.

• In .NET: All interface objects (Agent, Call, Session, and SkillGroup) derive from the CtiOS object. Thus,
all the interface methods described in this chapter are directly available on the .NET objects.

The CCtiOsObject provides basic services including:

• Dynamic management of the object properties

• Object lifetime control using a reference counting mechanism

• Run-time class information

Methods
The following table lists the available CCtiOsObject class methods.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
291

Table 124: CCtiOsObject Class Methods

DescriptionMethod

Returns a string listing all of an object's properties'
names and values.

DumpProperties

Returns all of the object's properties as Args
(name/value pairs).

GetAllProperties

Returns the value of an element.GetElement

Returns the last error that occurred on the calling
thread.

GetLastError

Returns the number of properties of an object.GetNumProperties

Returns a property name in a string format.GetPropertyName

Returns the data type of the specified property.GetPropertyType

Returns the value of a specified property.GetValue, GetValueInt, GetValueString,
GetValueArray

Checks to see if the property of an object is valid.IsValid

DumpProperties
The DumpProperties method returns all the properties of the object. This method builds a string showing all
the properties in the form “key1 = value1; key2 = value2;...”.

Syntax

C++
string DumpProperties ()

COM
HRESULT DumpProperties (/*[out,retval]*/ BSTR* bstrValue)

VB
DumpProperties() As String

Java
String DumpProperties()

.NET
System.String DumpProperties()

Parameters

bstrValue

The output parameter (return parameter in VB) containing a string listing the names and values of the object's
properties.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
292

CtiOs Object
DumpProperties

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19

All Others: The string listing the names of all the object's properties.

GetAllProperties
The GetAllProperties method returns all the object's properties and their values. For the properties that are
calls, agents, or skillgroups, their string UniqueObjectIDs are returned, not the objects themselves. To get the
objects themselves use GetObjectFromObjectID, on page 328, explained in Session Object, on page 307

Syntax

C++
bool GetAllProperties (Arguments** arguments)

COM
HRESULT GetAllProperties (/*[out]*/ IArguments** arguments, /*[out,retval]*/ VARIANT_BOOL*

errorcode)

VB
GetAllProperties arguments As (CTIOSCLIENTLib.IArguments) As Bool

Java, .NET
Arguments GetAllProperties()

Parameters

C++, COM, VB: arguments

Output parameter in the form of an Arguments array that has all the property names and values of the object.

errorcode

An output parameter (return parameter in VB) that contains a boolean indicating success or lack thereof.

Return Value

C++ , VB: True upon success and false upon failure.

COM: Always returns S_OK. Use the errorcode parameter to determine success or failure of the method call.

.NET, Java: NULL if the value requested is not found or if there is an error. If the method succeeds, it returns
a reference to an Arguments object containing all the properties of the object.

GetElement
Given a property of type Arguments whose name is specified by the key parameter, the GetElement method
returns the Arg at position element of that Arguments array.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
293

CtiOs Object
GetAllProperties

Syntax

C++
Arg& GetElement (string& key, int element)
Arg& GetElement (int key, int element)
Arg& GetElement (char* key, int element)

COM
HRESULT GetElement /*[in]*/ VARIANT* key, /*[in]*/ int element, /*[out,retval]*/ IArg**

pIArg)

VB
GetElement (key As VARIANT) As CTIOSCLIENTLib.IArg

Java
Arg GetElement(String key, int element)
Arg GetElement(int key, int element)

.NET
System.Boolean GetElement(System.String key, int element, out arg rArg)

Parameters

key

A key designating the name of the Arguments property whose element you want.

element

The integer index of the element to retrieve from the property key.

COM, VB:pIArg

An output parameter (return parameter in VB) containing an IArg with the value of the desired element.

.NET: rArg

An output parameter containing the value of the specified element. This parameter is null if the element is
not found.

Return Value

An Arg reference containing the value of the desired element.

The C++ and Java versions of this method return NULL if an error occurs, such as the key or element is not
found. The .NET version of this method returns true upon success and false upon error.

GetLastError (Java and .NET Only)
The GetLastError method returns the last error that occurred on the calling thread.

Syntax

Java
Integer GetLastError()

.NET
System.Boolean GetLastError(out System.Int32 nLastError)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
294

CtiOs Object
GetLastError (Java and .NET Only)

Parameters

Java
None.

.NET
nLastError

Output parameter that is a 32-bit signed integer that contains the returned value of the last error.

Returns

Java:An Integer object containing the error, or null if the object is not found or if there is an error.

.NET:The Boolean value true if the value is successfully set; otherwise false.

Remarks

The following example code gets the last error on the current thread and logs the error message. If GetLastError
fails, the code writes a warning message to the log file:

// First get the last error System.Int32 myLastError;
bool success = GetLastError(out myLastError);
if (!success)
{
// log a message indicating that GetLastError failed
}
else
{
//log a message that indicates what the last error was
LOGBYID(Cisco.CtiOs.Cil.TraceLevel.WARN,"GetLastError returned
last error" = + myLastError);
}

GetNumProperties
The GetNumProperties method returns the number of properties in the current object.

Syntax

C++
int GetNumProperties ()

COM
HRESULT GetNumProperties (/*[out,retval]*/ int * num

VB
GetNumProperties () As Long

Java, .NET
int GetNumProperties()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
295

CtiOs Object
GetNumProperties

Parameters

num

In the COM version, an output parameter (return value in VB, C++, Java, and .NET) that contains an
integer that is the number of properties in the object.

Return Value

COM: Default CTI OS return values. See CIL Coding Conventions, on page 19

All Others: An integer that is the number of properties currently a part of the object.

GetPropertyName
The GetPropertyName method returns the name of a property in a string format.

Syntax

C++
string GetPropertyName (int index)

COM
HRESULT GetPropertyName (/* [in] index, /*[out,retval]*/ name)

VB
GetPropertyName (index As Integer) As String

Java
string GetPropertyName (int iIndex)

.NET
virtual System.Boolean GetPropertyName(int iIndex, out System.String name)

Parameters

index

An integer parameter specifying the index number of the requested property.

name

A string output parameter (return value in C++, VB, and Java) containing the property's name.

Return Value

COM: Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

.NET: Boolean value set to true if the method call succeeds, otherwise false.

All Others: A string that contains the property's name.

GetPropertyType
The GetPropertyType method returns the data type of the specified property.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
296

CtiOs Object
GetPropertyName

Syntax

C++
int GetPropertyType (string& key)
int GetPropertyType (int key)
int GetPropertyType (char* key)

COM
HRESULT GetPropertyType (/*[in]*/ VARIANT* key, /*[out,retval]*/ int* value)

VB
GetPropertyType (key As VARIANT) As Int

Java
int GetPropertyType(string sPropName)
int GetPropertyType(int key)

.NET
virtual ArgDataType GetPropertyType(Enum_CtiOs eKeyID)
virtual ArgDataType GetPropertyType(System.String sPropName)

Parameters

key

Keyword ID name of the property whose type you want. In .NET, eKeyId is the Enum_CtiOs Keyword ID
of the property.

COM:value

An integer pointer to the value of the type.

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19

Others: An integer indicating the property's type with the following possible values:

DescriptionArgument Type

Argument type not determinedARG_NOTSET

Signed integerARG_INT

2 bytes signed integerARG_SHORT

1 byte integerARG_BOOL

C++, COM: STL character stringARG_STRING

VB String object

Variable length array of ArgARG_ARGARRAY

32 bit unsigned intARG_UINT

16 bit unsigned short intARG_USHORT

Arguments arrayARG_ARGUMENT

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
297

CtiOs Object
GetPropertyType

Contains a reference to an object of a CtiOsObject derived
class

ARG_REFERENCE

GetValue
The GetValue method returns the value of the specified property. Use this method if you do not know the
type of the property. Otherwise, use the more specific GetValue methods discussed later in this chapter. When
using the COM CIL, do not use this method for properties of type IDispatch*; instead, use GetCurrentCall,
GetCurrentAgent, GetAllCalls, GetAllAgents, and GetAllSkillGroups as explained in Session Object, on page
307

Syntax

C++
Arg& GetValue (string& key)
Arg& GetValue (int key)
Arg& GetValue (char* key)

COM
HRESULT GetValue (/*[in]*/ VARIANT* key, /*[out,retval]*/ IArg** value)

VB
GetValue (key As VARIANT) As CTIOSCLIENTLib.IArg

Java
Arg GetValue(String key)
Arg& GetValue (int key)

.NET
virtual System.Boolean GetValue(Enum_CtiOs eKeyID, out Arg obArg)
virtual System.Boolean GetValue(System.String sKey, out Arg obArg)

Parameters

key

The name of the property whose value you want.

COM: value

An output value of type Arg** containing the property with the designated name. To get the value of the
property, call GetType() on the Arg and then call the specific GetValue method, based on the type.

.NET: obArg

Output parameter (return value in C++, VB, and Java) containing the specified property, as described in the
explanation of the value parameter.

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19

.NET: Returns true if the value is retrieved, and false if the value is not found.

Others: An Arg containing the specified property. To get the value of the property, call GetType() on the Arg
and then call the specific GetValue method, based on the type.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
298

CtiOs Object
GetValue

GetValueArray
The GetValueArray method returns the Arguments array value of the specified property. Use this method
when you know that the property is of Arguments array type, such as ECC call variables.

Syntax

C++
Arg& GetValueArray (string& key)

Arg& GetValueArray (enum_Keywords key)

Arg& GetValue (char * key)

COM
HRESULT GetValueArray (/*[in]*/ VARIANT * key, /*[out,retval]*/ IArguments ** value)

VB
GetValueArray (key As VARIANT) As CTIOSCLIENTLib.IArguments

Java
Arguments GetValueArray(String key)

GetValueArray (int key)

.NET
System.Boolean GetValueArray(Enum_CtiOs eKeyID, out Arguments arArguments)

Parameters

key

The name of the property whose value you want.

value

COM: An output parameter (return value in VB, C++, and Java) containing an arArguments** to the returned
value of the property.

.NET: An output parameter containing the Arguments array value upon success. Upon failure, this parameter
is set to null.

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19.

.NET: Returns true if the value is retrieved. Returns false if the value is not found.

Others: A reference to an Arguments array containing the value of the specified property.

GetValueBoolObj (Java and .NET Only)
The GetValueBool method retrieves the Boolean value of the specified property.

Syntax

Boolean GetValueBoolObj(int iKey)
Boolean GetValueBoolObj(String sKey)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
299

CtiOs Object
GetValueArray

Parameters

Key

Key ID for the object to be retrieved.

Returns

A Boolean object representation of the contained value or null if error.

GetValueInt
The GetValueInt method returns the integer value of the specified property. Use this method when you know
that the property has an integer type.

Syntax

C++
int GetValueInt (string& key)
int GetValueInt (int key)
int GetValueInt (char* key)

COM
HRESULT GetValueInt /*[in]*/ VARIANT* key, /*[out,retval]*/ int* value)

VB
GetValueInt (key As VARIANT) As Integer

Java
Not implemented, use GetValueIntObj

.NET
System.Boolean GetValueInt(Enum_CtiOs eKeyID, out System.Int32 nValue)
System.Boolean GetValueInt(System.String sPropname, out System.Int32 nValue)

Parameters

C++: key

Depending on the method used, either a string or int that contains the name or ID of the property whose value
you want to retrieve.

COM, VB: key

VARIANT containing the ID or name of the property to retrieve.

COM: value

An output parameter (return parameter in VB) containing an integer pointer to the returned value of the
property.

.NET: sPropName

The name of the property.

.NET: nValue

Upon success, this output parameter contains the value of the specified property. Upon failure, this parameter
is set to null.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
300

CtiOs Object
GetValueInt

.NET: eKeyID

Keyword ID of the property.

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19.

.NET: True if the method succeeds; false if the method fails.

GetValueIntObj (Java Only)
Gets the contained value as an integer.

Syntax

• Integer GetValueIntObj(int iKey)

• Integer GetValueIntObj(String sKey)

Parameters

key

Key ID of the value to be retrieved.

Returns

An Integer object containing a 32 bit signed integer value or null if error.

GetValueShortObj (Java Only)
Retrieves a 16 bit short with the specified key from the array.

Syntax

Short GetValueShortObj(int iKey)
Short GetValueShortObj(short sKey)

Parameters

key

Key ID of the value to be retrieved.

Return Value

A Short object containing a 16 bit short value or null if error.

GetValueString
The GetValueString method returns the string value of the property with the specified name. Use this method
when you know that the property is of string type. For all CILs and all types, a call to GetValueString for an
argument that is of another type, for example Int, returns a string representation of the argument's Int value.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
301

CtiOs Object
GetValueIntObj (Java Only)

Syntax

C++
string GetValueString (string& key)
string GetValueString (int key)
string GetValueString (char* key)

COM
HRESULT GetValueString (/*[in]*/ VARIANT* key, /*[out,retval]*/ BSTR* value)

VB
GetValueString (key As VARIANT) As String

Java
String GetValueString(String key)
String GetValueString (int key)

.NET
System.Boolean GetValueString(Enum_CtiOs eKeyID, out System.String strValue)
System.Boolean GetValueString(System.String sPropName, out System.String strValue)

Parameters

C++, Java: key

Depending on the method used, either a string or int that contains the name or ID of the property whose value
you want to retrieve.

COM, VB: key

VARIANT containing the ID or name of the property to retrieve.

.NET: sPropName

The name of the property values to retrieve.

.NET: strValue

Upon success, this output parameter contains the value of the specified property. Upon failure, this parameter
is set to null.

.NET: eKeyID

Keyword ID of the property.

value

In COM, an output parameter (return parameter in VB) containing a BSTR pointer to the returned string value
of the property.

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19.

.NET:Boolean value indicating the success or failure of the method call (true, if success; otherwise false).

Others: A string containing the value of the specified property.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
302

CtiOs Object
GetValueString

GetValueUIntObj (Java Only)
Retrieves a 32 bit unsigned integer with the specified key from the array.

Syntax

Long GetValueUIntObj(int key)
Long GetValueUIntObj(String sKey)

Parameters

key

Key ID of the value to be retrieved.

Returns

A Long object containing the 32 bit unsigned integer value or null if error.

GetValueUShortObj (Java Only)
Retrieves a 16 bit unsigned short with the specified key from the array.

Syntax

• Integer GetValueUShortObj(String sKey)

Parameters

key

Key ID of the value to be retrieved.

Returns

An Integer object containing the 16 bit unsigned short value or null if error.

IsValid
The IsValid method tests to see if the object includes the specified property.

Syntax

C++
bool IsValid (string& key)

bool IsValid (char* key)

bool IsValid (int key)

COM
HRESULT IsValid (/*[in]*/ VARIANT* key, /*[out,retval]*/ VARIANT_BOOL* value)

VB
IsValid (key As VARIANT)as Bool

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
303

CtiOs Object
GetValueUIntObj (Java Only)

Java
boolean IsValid(String key)

boolean IsValid (int key)

.NET
virtual bool IsValid(Enum_CtiOs eKeyID)

virtual bool IsValid(System.String sKey)

Parameters

DescriptionParameterEnvironment

A key containing the name or ID of the property
whose validity you are testing.

keyC++, Java

VARIANT containing the name or ID of the property
to retrieve.

keyCOM, VB

The ID of the property whose validity you are testing.eKeyID.NET

The name of the property whose validity you are
testing.

sKey.NET

An output parameter (return parameter in VB)
containing a VARIANT_BOOL pointer indicating
whether or not a property with the specified name
exists for the object.

valueCOM

Return Value

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19.

Others: A boolean indicating whether or not a property with the specified name exists for the object.

ReportError (Java and .NET only)
The ReportError method sets the value of the LastError property to iErrCode and writes the error to the log
as critical.

Syntax

int ReportError(int iError)

Parameters

Error

The error to report.

Returns

The same error code that was passed in through iErrCode.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
304

CtiOs Object
ReportError (Java and .NET only)

SetValue (Java and .NET)
The SetValue method adds a new property to the object's property list and gives it the provided value. If the
property already exists, it replaces its value with the one provided.

Syntax

boolean SetValue(int iKeyID, Arg rArgboolean SetValue(int iKeyID, Arguments
rArgs)boolean
boolean SetValue(int iKeyID, boolean bValue)
boolean SetValue(int iKeyID, CtiOsObject rObj)
boolean SetValue(int iKeyID, int iValue)
boolean SetValue(int iKeyID, short nValue)
boolean SetValue(int iKeyID, java.lang.String sValue)
boolean SetValue(java.lang.String sPropName, Arg rArg)
boolean SetValue(java.lang.String sPropName, Arguments rArgs)
boolean SetValue(java.lang.String sPropName, boolean bValue)
boolean SetValue(java.lang.String sPropName, CtiOsObject rObj)
boolean SetValue(java.lang.String sPropName, int iValue)
boolean SetValue(java.lang.String sPropName, short nValue)
boolean SetValue(java.lang.String sPropName, java.lang.String sValue)
boolean SetValueUInt (int key, long value)
boolean SetValueUInt (String key, long value)
boolean SetValueUShort (int key, int value)
boolean SetValueUShort (String key, int value

Parameters

key

The key whose value is to be set.

value

The value to use in setting the element with the designated key.

Returns

True if successfully added, false if not.

SetValue (C++ COM and VB)
The SetValue method sets the value of the specified Agent property.

Syntax

C++
bool SetValue(string& key, string& value)

bool SetValue(string& keyValuePair)

bool SetValue(string& key, int value)

bool SetValue(const char * key, const char * value)

bool SetValue(const char * keyValuePair)

bool SetValue(const char * key, int value)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
305

CtiOs Object
SetValue (Java and .NET)

COM
HRESULT SetValue (/*[in]*/ VARIANT *key, /*[in]*/ VARIANT *value, /*[out,retval]*/

VARIANT_BOOL * errorcode)

VB
SetValue (key As Variant, value As Variant) As Bool

Parameters

key

An input parameter that contains the name of the property whose value you want to set.

value

An input parameter containing the value to be used in setting the specified property.

keyValuePair

An input parameter containing a string in the format “key=value” where key is a property to set and
value is the new value.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Values

COM

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

All Others

A boolean indicating the success or failure of the method.

Remarks

You should only use this method when creating a new Agent in preparation for logging in. Therefore, use it
to set the AgentID, AgentInstrument, AgentPassword, PeripheralID, and AutoLogin only.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
306

CtiOs Object
SetValue (C++ COM and VB)

C H A P T E R 8
Session Object

• Session Object, on page 307
• Session Object Properties, on page 308
• Methods, on page 310
• Notes on Message Filters, on page 338

Session Object
The Client Interface Library Session object is used to establish a connection to an active CTI OS server. The
main functions of the Session object are:

• Managing the connection to the CTI OS Server

• Distributing events to the appropriate objects and event subscribers

• Creating and managing the collections of Agent, Call, and SkillGroup objects

• Automatically recovering from failures

Typically, an application has a single instance of the Session object, which all other CIL objects use to send
and receive events. However, there are no restrictions on the number or types of Session objects one application
can employ. It is possible, and sometimes desirable, to establish and manage multiple independent Sessions,
for example to use multiple current event streams. If there is more than one Session object monitoring the
same Agent or Call, each Session object receives its own events. The order in which events are received is
not guaranteed when there are multiple Session objects.

For more information about using the Session object to connect with CTI OS Server, see CTI OS Server
Connection, on page 53 in Building Your Custom CTI Application, on page 33.

The Session object creates new Call, Agent, and SkillGroup objects upon receipt of an event for that object
if the targeted object does not already exist. The Session object maintains collections of all Agents, Calls,
SkillGroups, and WaitObjects. Object lifetime is managed by the Session object, and thus it is important that
the client application not delete the objects, which would render the object reference invalid and lead to
unpredictable results.When the Session is Released, the connection to CTI OS server is dropped. Any remaining
Agent, Call, Skill Group, or WaitObjects are released.

The remainder of this chapter describes the data properties and interface methods of the Session object.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
307

Session Object Properties
The following table lists the available Session properties.

The data type listed for each keyword is the standardized data type discussed in the section CTI OS CIL data
types. For more information about the appropriate language specific types for these keywords, see Table 5:
CTI OS CIL Data Type, on page 20.

Note

Table 125: Session Properties

DescriptionTypeKeyword

If this value is present and set to
true, supervisor applications initiate
silent monitor using the
Agent.SuperviseCall() method.
Agent applications do not need to
do anything. If this value is not
present, or set to false, supervisor
and agent applications need to
invoke silent monitor using the
SilentMonitorManager object.

This property only applies to the
COM CIL.

INTCCMBasedSilentMonitor

Time of day in milliseconds when
connected.

INTConnectedSince

eAgentConnection (1),
eMonitorConnection (2), or
eNotConnected (0).

INTConnectionMode

Name or TCP/IP address passed as
CTI OS server A.

STRINGCtiosA

Name or TCP/IP address passed as
CTI OS server B

STRINGCtiosB

Returns reference to current Agent
object set by the SetAgent method.
Object reference is incremented by
one and must be released when no
longer used.

object referenceCurrentAgent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
308

Session Object
Session Object Properties

DescriptionTypeKeyword

Valid only if in Agent Connect
mode.When there is more than one
call, this references the current call.
The current call is the call selected.
For more information, see
CurrentCall in Call Object, on page
389

object referenceCurrentCall

TCP/IP address of the current
connected CTI OS server. Can be
port A or B.

INTCurrentPort

Name or TCP/IP address of the
current connected CTI OS server.
The value is blank when the client
is not connected to any server. The
name may be blank while
attempting to reconnect after a lost
connection. Otherwise, the name of
the server is the name of CTI OS
server A or B.

STRINGCurrentServer

The presence of this keyword,INTForcedDisconnect

Heartbeat time, expressed in
seconds. If not set, default
heartbeats are configurable on the
CTI OS server.

INTHeartbeat

Last error code, if any. Otherwise
this value is 0.

INTLastError

Max heartbeats that can be missed
before switching CTI OS servers.
Default is 3 missed heartbeats.

INTMaxHeartbeats

The filter that controls the events
received by the CIL.

STRINGMessageFilter

Array of object references
maintained by the session object.
Typically includes Agent
References, CallReferences, and
SkillGroupReferences. Can also
include EmailReferences or
ChatReferences.

ARGUMENTSObject References

TCP/IP port for ctiosA.INTPortA

TCP/IP port for ctiosB.INTPortB

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
309

Session Object
Session Object Properties

DescriptionTypeKeyword

TCP/IP address of the server where
a connection is being attempted.
Can be port A or B.

INTTryingPort

Contains the name or TCP/IP
address of the server where a
connection is being attempted. The
value is blank if no connection is
being attempted (see
CurrentServer). The name of the
server is the name of CTI OS server
A or B.

STRINGTryingServer

Time of day in milliseconds when
try began.

INTTryingSince

Methods
The following table lists the available session object methods.

Table 126: Session object methods

DescriptionMethod

Subscribes a .NET IGenericEvents object as a listener
on a particular subscriber list.

AddEventListener

Registers the subscriber for an event listener.AddListener methods

Establishes a connection to a CTI OS server.Connect

Creates a SilentMonitorManager object instance.CreateSilentMonitorManager

Creates and returns the pointer to a new CWaitObject.CreateWaitObject

Deletes a SilentMonitorManager object instance.DestroySilentMonitor Manager

Destroys the specified wait objectDestroyWaitObject

Closes the connection to the CTI OS server.Disconnect

For more information, see CtiOs Object, on page 291DumpProperties

Returns a collection of all the agents in the session.GetAllAgents

Returns a collection of all the calls in the session.GetAllCalls

For more information, see CtiOs Object, on page 291GetAllProperties

Returns a collection of all the skill groups in the
session.

GetAllSkillGroups

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
310

Session Object
Methods

DescriptionMethod

Returns the currently selected agent.GetCurrentAgent

Returns the currently selected call.GetCurrentCall

Returns a pointer to the SilentMonitorManager object
instance that is set as the current manager in the CTI
OS session object.

GetCurrentSilentMonitor

For more information, see CtiOs Object, on page 291GetElement

For more information, see CtiOs Object, on page 291GetNumProperties

Returns a Call, Agent, or SkillGroup, given the
object's UniqueObjectID.

GetObjectFromObjectID

For more information, see CtiOs Object, on page 291GetPropertyName

For more information, see CtiOs Object, on page 291GetPropertyType

For more information, see CtiOs Object, on page 291GetValue

For more information, see CtiOs Object, on page 291GetValueArray

For more information, see CtiOs Object, on page 291GetValueInt

For more information, see CtiOs Object, on page 291GetValueString

Checks the current agent and returns true if the current
agent is an agent and not a supervisor.

IsAgent

The IsCCMSilentMonitormethod determineswhether
CTI OS was configured to use CCM based silent
monitor. This method is only supported with the C++,
Java, COM, and .Net CILs.

IsCCMSilentMonitor

Checks the current agent and returns true if the current
agent is a supervisor.

IsSupervisor

For more information, see CtiOs Object, on page 291IsValid

Unregisters the subscriber from an event listener.RemoveListener methods

Sends a message request to the CTI OS Server to
retrieve the desktop settings configured for this site.

RequestDesktopSettings

Sets an agent to a session object.SetAgent

Associates the current call to a session object.SetCurrentCall

Sets the SilentMonitorManager object instance
specified as the current manager in the CTI OS session
object.

SetCurrentSilentMonitor

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
311

Session Object
Methods

DescriptionMethod

Sets the message filter that controls the set of events
sent to the CIL.

SetMessageFilter

Forces supervisors into monitored mode.SetSupervisorSilentMonitorMode

For more information, see CtiOs Object, on page 291SetValue

AddEventListener (Java and .NET Only)
The AddEventListener method subscribes an IGenericEvents object as a listener on a particular subscriber
list.

Syntax

Java
int AddEventListener(IGenericEvents Listener, int iListID)

.NET
CilError AddEventListener(IGenericEvents Listener, SubscriberList iListID)

Parameters

Listener

The IGenericEvents object that is subscribing for events.

ListID

The ID of the subscriber list to which the Listener is to be added.

Returns

A CtiOs_Enums.CilError code indicating success or failure.

AddListener Methods (C++ Only)
The AddListener methods register the subscriber as a listener to the specified set of events.

Syntax

int AddEventListener(Arguments & rArguments);
int AddSessionEventListener(ISessionEvents * pSessionEvents);
int AddCallEventListener(ICallEvents * pCallEvents);
int AddAgentEventListener(IAgentEvents * pAgentEvents);
int AddSkillGroupEventListener(ISkillGroupEvents * pSkillGroupEvents);
int AddButtonEnablementEventListener(IButtonEnablementEvents *
pButtonEvents);
int AddAllInOneEventListener(IAllInOne * pAllInOneEvents);
int AddSilentMonitorEventListener(ISilentMonitorEvents *
pSilentMonitorEvents);
int AddSessionEventGenericListener(IGenericEvents * pSessionEvents);
int AddCallEventGenericListener(IGenericEvents * pCallEvents);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
312

Session Object
AddEventListener (Java and .NET Only)

int AddAgentEventGenericListener(IGenericEvents * pAgentEvents);
int AddSkillGroupEventGenericListener(IGenericEvents *
pSkillGroupEvents);
int AddButtonEnablementEventGenericListener(IGenericEvents *
pButtonEvents);
int AddAllInOneEventGenericListener(IGenericEvents * pAllInOneEvents);
int AddSilentMonitorEventGenericListener(IGenericEvents *
pSilentMonitorEvents);

Remarks

For more information, see Event Subscription in C++, on page 51.

Connect
The Connect method establishes a connection with a CTI OS server.

Syntax

C++
int Connect(Arguments& args)

COM
HRESULT Connect(IArguments *args, int * errorcode)

VB
Connect(args As CTIOSCLIENTLib.IArguments) As Long

Java
int Connect(Arguments args)

.NET
CilError Connect(Arguments rArgs

Parameters

args

An Arguments array containing the connection parameters listed in the following table:

Table 127: Connect Parameters

DescriptionTypeKeyword

Name or TCP/IP address of
CTI OS server A. If this value
is not provided, the value of
Ctios B is used.

If values of neither
Ctios A or Ctios B
is provided, an
error is returned.

Note

STRINGCtiosA

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
313

Session Object
Connect

DescriptionTypeKeyword

Name or TCP/IP address of
CTI OS server B. If this value
is not provided, the value of
Ctios A is used.

If values of neither
Ctios A or Ctios B
is provided, an
error is returned.

Note

STRINGCtiosB

TCP/IP port for ctiosA,
default = 42028.

INTPortA (optional)

TCP/IP port for ctiosB,
default = 42028.

INTPortB (optional)

Heartbeat time, expressed in
seconds. If not set, default
heartbeats are configurable on
CTI OS server.

INTHeartbeat (optional)

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Remarks

A successful request results in an OnConnection event.

A failure results in an OnConnectionFailure event. This means that the CIL is in failover. The CIL continues
to attempt to connect, alternating between hosts CTIOS_CTIOSA and CTIOS_CTIOSB until connection
succeeds, at which point CIL fires OnConnection. If the application wishes to stop failover, it must call
Disconnect.

In some cases, additional failure codes and events may occur:

• Connect returns a failure code of -1 if it cannot connect with the initial side of the duplexed CTI OS
server pair chosen from the connect parameters. This error code requires no action on the part of the
developer as the CIL automatically attempts to connect using the parameters corresponding to the other
side of the duplexed pair.

• The CIL retries the connection attempt five times and then does not attempt to reconnect any longer. The
final OnConnectionFailure event contains the keyword "FinalAttempt," which informs the client application
that the CIL has discontinued its attempts to reconnect.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
314

Session Object
Connect

This behavior only occurs after global settings download has completed. If global
settings download is not complete, the CIL continues to retry until successful.

Note

• The Connect method fires an OnCTIOSFailure event to the client indicating the current state of the
system. This is in addition to OnConnection or OnConnectionFailure.

The following error codes can occur:

• CIL_OK - no obvious errors, application should wait for an event indicating whether or not Connect
succeeded.

• CIL_FAIL - initial attempt to connect with host has failed. CIL fires OnConnectionFailure and goes into
failover mode. CIL continues to attempt to connect, alternating between hosts CTIOS_CTIOSA and
CTIOS_CTIOSB until connection succeeds at which point CIL fires OnConnection. If application wishes
to stop failover, it must call Disconnect.

• E_CTIOS_INVALID_ARGUMENT - a null Arguments parameter was supplied. Connect is aborted.
No events are fired.

• E_CTIOS_MISSING_ARGUMENT - indicates that method call provided no value for both
CTIOS_CTIOSA or CTIOS_CTIOSB. At least one of these values must be provided. Connect is aborted.
No events are fired.

• E_CTIOS_IN_FAILOVER - a previous call to connect failed and CIL is currently in failover attempting
to establish a connection. This continues until a connection is established at which point the CIL sends
OnConnection indicating that previous call to Connect succeeded. If the developer wishes to call Connect
again with different parameters, they must call Disconnect prior to calling Connect again.

• E_CTIOS_MODE_CONFLICT - Session is not disconnected (i.e a previous call to Connect is in progress
or session is already connected). Disconnect must be called before attempting to establish another
connection. CILmay fire an OnConnection event corresponding to previous call to Connect if connection
was in progress but will not fire one corresponding to this method call.

• E_CTIOS_SESSION_NOT_CONNECTED - unanticipated error. Connect is aborted. No events are
fired.

CreateSilentMonitorManager
The CreateSilentMonitorManager method creates a SilentMonitorManager object instance. To delete the
object you must call DestroySilentMonitorManager.

Syntax

C++
CSilentMonitorManager * CreateSilentMonitorManager(Arguments & args);

COM
HRESULT CreateSilentMonitorManager (/*[in]*/ IArguments * args, /*[out,retval]*/

ISilentMonitorManager * * pISilentMonitor);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
315

Session Object
CreateSilentMonitorManager

VB
CreateSilentMonitorManager (ByVal args as CTIOSCLIENTLIB.IArguments) As

CTIOSCLIENTLIB.ISilentMonitorManager

Java
Not available.

.NET
Not available.

Parameters

args

Arguments array that contains the parameters listed below. When any of these parameters are specified, the
object is constructed with the corresponding property initialized to the specified value. If you want the object
initialized with the default values, specify an empty array.

Table 128: CreateSilentMonitorManager parameters

DescriptionTypeKeyword

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

Required only if manager is used
in monitoring mode. TCP/IP port
where monitored conversation is
sent for playback on system sound
card.

INTMediaTerminationPort

Return Value

If successful, a CSilentMonitorManager object is returned. Otherwise, NULL is returned. To identify the
specific error, check the value of the LastError Session property (Table 125: Session Properties, on page 308).

Remarks

Supported for use with Unified CCE only.

CreateWaitObject (C++ Java and .NET)
The CreateWaitObject method creates and returns the pointer to a new CWaitObject with the specified event
mask.

Syntax

C++
CWaitObject * CreateWaitObject(Arguments & args);

Java
WaitObject CreateWaitObject(Arguments rObjParam)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
316

Session Object
CreateWaitObject (C++ Java and .NET)

.NET
WaitObject CreateWaitObject(Arguments rObjParam)

Parameters

args (C++). rObjParam (Java)

A reference to an Arguments object that contains the list of events the object wait for. The Arguments contain
values where the keys are “Event1” through “EventN” and the values are the enumerated event IDs.

Return Values

If successful it returns a pointer to the new Wait object. Otherwise, it returns NULL.

For more information about CWaitObject, see Helper Classes, on page 441

DestroySilentMonitorManager
The DestroySilentMonitorManager method deletes a SilentMonitorManager object instance.

Syntax

C++
int DestroySilentMonitorManager(CSilentMonitorManager * pSilentMonitor);

COM
HRESULT DestroySilentMonitorManager (/*[in]*/ ISilentMonitorManager * pSilentMonitor,

/*[out,retval]*/ int * errorcode);

VB
DestroySilentMonitorManager (ByVal pSilentMonitor As CTIOSCLIENTLIB.

ISilentMonitorManager) As Long

Java
Not available

.NET
Not available

Parameters

pSilentMonitor

Valid pointer to a SilentMonitorManager object created via CreateSilentMonitorManager.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Remarks

Supported for use with Unified CCE only.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
317

Session Object
DestroySilentMonitorManager

DestroyWaitObject (C++ Java and .NET)
The DestroyWaitObject method removes the specified CWaitObject from the Session and decrements its
reference count.

Syntax

C++
void DestroyWaitObject(CWaitObject * pWaitObject)

Java
void DestroyWaitObject(WaitObject rWaitObj)

.NET
DestroyWaitObject(WaitObject rWaitObj)

Parameters

WaitObject

A pointer to the CWaitObject to be destroyed.

Return Values

None.

Remarks

For more information about CWaitObject, see Helper Classes, on page 441

DisableSkillGroupStatistics (C++ Java and .NET)
The DisableSkillGroupStatistics method requests that sending real-time statistics to the session object be
stopped.

Syntax

C++, Java
int DisableSkillGroupStatistics(Arguments & args)

.NET
CilError DisableSkillGroupStatistics(Arguments rArgs)

Parameters

args

This parameter has two required values for PeripheralId and SkillGroupNumber. For more information, see
the Remarks section for a code example.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
318

Session Object
DestroyWaitObject (C++ Java and .NET)

Remarks

C++ code example:

Arguments & argsStatBroadcast =
Arguments::CreateInstance();argsStatBroadcast.AddItem(CTIOS_SKILLGROUPNUMBER,
intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession->DisableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

Disconnect
The Disconnect method disconnects the open connection to the CTI OS server. In Java and .NET, you can
use the Disconnect method to interrupt failover.

Syntax

C++
void Disconnect (Arguments& args);

COM
HRESULT Disconnect (/* [in, optional */ IArguments *args, /*[out]*/ int * errorcode);

VB
Disconnect(args As CTIOSCLIENTLib.IArguments) As Long

Java
int Disconnect(Arguments args)

.NET
CilError Disconnect(Arguments rArgs)

Parameters

args

An optional Arguments array containing the CTIOS_FORCEDDISCONNECT keyword, which forces a
disconnect even if the Session object rejects the disconnect. Add this keyword to the array if the session mode
is not set by SetAgent or SetSessionMode at the time of the disconnect.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

DumpProperties
For more information about the DumpProperties method, see CtiOs Object, on page 291.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
319

Session Object
Disconnect

EnableSkillGroupStatistics (C++ Java and .NET)
The EnableSkillGroupStatistics method starts sending real-time statistics to the session object. If the argument
array is empty, then statistics for all skill groups are enabled. This is useful when a monitoring application
needs to view all statistics without having to enumerate and loop over each statistic to enable it.

Syntax

C++, Java
EnableSkillGroupStatistics(Arguments & args)

.NET
CilError EnableSkillGroupStatistics(Arguments rArgs)

Parameters

args

This parameter has three required values for PeripheralId, SkillGroupNumber and SkillGroupPriority. See
the Remarks section for a code example.

You must pass a value of "0" for SkillGroupPriority when requesting Skill Group Statistics for Unified CCE
agents from aMonitor mode application. Subskill groups are not supported for Unified CCE peripheral types.

Important

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Remarks

C++ code example:

Arguments & argsStatBroadcast =
Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SKILLGROUPNUMBER,intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
argsStatBroadcast.AddItem(CTIOS_SKILLGROUPPRIORITY, priority);
m_pSkGrStatSession->EnableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

GetAllAgents
The GetAllAgents method returns an array of object IDs. Each object ID is associated with an Agent object
stored in the CIL.

The number of object IDs returned from this method depends on the number of agents that the CIL discovered
through agent events. For example, a CIL used in an agent desktop application returns one ID, which is the
ID of the agent currently logged into the desktop. A supervisor desktop returns the supervisor's ID as well as
IDs for all agents on the supervisor's team. A monitor mode application filtering all agent events returns IDs
for each agent known by the CTI OS Server.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
320

Session Object
EnableSkillGroupStatistics (C++ Java and .NET)

Syntax

C++
Arguments & GetAllAgents()

COM
HRESULT GetAllAgents(/*[out, retval]*/ VARIANT *args)

VB
GetAllAgents (args As VARIANT)

Java
Arguments GetAllAgents()

.NET
Arguments GetAllAgents()

Parameters

args

COM/VB: A pointer to a VARIANT containing a SAFEARRAY of pointers to IAgents.

Return Values

COM/VB

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Java/.NET

Returns NULL if the value requested is not found or if there is an error. If the method succeeds, it returns
a pointer or a reference to an Arguments array where each member has a string key that is the
UniqueObjectID of an agent and a value that is a reference to a CilRefArg that is a pointer to the Agent
object.

C++

An empty Arguments array if the value requested is not found or if there is an error. If the method
succeeds, it returns a pointer or a reference to an Arguments array where each member has a string key
that is the UniqueObjectID of an agent and a value that is a reference to a CilRefArg that is a pointer to
the Agent object.

Remarks

The following sample C++ code illustrates how to take the array returned from GetAllAgents() and use it to
access the corresponding agents in the CIL's object cache. The example uses the C++ CIL:

Arguments &args = m_pSession->GetAllAgents() ;
// Iterate through all of the CILRefArg objects
// in the Arguments array.
//
for (int i = 1 ; i <= args.NumElements() ; i++)
{

CILRefArg *pRefArg = NULL ;

// Retrieve the CILRefArg at each position in the
// array.
//

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
321

Session Object
GetAllAgents

if (args.GetElement(i, (Arg **)&pRefArg))
{

if (pRefArg != NULL)
{

// The value method will return a pointer
// to the agent object referenced by the
// CILRefArg.
//
CAgent *pAgent = (CAgent *)pRefArg->GetValue() ;

cout << "-- Agent Properties --" << endl ;
if (pAgent == NULL)
{

cout << "NULL" << endl ;
}
else
{

cout << pAgent->DumpProperties().c_str() << endl ;
}
cout << "--" << endl ;

}
}

}

The following sample VB.NET code illustrates how to take the array returned from GetAllAgents() and use
it to access the corresponding agents in the CIL's object cache. The example uses the .NET CIL:

Dim args As Argumentsargs = m_session.GetAllAgents()

' Iterate through all of the CILRefArg objects
' in the Arguments array.
'
Dim i As Integer
For i = 1 To args.NumElements()

Dim refArg As CilRefArg

' Retrieve the CILRefArg at each position in the
' array.
'
If (args.GetElement(i, refArg)) Then

If ((refArg Is Nothing) = False) Then

' The value method will return a reference
' to the agent object referenced by the
' CILRefArg.
'
Dim agent As Agent
refArg.GetValue(agent)

Console.Out.WriteLine("--")

If (agent Is Nothing) Then
Console.Out.WriteLine("Nothing")

Else
Console.Out.WriteLine(agent.DumpProperties())

End If

Console.Out.WriteLine("--")

End If

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
322

Session Object
GetAllAgents

End If
Next

GetAllCalls
The GetAllCalls method returns an array of object IDs. Each object ID is associated with a Call object stored
in the CIL.

The number of object IDs returned from this method depends on the number of calls that the CIL discovered
through call events. For example, a CIL used in an agent desktop application returns IDs for all calls in which
the agent is involved. A supervisor desktop returns IDs for any call in which the supervisor is involved as
well as IDs for monitored calls. A monitor mode application filtering all call events returns IDs for each call
known by the CTI OS Server.

Syntax

C++
Arguments & GetAllCalls()

COM
HRESULT GetAllCalls(/*[out, retval]*/ VARIANT *args)

VB
GetAllCalls (args As VARIANT)

Java
Arguments GetAllCalls()

.NET
Arguments GetAllCalls()

Parameters

args

COM /VB: A pointer to a VARIANT containing a SAFEARRAY of pointers to ICalls.

Return Values

COM/VB

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Java/.NET

Returns NULL if the value requested is not found or if there is an error. If the method succeeds, it returns
a pointer or a reference to an Arguments array where each member has a string key that is the
UniqueObjectID of a call and a value that is a reference to a CilRefArg that is a pointer to the Call object.

C++

An empty Arguments array if the value requested is not found or if there is an error. If the method
succeeds, it returns a pointer or a reference to an Arguments array where each member has a string key
that is the UniqueObjectID of a call and a value that is a reference to a CilRefArg that is a pointer to the
Call object.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
323

Session Object
GetAllCalls

Remarks

The following sample C++ code illustrates how to take the array returned from GetAllCalls() and use it to
access the corresponding calls in the CIL's object cache. The example uses the C++ CIL:

Arguments &args = m_pSession->GetAllCalls() ;
// Iterate through all of the CILRefArg objects
// in the Arguments array.
//
for (int i = 1 ; i <= args.NumElements() ; i++)
{

CILRefArg *pRefArg = NULL ;

// Retrieve the CILRefArg at each position in the
// array.
//
if (args.GetElement(i, (Arg **)&pRefArg))
{

if (pRefArg != NULL)
{

// The value method will return a pointer
// to the agent object referenced by the
// CILRefArg.
//
CCall *pCall = (CCall *)pRefArg->GetValue() ;

cout << "-- Call Properties --" << endl ;
if (pCall == NULL)
{

cout << "NULL" << endl ;
}
else
{

cout << pCall->DumpProperties().c_str() << endl ;
}
cout << "--" << endl ;

}
}

}

The following sample VB.NET code illustrates how to take the array returned from GetAllCalls() and use it
to access the corresponding calls in the CIL's object cache. The example uses the .NET CIL:

Dim args As Argumentsargs = m_session.GetAllCalls()

' Iterate through all of the CILRefArg objects
' in the Arguments array.
'
Dim i As Integer
For i = 1 To args.NumElements()

Dim refArg As CilRefArg

' Retrieve the CILRefArg at each position in the
' array.
'
If (args.GetElement(i, refArg)) Then

If ((refArg Is Nothing) = False) Then

' The value method will return a reference
' to the call object referenced by the

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
324

Session Object
GetAllCalls

' CILRefArg.
'
Dim aCall As Cisco.CtiOs.Cil.Call
refArg.GetValue(aCall)

Console.Out.WriteLine("--")

Dim str As String

If (aCall Is Nothing) Then
Console.Out.WriteLine("Nothing")

Else
Console.Out.WriteLine(aCall.DumpProperties())

End If

Console.Out.WriteLine("--")

End If

End If
Next

GetAllProperties
For more information about the GetAllProperties method, see CtiOs Object, on page 291.

GetAllSkillGroups
The GetAllSkillGroups method returns an array of object IDs. Each object ID is associated with a skill group
stored in the CIL.

Syntax

C++
Arguments & GetAllSkillGroups()

COM
HRESULT GetAllSkillGroups(/*[out, retval]*/ VARIANT *args)

VB
GetAllSkillGroups (args As VARIANT)

Java, .NET
Arguments GetAllSkillGroups()

Parameters

args

C++, Java, and .NET: A pointer or a reference to an Arguments array where each member has a string
key that is the UniqueObjectID of a skill group and a value that is a reference to a CilRefArg that is a
pointer to the skill group object.

COM /VB: A pointer to a VARIANT containing a SAFEARRAY of pointers to ISkillGroups.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
325

Session Object
GetAllProperties

Return Values

COM/VB: Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Java/.NET: Returns NULL if the value requested is not found or if there is an error. If the method succeeds,
it returns a pointer or a reference to an Arguments array where each member has a string key that is the
UniqueObjectID of a skill group and a value that is a reference to a CilRefArg that is a pointer to the skill
group object.

C++: An empty Arguments array if the value requested is not found or if there is an error. If the method
succeeds, it returns a pointer or a reference to an Arguments array where each member has a string key that
is the UniqueObjectID of a skill group and a value that is a reference to a CilRefArg that is a pointer to the
skill group object.

GetCurrentAgent
The GetCurrentAgent method returns the Agent specified when the Agent Mode connection was established.
Use this method rather than GetValue(“CurrentAgent”).

Syntax

C++
Agent* GetCurrentAgent()

COM
HRESULT GetCurrentAgent(/*[out, retval]*/ IAgent *agent)

VB
GetCurrentAgent () As CTIOSCLIENTLib.IAgent

Java,.NET
Agent GetCurrentAgent()

Parameters

agent

An output parameter (return value in VB, C++, Java, and .NET) containing a pointer to a pointer to an IAgent
that is the currently selected agent.

Return Values

COM: Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Others: A pointer or reference to an agent that is the current agent. This method returns NULL if the value
requested is not found or if there is an error.

The C++, Java, and .NET versions of this method return NULL if the value requested is not found or if there
is an error.

GetCurrentCall
The GetCurrentCall method returns the call that is currently selected. You can use this method as a way for
controls to communicate between each other which call is selected and acted on. Use this method rather than
GetValue(“CurrentCall”).

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
326

Session Object
GetCurrentAgent

Syntax

C++
CCall * GetCurrentCall()

COM
HRESULT GetCurrentCall(/*[out, retval]*/ ICall ** call)

VB
GetCurrentCall () As CTIOSCLIENTLib.ICall

Java/.NET
Call GetCurrentCall()

Parameters

call

An output parameter (return value in VB, C++, Java, and .NET) containing a pointer to a pointer to an ICall
that is the currently selected call.

Return Values

COM: Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Others: A pointer or reference to a Call that is the current call. This method returns NULL if the value requested
is not found or if there is an error.

The C++, Java, and .NET versions of this method return NULL if the value requested is not found or if there
is an error.

GetCurrentSilentMonitor
The GetCurrentSilentMonitor method returns a pointer to the SilentMonitorManager object instance that is
set as the current manager in the session object.

Syntax

C++
CSilentMonitorManager * GetCurrentSilentMonitor();

COM
HRESULT GetCurrentSilentMonitor (/*[out,retval]*/ ISilentMonitorManager **

pSilentMonitor);

VB
GetCurrentSilentMonitor () As CTIOSCLIENTLIB. ISilentMonitorManager

Java,.NET
Not available

Return Values

Pointer to the current Silent Monitor Manager in the session object.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
327

Session Object
GetCurrentSilentMonitor

GetElement
For more information about the GetElement method, see CtiOs Object, on page 291.

GetNumProperties
For more information about the GetNumProperties method, see CtiOs Object, on page 291.

GetObjectFromObjectID
Given a string containing the UniqueObjectID of a call, an agent, or a skill group, the GetObjectFromObjectID
method returns a pointer to the associated object.

Syntax

C++
bool GetObjectFromObjectID (string& uniqueObjectID,CCtiosObject ** object);

COM
HRESULT GetObjectFromObjectID (/*[in]*/ BSTR uniqueObjectID, /*[out]*/ IDispatch **

object, /*[out, retval]*/ VARIANT_BOOL * errorcode);

VB
GetObjectFromObjectID(uniqueObjectID As String, object as IDispatch) As Boolean

Java
CtiOsObject GetObjectFromObjectID(java.lang.String sUID)

.NET
System.Boolean GetObjectFromObjectID(System.String sUID, out CtiOsObject rObj)

Parameters

COM/C++/VB: uniqueObjectID

A string reference that contains the UniqueObjectID of the requested Call, Agent, or Skillgroup object.

.NET: sUID

A string reference that contains the UniqueObjectID of the requested Call, Agent, or Skillgroup object.

COM/C++: object

A pointer to either a CTIOSObject in C++ (which is a CILRefArg) or an IDispatch * pointing to either an
ICall, an IAgent, or an ISkillGroup in COM.

.NET: rObj

A pointer to either a CTIOSObject in C++ (which is a CILRefArg) or an IDispatch * pointing to either an
ICall, an IAgent, or an ISkillGroup in COM.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
328

Session Object
GetElement

Return Values

COM: Default HRESULT return value. For more information, see CIL Coding Conventions, on page 19.

C++, VB, .NET: A boolean indicating success or failure of the method.

The Java version of this method returns NULL if the value requested is not found or if there is an error.

Remarks

Many events use UniqueObjectIDs instead of the objects themselves. Use this method to get the object if it
is necessary for processing.

GetPropertyName
For more information about the GetPropertyName method, see CtiOs Object, on page 291.

GetPropertyType
For more information about the GetPropertyType method, see CtiOs Object, on page 291.

GetSystemStatus (Java .NET and C++ Only)
The GetSystemStatus method returns the current system status bitmask.

Syntax

Java/C++
int GetSystemStatus()

.NET
SystemStatus GetSystemStatus()

Parameters

None.

Returns

The current system status bitmask. For more information about the SystemStatus, see OnQueryAgentStateConf,
on page 250 in Event Interfaces and Events, on page 167.

GetValue Methods
For more information about the GetValue, GetValueArray, GetValueInt, and GetValueString methods, see
CtiOs Object, on page 291.

IsAgent
The IsAgent method determines whether the current agent is an agent rather than a supervisor.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
329

Session Object
GetPropertyName

Syntax

C++
bool IsAgent()

COM
HRESULT IsAgent (VARIANT_BOOL *bIsAgent)

VB
IsAgent () As Boolean

Java
boolean IsAgent()

.NET
bool IsAgent()

Parameters

bIsAgent

Output parameter (return parameter in VB) that returns true if the current AgentMode connection is for an
agent and false if it is for a supervisor.

Return Values

If the current agent is an agent and not a supervisor it returns true, otherwise it returns false.

IsCCMSilentMonitor
The IsCCMSilentMonitor method determines whether CTI OS is configured to use Unified Communication
Manager based silent monitor.

Syntax

C++
bool IsCCMSilentMonitor()

COM
HRESULT IsCCMSilentMonitor (VARIANT_BOOL * IsCCMSilentMonitor)

Java
boolean IsCCMSilentMonitor()

.NET
bool IsCCMSilentMonitor()

Parameters

None.

Return Values

If Unified Communication Manager based silent monitor is configured, this method returns true, otherwise
it returns false.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
330

Session Object
IsCCMSilentMonitor

IsSupervisor
The IsSupervisor method checks if the current agent is a supervisor.

Syntax

C++
bool IsSupervisor()

COM
HRESULT IsSupervisor (VARIANT_BOOL * bIsSupervisor)

VB
IsSupervisor () As Boolean

Java
boolean IsSupervisorMode()

.NET
bool IsSupervisorMode()

Parameters

bIsSupervisor

Output parameter (return parameter in VB) that returns true if the current AgentMode connection is for a
supervisor and false if it is for an agent.

Return Values

If the current agent is a supervisor it returns true, otherwise it returns false.

IsValid
For more information about the IsValid method, see CtiOs Object, on page 291.

RemoveEventListener (Java and .NET)
The RemoveEventListener method unsubscribes a Java IGenericEvents object as a listener from a particular
subscriber list.

Syntax

int RemoveEventListener(IGenericEvents Listener, int iListID)

Parameters

Listener

The IGenericEvents object that is unsubscribing from events.

ListID

The ID of the subscriber list from which the Listener is to be removed.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
331

Session Object
IsSupervisor

Returns

A CtiOs_Enums.CilError code indicating success or failure.

RemoveListener Methods (C++ Only)
The RemoveListener methods unregisters the subscriber from a specified event listener.

Syntax

int RemoveEventListener(Arguments & rArguments);
int RemoveSessionEventListener(ISessionEvents * pSessionEvents);
int RemoveCallEventListener(ICallEvents * pCallEvents);
int RemoveAgentEventListener(IAgentEvents * pAgentEvents);
int RemoveSkillGroupEventListener(ISkillGroupEvents *
pSkillGroupEvents);
int RemoveButtonEnablementEventListener(IButtonEnablementEvents *
pButtonEvents);
int RemoveAllInOneEventListener(IAllInOne * pAllInOneEvents);
int RemoveSilentMonitorEventListener(ISilentMonitorEvents *
pSilentMonitorEvents);
int RemoveSessionEventGenericListener(IGenericEvents *
pSessionEvents);
int RemoveCallEventGenericListener(IGenericEvents * pCallEvents);
int RemoveAgentEventGenericListener(IGenericEvents * pAgentEvents);
int RemoveSkillGroupEventGenericListener(IGenericEvents *
pSkillGroupEvents);
int RemoveButtonEnablementEventGenericListener(IGenericEvents *
pButtonEvents);
int RemoveAllInOneEventGenericListener(IGenericEvents *
pAllInOneEvents);
int RemoveSilentMonitorEventGenericListener(IGenericEvents * pSilentMonitorEvents);

Remarks

For more information, see Event Subscription in C++, on page 51.

RequestDesktopSettings
The RequestDesktopSettings method sends a request to the CTI OS Server to download the configuration
settings defined for a desktop application.

Syntax

C++
int RequestDesktopSettings(Arguments& args)

COM
HRESULT RequestDesktopSettings(/* [in] */ IArguments *args, /*[out]*/ int * errorcode)

VB
RequestDesktopSettings (args As CTIOSCLIENTLib.IArguments) As Long

Java
int RequestDesktopSettings(int desktopType)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
332

Session Object
RemoveListener Methods (C++ Only)

.NET
CilError RequestDesktopSettings(Arguments rArgs)

Parameters

args

C++, COM, VB, and .NET: Input parameter in the form of a pointer or reference to an Arguments array
containing one number. This number has a keyword of “DesktopType” and an integer value that is either:

• eAgentDesktop (0)

• eSupervisorDesktop (1)

Java: desktopType

0 for agent

1 for supervisor

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

A successful RequestDesktopSettings request results in an OnGlobalSettingsDownloadConf event. For more
information about the OnGlobalSettingsDownloadConf event, see OnFailure Event, on page 173.

SetAgent
The SetAgent method assigns an agent to this Session object. Set the following properties for the Agent object
used as a parameter in this method:

• CTIOS_AGENTID

• CTIOS_PERIPHERALID

To sign on a mobile agent, you must set the following parameters:

• CTIOS_AGENTCALLMODE

• CTIOS_AGENTREMOTENUMBER

Syntax

C++
int SetAgent(CAgent& agent)

COM
HRESULT SetAgent(/*[in]*/IAgent *agent, /*[out, retval]*/ int * errorcode)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
333

Session Object
SetAgent

VB
SetAgent (agent As CTIOSCLIENTLib.IAgent) As Long

Java
int SetAgent(Agent agentObject)

.NET
CilError SetAgent(Agent NewAgent)

Parameters

agent

The agent to be assigned to the Session object.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

If the SetAgent request is successful, it returns a CIL_OK CtiOs_Enums.CilError code and sends an
OnSetAgentMode event to the client application.

In CTI OS Release 7.1(1) , the SetAgent request returns the following error codes:

• CIL_FAIL – The request to authenticate failed. The SetAgent request is not sent.

• E_CTIOS_SET_AGENT_SESSION_DISCONNECT_REQUIRED–You attempted to execute SetAgent
for a session in monitor mode. The SetAgent request is not sent. To correct, execute the Disconnect
method to disconnect the session, then execute the SetAgent method.

• E_CTIOS_AGENT_ALREADY_IN_SESSION – You attempted to assign an agent that has already
been assigned to this session. The SetAgent request is not sent.

In the above error cases, the SetAgent request is not sent to the CTI OS server,
and the client application does not receive any events in return.

Note

• CIL_OK – The SetAgent request was sent to the CTI OS server.

In Java only, if SetAgent () is called on a session where the current agent is different from the agent that
SetAgent is trying to set, the following occurs:

• The CIL automatically does a Disconnect on the current session object to Reset an agent.

• An OnCloseConnection event is received.

• A Connect is then performed.

• An OnConnection event is received, and the new agent is set.

In Java only, if the SetAgent request is unsuccessful it returns one of the following CtiOs_Enums.CilError
codes:

• E_CTIOS_INVALID_SESSION -- if session is not connected.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
334

Session Object
SetAgent

• E_CTIOS_PROP_ATTRIBUTES_ACCESS_FAILED -- if unable to get the connection mode property

• E_CTIOS_SET_AGENT_SESSION_DISCONNECT_REQUIRED -- if SetAgent request was during a
Monitor Mode session. The client application calls Disconnect first to clean up the connection mode and
then calls Connect again.

• E_CTIOS_AGENT_ALREADY_IN_SESSION -- if the agent is already assigned to the session object.
The client application calls Disconnect first to clean up the connection mode and then calls Connect
again.

• E_CTIOS_ARGUMENT_ALLOCATION_FAILED -- if the application is unable to allocate memory.

• E_CTIOS_PROP_ATTRIBUTES_ACCESS_FAILED -- if an error occurred while accessing agent
properties.

SetCurrentCall
The SetCurrentCall method assigns a call as the session's current call.

Syntax

C++
int SetCurrentCall(CCall& call)

COM
HRESULT SetCurrentCall (/*{in]*/ICall *call, /*[out, retval]*/ errorcode

VB
SetCurrentCall (call As CTIOSCLIENTLib.ICall)

Java
int SetCurrentCall(Call callObject)

.NET
CilError SetCurrentCall(Call rCall)

Parameters

call

Call to assign as current call.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

A successful request results in an OnCurrentCallChanged event.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
335

Session Object
SetCurrentCall

In Java and .NET, if the Call object specified in the call parameter is already the current call, the
OnCurrentCallChanged event is not fired to the client application and a
E_CTIOS_CALL_ALREADY_CURRENT_IN_SESSION code is returned.

SetCurrentSilentMonitor
The SetCurrentSilentMonitor method sets the SilentMonitorManager object instance specified as the current
manager in the CTI OS session object.

Syntax

C++
int SetCurrentSilentMonitor(CSilentMonitorManager * pSilentMonitor);

COM
HRESULT SetCurrentSilentMonitor (/*[in]*/ ISilentMonitorManager * pSilentMonitor,

/*[out,retval]*/ int * errorcode);

VB
SetCurrentSilentMonitor (ByVal pSilentMonitor As CTIOSCLIENTLIB. ISilentMonitorManager)

As Long

Java
Not available

.NET
Not available

Parameters

pSilentMonitor

Valid pointer to a SilentMonitorManager object created via CreateSilentMonitorManager.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Remarks

Supported for use with Unified CCE only.

SetMessageFilter
The SetMessageFilter method specifies a filter for the CTI OS Server to use to determine which events are
sent to a monitor mode client.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
336

Session Object
SetCurrentSilentMonitor

Syntax

C++
int SetMessageFilter(string filter)

COM
HRESULT SetMessageFilter(/*{in]*/ BSTR filter, /*[out, retval]*/ int* errorcode)

VB
SetMessageFilter (filter As String, retVal As Long)

Java
int SetMessageFilter(Arguments messageFilter)

.NET
CilError SetMessageFilter(Arguments rArgs)

Parameters

filter

A string containing the message filter, as explained in the section Notes on Message Filters, on page 338.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

The Session receives an OnMonitorModeEstablished event when the filter is set on the server.

SetSupervisorMonitorMode
You can use the SetSupervisorSilentMonitorMode method to force supervisors into monitored mode. It is
used, for example, by the CTI OS Agent desktop to indicate that supervisors logging on to the Agent Desktop
can be monitored.

Syntax

C++
int SetSupervisorSilentMonitorMode (Arguments & args);

COM
HRESULT SetSupervisorSilentMonitorMode (/*[in]*/ IArguments * args, /*[out,retval]*/

int * errorcode);

VB
SetSupervisorSilentMonitorMode (args As CTIOSCLIENTLib.IArguments);

Java/.NET
Not available

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
337

Session Object
SetSupervisorMonitorMode

Parameters

args

Arguments array that contains the following parameters.

Table 129: SetSupervisorSilentMonitorMode Arguments Array Parameters

DescriptionTypeKeyword

One of the following values:

1 -- supervisors can be monitored

0 (default) -- supervisors are put in
monitoring mode and cannot be
monitored

INTCTIOS_SILENTMONITOR
FORCEMONITOREDMODE

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Notes on Message Filters
A message filter is a condition that an event must meet to be sent to the client. It consists of a keyword/value
pair, as explained in the following sections.

Two filter mode applicationss are allowed for each CTI OS Server.Note

Message Filter Syntax
The CTI OS Server's event filter mechanism enables the rapid creation of powerful CTI integration applications.
The event filter allows the developer to create a custom event notification stream using a simple filter expression.
The filter expression is sent from the Client Interface Library (CIL) to the CTI OS server to request an event
stream. The CTI OS server's event filter parses the filter expression, and registers the CIL client for all events
that match any of the filter's conditions.

To set a filter expression, the Session object's SetMessageFilter() method is used:

'put filter expression in hereDim sFilterExpression As String

'call SetMessageFilter
m_session.SetMesageFilter sFilterExpression

The general form for a filter expression is key=value.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
338

Session Object
Notes on Message Filters

Simple Example
The most basic event filter is for all events for a specific agent. CTI OS uniquely identifies an Agent object
by UniqueObjectID (refer to CIL architecture chapter for explanation of the UniqueObjectID). To establish
an event stream for a unique agent, the following syntax is used:

sFilterExpression = "UniqueObjectID=agent.5000.22866"

In this example, the key is the UniqueObjectID, and the value is agent.5000.22866. This is not the same filter
expression created when a CIL client connects to CTI OS in Agent Mode. When a CIL client connects to CTI
OS in agent mode, the filter includes events for the agent as well as call events for the agent's extension.

General Form of Filter Syntax
The event filter syntax is expressed in the following general form:

key1=value1 [,value2, ...] [; key2=valueA [,valueB, ...] ...]

In this form, the filter expression must start with a key name (key). Following the key must be an equal sign
(=), and at least one value (value1) must be specified. Optionally, additional values (e.g. value2, ...) for the
same key can be specified (optional parts of the expression are indicated with square brackets []). This is
interpreted as a logical OR among all of the values specified for that key, e.g. if any of those values is found,
the condition is satisfied.

For example, a filter expression with one key and multiple values might look like the following:

sFilterExpression = "AgentID=22866, 22867, 22868"

The interpretation of this filter is to match on any event with AgentID of 22866, 22867, or 22868.

Multiple Filters
You can combine multiple filters expressions (as described above) to create more complex expressions. The
general form allows for any number of filters to be concatenated using the semicolon (;), which produces a
logical AND effect.

For example, a filter expression with multiple keys, each with multiple values might look like the following:

sFilterExpression = “AgentID=22866, 22867, 22868; SkillGroupNumber=20, 21”

The interpretation of this filter is to match on any event with AgentID of 22866, 22867, or 22868 and with
SkillGroupNumber of 20 or 21.

Filters for Specific Events
One of the most powerful types of event filters for custom applications are filters that work on specific events.

An example of such an application is an “all agents” real time display, listing the agent states of all known
agents at the call center, using the eAgentStateEvent to receive agent updates. To request specific events, use
the MessageID keyword, and the numeric value for the event ID that you wish to receive:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
339

Session Object
Simple Example

' register for all eAgentStateEventssFilterExpression = “MessageID = 30”

You can also obtain multiple specific events. For example, consider an all calls real-time display application,
using eCallBeginEvent and eCallEndEvent to add or remove calls from a view:

' register for all eCallBeginEvents, eCallEndEventssFilterExpression = “MessageID
= 23, 24”

Events Not Allowed in Filter Expressions
You cannot use the following events in filter expressions:

• ePreLogoutEvent

• ePostLogoutEvent

• eOnConnection

• eOnConnectionClosed

• eOnConnectionFailure

• eOnHeartbeat

• eOnMissingHeartbeat

• eOnCurrentCallChanged

• eOnCurrentAgentReset

• Events that are part of the IMonitoredAgentEvents interface or the IMonitoredCallsInterface. This includes
the following events:

• eOnMonitoredAgentStateChange

• OnMonitoredAgentInfoEvent

• OnMonitoredCallDeliveredEvent

• OnMonitoredCallEstablishedEvent

• OnMonitoredCallHeldEvent

• OnMonitoredCallRetrievedEvent

• OnMonitoredCallClearedEvent

• OnMonitoredCallConnectionClearedEvent

• OnMonitoredCallOriginatedEvent

• OnMonitoredCallFailedEvent

• OnMonitoredCallConferencedEvent

• OnMonitoredCallTransferredEvent

• OnMonitoredCallDivertedEvent

• OnMonitoredCallServiceInitiatedEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
340

Session Object
Events Not Allowed in Filter Expressions

• OnMonitoredCallQueuedEvent

• OnMonitoredCallTranslationRouteEvent

• OnMonitoredCallBeginEvent

• OnMonitoredCallEndEvent

• OnMonitoredCallDataUpdateEvent

• OnMonitoredCallReachedNetworkEvent

• OnMonitoredCallDequeuedEvent

• OnMonitoredAgentPrecallEvent

• OnMonitoredAgentPrecallAbortEvent

To circumvent this restriction, use an equivalent message in the filter expression (for example,
OnAgentStateEvent instead of OnMonitoredAgentStateChange) and check in the message handler
for the CTIOS_MONITORED parameter to be TRUE.

void CMyEventSink::OnAgentStateEvent(Arguments & argParams)
{

if (argParams.IsValid(CTIOS_MONITORED) &&
argParams.GetValueBoolean(CTIOS_MONITORED))

{

//Do process the event

}

}

DescriptionKeyword

When set, this filter indicates that the CTI OS server
forward skill group statistics to the client application,
whether or not any agents are logged in.

FilterTarget=SkillGroupStats (for more information,
see Skill Group Statistics, on page 341)

This keyword is used to block call events for silent
monitor calls in monitor mode applications.

HideSilentMonitorCallEvents (for more information,
see CCM-Based Silent Monitor Calls, on page 342)

Skill Group Statistics
One of the most common applications for a filter mode application is the processing of only skill group
statistics. For this purpose, the specialized filter FilterTarget=SkillGroupStats is defined. When set, this filter
indicates that the CTI OS server forward skill group statistics to the client application, whether or not any
agents are logged in.

After the filter is set, the client application needs to invoke the EnableSkillGroupStatistics(...) method for
each skill group that it is expecting to receive statistics. To stop receiving statistics for a given skill group,
the application must invoke the DisableSkillGroupStatistics method.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
341

Session Object
Skill Group Statistics

'register to receive skill group
statisticssFilterExpression="FilterTarget=SkillGroupStats"
'call SetMessageFilter
m_session.SetMessageFilter sFilterExpression
'Enable statistics for skills 78,89 and 90 in peripheral 5004
Private Sub m_Session_OnMonitorModeEstablished(ByVal pArguments As Arguments)
Dim m_Args = new Arguments

'For Skill 78
m_Args.AddItem "SkillGroupNumber",78
m_Args.AddItem "PeripheralID",5004
m_session.EnableSkillGroupStatistics m_Args
'For Skill 89
m_Args.Clear
m_Args.AddItem "SkillGroupNumber",89
m_Args.AddItem "PeripheralID",5004
m_session.EnableSkillGroupStatistics m_Args
'For Skill 90
m_Args.Clear
m_Args.AddItem "SkillGroupNumber",90
m_Args.AddItem "PeripheralID",5004
m_session.EnableSkillGroupStatistics m_Args
'Don't need arguments any more
Set m_Arg = Nothing

End Sub
Private Sub MyObjectClass_OnCleanupApplication()

Dim m_Args = new Arguments
'For Skill 78
m_Args.AddItem "SkillGroupNumber",78
m_Args.AddItem "PeripheralID",5004
m_session.DisableSkillGroupStatistics m_Args
'For Skill 89
m_Args.Clear
m_Args.AddItem "SkillGroupNumber",89
m_Args.AddItem "PeripheralID",5004
m_session.DisableSkillGroupStatistics m_Args
'For Skill 90
m_Args.Clear
m_Args.AddItem "SkillGroupNumber",90
m_Args.AddItem "PeripheralID",5004
m_session.DisableSkillGroupStatistics m_Args
'Don't need arguments any more
Set m_Arg = Nothing

End Sub

CCM-Based Silent Monitor Calls
If a monitor mode application does not wish to receive events for silent monitor calls, it can include the
"HideSilentMonitorCalls" keyword in the filter given to CtiOsSession.SetMessageFilter() to tell CTI OS
Server to hide events for silent monitor calls. For more information about how to use this filter, see All Calls
Sample.NET .

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
342

Session Object
CCM-Based Silent Monitor Calls

C H A P T E R 9
Agent Object

• Agent Object, on page 343
• Agent Object Properties, on page 343
• Agent Statistics, on page 345
• Methods, on page 352

Agent Object
The Agent object provides developers using the CTI OS Client Interface Library with an interface to agent
behavior. The Agent object exposes methods to perform all agent behaviors, such as logging in and setting
the agent state.

The object stores specific agent information as properties, including the AgentID, AgentPassword,
AgentInstrument, AgentExtension, and SkillGroups.When the agent is logged in to an ACD, the Agent object
receives updates through AgentStateEvents and Agent Statistics updates.

You can use the Agent object in two different modes:

• In Agent Mode, the application creates an Agent object and informs the Session about the agent using
Session.SetAgent().

• In Monitor Mode, the client application sets a message filter, and if the event stream involves events for
Agent objects, those objects are dynamically created at the CIL as needed.

Agent Object Properties
The following table lists the agent object properties.

The data type listed for each keyword is the standardized data type discussed in CTI OS CIL data types in
Chapter Three. For more information about the appropriate language specific types for these keywords Table
5: CTI OS CIL Data Type, on page 20.

Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
343

Table 130: Agent Object Properties

DescriptionTypeKeyword

One of the following values:
UNKNOWN (-1), NOT
AVAILABLE (0), ICM
AVAILABLE (1), or
APPLICATION AVAILABLE (2).

INTAgentAvailability Status

A value that indicates the agent's
call mode. Valid values are
call-by-call (3) and nailed-up (4).

INTAgent CallMode

Extension associated by ACD to
agent.

STRING*AgentExtension

Can be set prior to login or after
logout.

STRING*AgentID

Instrument associated by ACD to
agent.

STRING*AgentInstrument

The phone number that the agent
uses for remote login.

STRINGAgentRemote Number

One of the values in Table 89:
AgentState values, on page 234
representing the current state of the
associated agent.

SHORTAgentState

Identifies the type of this object.INTClassIdentifier

The unique object ID of the silent
monitor call. This is the call that
results from calling SuperviseCall()
with the SupervisorAction set to
eSupervisorMonitor.

Only applies to Cisco
Unified
Communications
Manager based silent
monitor.

Note

STRINGSilentMonitorCallUID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
344

Agent Object
Agent Object Properties

DescriptionTypeKeyword

This property contains the unique
object ID of the agent who the
supervisor is currently silent
monitoring.

Only applies to Cisco
Unified
Communications
Manager based silent
monitor.

Note

STRINGSilentMonitorTargetAgentUID

Extension associated by ACD to
agent.

Extension

The last selected agent connection
profile.

STRINGCurrentConnection Profile

Indicates whether this agent is a
supervisor.

INTIsSupervisor

Last error code, if any. Otherwise
this value is 0.

INTLastError

ID of peripheral.INTPeripheralID

The type of the peripheral.INTPeripheralType

AnArguments array containing the
statistics listed in Table 131: Agent
Statistics, on page 346.

ARGUMENTSStatistics

*The CTI OS server imposes no restriction on the maximum length of this string. However, such restrictions
are generally imposed by your switch/ACD and Cisco CTI Server. For more information about length
restrictions for this string, see the documentation for the switch/ACD or CTI Server.

Agent Statistics
You can access statistics by first using GetValueArray on the Agent object to obtain the “Statistics” Arguments
array and then using GetValueInt on the “Statistics” arguments array to obtain the desired value:

' First get the statistics argumentsDim args As Arguments
args = agent.GetValueArray ("Statistics")

' Then get the desired statistics
Dim availTimeSession As Integer
Dim loggedOnTimeSession As Integer
availTimeSession = args.GetValueInt("AvailTimeSession")
bargeInCallsToday = args.GetValueInt("BargeInCallsToday")

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
345

Agent Object
Agent Statistics

Not all the statistics values listed in the following table are present in every system configuration. Whether
or not a particular statistic value is available depends both on the protocol version of CTI Server with which
CTI OS connects and on the peripheral on which the agent resides.

Note

Table 131: Agent Statistics

DefinitionStatistic

Total time, in seconds, the agent was in the Available
state for any skill group.

AvailTime Session

Total time, in seconds, the agent has been logged in.LoggedOnTime Session

Total time, in seconds, the agent was in the Not Ready
state for all skill groups.

NotReadyTime Session

Total time, in seconds, the agent was in the Unified
ICM Available state.

ICMAvailable TimeSession

Total time, in seconds, the agent was in the Routable
state for all skill groups.

RoutableTime Session

Total number of completed outboundACD calls made
by agent.

AgentOutCalls Session

Total talk time, in seconds, for completed outbound
ACD calls handled by the agent. The value includes
the time spent from the call being initiated by the
agent to the time the agent begins after call work for
the call. The time includes hold time associated with
the call.

AgentOutCalls TalkTimeSession

Total handle time, in seconds, for completed outbound
ACD calls handled by the agent. The value includes
the time spent from the call being initiated by the
agent to the time the agent completes after call work
time for the call. The time includes hold time
associated with the call.

AgentOutCalls Time Session

The total number of completed outbound ACD calls
the agent has placed on hold at least once.

AgentOutCalls Held Session

Total number of seconds outbound ACD calls were
placed on hold.

AgentOutCalls HeldTime Session

The number of inbound ACD calls handled by the
agent.

HandledCalls Session

Total talk time in seconds for Inbound ACD calls
counted as handled by the agent. Includes hold time
associated with the call.

HandledCalls TalkTime Session

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
346

Agent Object
Agent Statistics

DefinitionStatistic

Total after call work time in seconds for InboundACD
calls counted as handled by the agent.

HandledCalls AfterCall TimeSession

Total handle time, in seconds, for inbound ACD calls
counted as handled by the agent. The time spent from
the call being answered by the agent to the time the
agent completed after call work time for the call.
Includes hold time associated with the call.

HandledCalls Time Session

The total number of completed inbound ACD calls
the agent placed on hold at least once.

IncomingCalls Held Session

Total number of seconds completed inbound ACD
calls were placed on hold.

IncomingCalls HeldTime Session

Number of internal calls initiated by the agent.InternalCallsSession

Number of seconds spent on internal calls initiated
by the agent.

InternalCalls TimeSession

Number of internal calls received by the agent.InternalCalls RcvdSession

Number of seconds spent on internal calls received
by the agent.

InternalCalls RcvdTime Session

The total number of internal calls the agent placed on
hold at least once.

InternalCalls Held Session

Total number of seconds completed internal calls were
placed on hold.

InternalCalls HeldTime Session

Total number of AutoOut (predictive) calls completed
by the agent.

AutoOutCalls Session

Total talk time, in seconds, of AutoOut (predictive)
calls completed by the agent. The value includes the
time spent from the call being initiated by the agent
to the time the agent begins after call work for the
call. The time includes hold time associated with the
call.

AutoOutCalls TalkTime Session

Total handle time, in seconds, for AutoOut
(predictive) calls completed by the agent. The value
includes the time spent from the call being initiated
by the agent to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

AutoOutCalls Time Session

The total number of completed AutoOut (predictive)
calls the agent has placed on hold at least once.

AutoOutCalls Held Session

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
347

Agent Object
Agent Statistics

DefinitionStatistic

Total number of seconds AutoOut (predictive) calls
were placed on hold.

AutoOutCalls HeldTime Session

Total number of outbound Preview calls completed
by the agent.

PreviewCalls Session

Total talk time, in seconds, of outbound Preview calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent begins after call work for the call. The
time includes hold time associated with the call.

PreviewCalls TalkTime Session

Total handle time, in seconds, outbound Preview calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent completes after call work time for the
call. The time includes hold time associated with the
call.

PreviewCalls TimeSession

The total number of completed outbound Preview
calls the agent has placed on hold at least once.

PreviewCalls HeldSession

Total number of seconds outbound Preview calls were
placed on hold.

PreviewCalls HeldTime Session

Total number of agent reservation calls completed by
the agent.

Reservation CallsSession

Total talk time, in seconds, of agent reservation calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent begins after call work for the call. The
time includes hold time associated with the call.

Reservation CallsTalk TimeSession

Total handle time, in seconds, agent reservation calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent completes after call work time for the
call. The time includes hold time associated with the
call.

Reservation CallsTime Session

The total number of completed agent reservation calls
the agent has placed on hold at least once.

Reservation CallsHeld Session

Total number of seconds agent reservation calls were
placed on hold.

Reservation CallsHeld TimeSession

Total number of supervisor call barge-ins completed.BargeInCalls Session

Total number of supervisor call intercepts completed.InterceptCalls Session

Total number of supervisor call monitors completed.MonitorCalls Session

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
348

Agent Object
Agent Statistics

DefinitionStatistic

Total number of supervisor whisper calls completed.WhisperCalls Session

Total number of emergency calls.EmergencyCallsSession

Total time, in seconds, the agent was in the Available
state for any skill group.

AvailTimeToday

Total time, in seconds, the agent has been logged in.LoggedOnTime Today

Total time, in seconds, the agent was in the Not Ready
state for all skill groups.

NotReadyTime Today

Total time, in seconds, the agent was in the Unified
ICM Available state.

ICMAvailable TimeToday

Total time, in seconds, the agent was in the Routable
state for all skill groups.

RoutableTime Today

Total number of completed outboundACD calls made
by agent.

AgentOutCalls Today

Total talk time, in seconds, for completed outbound
ACD calls handled by the agent. The value includes
the time spent from the call being initiated by the
agent to the time the agent begins after call work for
the call. The time includes hold time associated with
the call.

AgentOutCalls TalkTime Today

Total handle time, in seconds, for completed outbound
ACD calls handled by the agent. The value includes
the time spent from the call being initiated by the
agent to the time the agent completes after call work
time for the call. The time includes hold time
associated with the call.

AgentOutCalls Time Today

The total number of completed outbound ACD calls
the agent has placed on hold at least once.

AgentOutCalls HeldToday

Total number of seconds outbound ACD calls were
placed on hold.

AgentOutCalls HeldTime Today

The number of inbound ACD calls handled by the
agent.

HandledCalls Today

Total talk time in seconds for Inbound ACD calls
counted as handled by the agent. Includes hold time
associated with the call.

HandledCalls TalkTime Today

Total after call work time in seconds for InboundACD
calls counted as handled by the agent.

HandledCalls AfterCall TimeToday

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
349

Agent Object
Agent Statistics

DefinitionStatistic

Total handle time, in seconds, for inbound ACD calls
counted as handled by the agent. The time spent from
the call being answered by the agent to the time the
agent completed after call work time for the call.
Includes hold time associated with the call.

HandledCalls TimeToday

The total number of completed inbound ACD calls
the agent placed on hold at least once.

IncomingCalls HeldToday

Total number of seconds completed inbound ACD
calls were placed on hold.

IncomingCalls HeldTime Today

Number of internal calls initiated by the agent.InternalCalls Today

Number of seconds spent on internal calls initiated
by the agent.

InternalCalls TimeToday

Number of internal calls received by the agent.InternalCalls RcvdToday

Number of seconds spent on internal calls received
by the agent.

InternalCalls RcvdTime Today

The total number of internal calls the agent placed on
hold at least once.

InternalCalls HeldToday

Total number of seconds completed internal calls were
placed on hold.

InternalCalls HeldTime Today

Total number of AutoOut (predictive) calls completed
by the agent.

AutoOutCalls Today

Total talk time, in seconds, of AutoOut (predictive)
calls completed by the agent. The value includes the
time spent from the call being initiated by the agent
to the time the agent begins after call work for the
call. The time includes hold time associated with the
call.

AutoOutCalls TalkTime Today

Total handle time, in seconds, for AutoOut
(predictive) calls completed by the agent. The value
includes the time spent from the call being initiated
by the agent to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

AutoOutCalls TimeToday

The total number of completed AutoOut (predictive)
calls the agent has placed on hold at least once.

AutoOutCalls HeldToday

Total number of seconds AutoOut (predictive) calls
were placed on hold.

AutoOutCalls HeldTime Today

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
350

Agent Object
Agent Statistics

DefinitionStatistic

Total number of outbound Preview calls completed
by the agent.

PreviewCalls Today

Total talk time, in seconds, of outbound Preview calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent begins after call work for the call. The
time includes hold time associated with the call.

PreviewCalls TalkTimeToday

Total handle time, in seconds, outbound Preview calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent completes after call work time for the
call. The time includes hold time associated with the
call.

PreviewCalls TimeToday

The total number of completed outbound Preview
calls the agent has placed on hold at least once.

PreviewCalls HeldToday

Total number of seconds outbound Preview calls were
placed on hold.

PreviewCalls HeldTimeToday

Total number of agent reservation calls completed by
the agent.

Reservation CallsToday

Total talk time, in seconds, of agent reservation calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent begins after call work for the call. The
time includes hold time associated with the call.

Reservation CallsTalk TimeToday

Total handle time, in seconds, agent reservation calls
completed by the agent. The value includes the time
spent from the call being initiated by the agent to the
time the agent completes after call work time for the
call. The time includes hold time associated with the
call.

Reservation CallsTimeToday

The total number of completed agent reservation calls
the agent has placed on hold at least once.

Reservation CallsHeldToday

Total number of seconds agent reservation calls were
placed on hold.

Reservation CallsHeldTimeToday

Total number of supervisor call barge-ins completed.BargeInCalls Today

Total number of supervisor call intercepts completed.InterceptCalls Today

Total number of supervisor call monitors completed.MonitorCalls Today

Total number of supervisor whisper calls completed.WhisperCalls Today

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
351

Agent Object
Agent Statistics

DefinitionStatistic

Total number of emergency calls.EmergencyCalls Today

Total time, in seconds, the agent was in the Available
state for any skill group.

AvailTime Session

Total time, in seconds, the agent has been logged in.LoggedOnTime Session

Total time, in seconds, the agent was in the Not Ready
state for all skill groups.

NotReadyTime Session

Total time, in seconds, the agent was in the Unified
ICM Available state.

ICMAvailable TimeSession

Total time, in seconds, the agent was in the Routable
state for all skill groups.

RoutableTime Session

Total number of completed outboundACD calls made
by agent.

AgentOutCalls Session

Methods
The following table lists the Agent object methods.

Table 132: Agent Object Methods

DescriptionMethod

Disables agent statistic messages.DisableAgentStatistics

Disables skill group statistic messages.DisableSkillGroupStatistics

For more information, see CtiOs Object, on page 291DumpProperties

Enables agent statistic messages.EnableAgentStatistics

Enables skill group statistic messages.EnableSkillGroupStatistics

Returns the current agent state.GetAgentState

For more information, see CtiOs Object, on page 291GetAllProperties

For more information, see CtiOs Object, on page 291GetElement

Returns the Agent object that is currently being
monitored.

GetMonitoredAgent

Returns the Call object that is currently being
monitored.

GetMonitoredCall

For more information, see CtiOs Object, on page 291GetNumProperties

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
352

Agent Object
Methods

DescriptionMethod

For more information, see CtiOs Object, on page 291GetPropertyName

For more information, see CtiOs Object, on page 291GetPropertyType

Returns an array of SkillGroups objectsGetSkillGroups

For more information, see CtiOs Object, on page 291GetValue

For more information, see CtiOs Object, on page 291GetValueArray

For more information, see CtiOs Object, on page 291GetValueInt

For more information, see CtiOs Object, on page 291GetValueString

Checks the current mode and returns true if agent
mode.

IsAgent

Checks the current mode and returns true if supervisor
mode.

IsSupervisor

For more information, see CtiOs Object, on page 291IsValid

Logs an agent in to the ACD.Login

Logs an agent out of the ACD.Logout

Initiates a call to a device or agent.MakeCall

Lets an agent make an emergency call to the
supervisor.

MakeEmergencyCall

Gets the current agent state from CTI Server and
retrieves it.

QueryAgentState

Informs the CTI OS Server of a bad line.ReportBadCallLine

Retrieves the current agent team list.RequestAgentTeamList

Allows the agent to call an available supervisor for
assistance.

RequestSupervisorAssist

Send asynchronous messages between CTI clients.SendChatMessage

Sets the value of the Agent Greeting Action to enable
or disable Agent Greeting for the logged in agent.

SetAgentGreetingAction

Requests a new agent state.SetAgentState

Sets the value of the property whose name is specified.SetValue

Enables monitoring of a specified agent.StartMonitoringAgent

Enables monitoring of a specified agent team.StartMonitoringAgentTeam

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
353

Agent Object
Methods

DescriptionMethod

Enables monitoring of all agent teams.StartMonitoringAllAgentTeams

Enables monitoring of a specified Call object.StartMonitoringCall

Disables monitoring of a specified agent.StopMonitoringAgent

Disables monitoring of a specified agent team.StopMonitoringAgentTeam

Disables monitoring of all agent teams.StopMonitoringAllAgentTeams

Enables monitoring a call of an agent on your team.SuperviseCall

Arguments Parameters
The following rules apply to the optional_args and reserved_args parameters in Call Object methods:

• In VB, you can ignore these parameters altogether. For example, you can treat the line:

Answer([reserved_args As IArguments]) As Long

as follows:

Answer()

• To ignore these parameters in COM you must send a NULL, as shown:

Answer (NULL)

DisableAgentStatistics
The DisableAgentStatistics method is sent by an agent to request that real-time statistics stop being sent to
that agent.

Syntax

C++
int DisableAgentStatistics (Arguments& reserved_args)

COM
HRESULT DisableAgentStatistics (/*[in]*/ IArguments reserved_args, /* [out, retval]*/

int * errorcode)

VB
DisableAgentStatistics (reserved_args As CTIOSCLIENTLib.IArguments) As Long

Java
int DisableAgentStatistics (Arguments reservedargs)

.NET
CilError DisableAgentStatistics(Arguments args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
354

Agent Object
Arguments Parameters

Parameters

.NET:args

Not currently used, reserved for future use.

All Others:reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

DisableSkillGroupStatistics
The DisableSkillGroupStatistics method is sent by an agent to request that real-time statistics stop being sent
to that agent.

Syntax

C++
int DisableSkillGroupStatistics (Arguments& optional_args)

COM
HRESULT DisableSkillGroupStatistics (/* [in, optional]*/ IArguments * optional_args,

/* [out, retval]*/ int * errorcode)

VB
DisableSkillGroupStatistics (optional_args As CTIOSCLIENTLib.IArguments) As Long

Java
int DisableSkillGroupStatistics (Arguments optional_args

.NET
CilError DisableSkillGroupStatistics(Arguments args)

Parameters

optional_args

An optional input parameter containing a pointer or a reference to an Arguments array containing a
member that is a nested Arguments array with the keyword SkillGroupNumbers. Within this array, for
each skill group to be disabled, specify a string key of an integer starting with 1 and an integer value for
skill group number and specify a string key of an integer and integer value for skill group priority. If the
parameter is NULL or missing, statistics are disabled for all skill groups to which the agent belongs.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
355

Agent Object
DisableSkillGroupStatistics

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

EnableAgentStatistics
The EnableAgentStatistics method is sent by an agent to request that real-time statistics be sent to that agent.

Syntax

C++
int EnableAgentStatistics(Arguments& reserved_args)

COM
HRESULT EnableAgentStatistics (/*[in]*/ IArguments* reserved_args, /* [out, retval]*/

int * errorcode)

VB
EnableAgentStatistics (reserved_args As CTIOSCLIENTLib.IArguments) As Long

Java
int EnableAgentStatistics(Arguments args)

.NET
CilError EnableAgentStatistics(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET:args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

The CTI OS server sends agent statistics in an OnAgentStatistics event. For more information about the
PollingIntervalSec and PollForAgentStatsAtEndCall registry settings and how these settings affect the refresh
rate of agent statistics, see OnAgentStatistics, on page 235 in Chapter 6, Event Interfaces and Events, on page
167

EnableSkillGroupStatistics
The EnableSkillGroupStatistics method is sent by an agent to request that real-time statistics be sent to that
agent. If the Argument array is empty, then statistics for all skill groups are sent. This is useful when a

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
356

Agent Object
EnableAgentStatistics

monitoring application needs to view all statistics without having to enumerate and loop over each statistic
to enable it.

Syntax

C++
int EnableSkillGroupStatistics (Arguments& optional_args)

COM
HRESULT EnableSkillGroupStatistics (/*[in]*/ IArguments * optional_args, /* [out,

retval]*/ int * errorcode)

VB
EnableSkillGroupStatistics (optional_args As CTIOSCLIENTLib.IArguments) As Long

Java
Java:int EnableSkillGroupStatistics(Arguments optional_args)

.NET
CilError EnableSkillGroupStatistics(Arguments args)

Parameters

optional_args

An optional input parameter containing a pointer or a reference to an Arguments array containing a
member that is a nested Arguments array with the keyword SkillGroupNumbers. Within this array, each
member has a string key of an integer starting with 1 and an integer value that is a skill group number
to be enabled and a string key of an integer and integer value that is a skill group priority to be enabled.
If the parameter is NULL or missing, statistics are enabled for all skill groups to which the agent belongs.

args

Refer to the description for optional_args above.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

The CTI OS server sends SkillGroup statistics in the OnSkillGroupStatisticsUpdated event of the SkillGroup
object.

GetAgentState
The GetAgentState method returns the current state of the agent.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
357

Agent Object
GetAgentState

Syntax

C++
enumCTIOS_AgentState GetAgentState()

COM
HRESULT GetAgentState (/*[in]*/ long *state)

VB
GetAgentState () As Long

Java
int GetAgentState()

.NET
AgentState GetAgentState()

Parameters

state

Output parameter (return parameter in VB) containing the current agent state in the form of one of the values
in Table 89: AgentState values, on page 234.

Return Value

For C++, VB, Java, and .NET, this method returns the current state of the agent.

GetAllProperties
For more information about the GetAllProperties method, see CtiOs Object, on page 291.

GetElement
For more information about the GetElement method, see CtiOs Object, on page 291.

GetMonitoredAgent
The GetMonitoredAgent method returns the Agent object that is currently being monitored.

Syntax

C++
CAgent* GetMonitoredAgent()

COM
HRESULT GetMonitoredAgent (/*[out, retval]*/IAgent **agent)

VB
GetMonitoredAgent () As CTIOSCLIENTLib.IAgent

Java
Agent GetMonitoredAgent()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
358

Agent Object
GetAllProperties

.NET
Agent GetMonitoredAgent()

Parameters

agent

Output parameter (return parameter in VB) that contains a pointer to a pointer to an Agent object containing
the currently monitored agent.

Return Value

This method returns the current monitored agent. The C++, Java, and .NET versions return null if no agent
is currently being monitored.

Remarks

Supported for use with Unified CCE only.

GetMonitoredCall
The GetMonitoredCall method returns the Call object that is currently being monitored.

Syntax

C++
CCall* GetMonitoredCall()

COM
HRESULT GetMonitoredCall (/*[out, retval]*/ICall **call)

VB
GetMonitoredCall () As CTIOSCLIENTLib.ICall

Java
Call GetMonitoredCall()

.NET
Call GetMonitoredCall()

Parameters

call

Output parameter (return parameter in VB) that contains a pointer to a pointer to a Call object containing the
currently monitored call.

Return Value

This method returns the current monitored call. The C++, Java, and .NET versions return null if no call is
currently being monitored.

Remarks

Supported for use with Unified CCE only.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
359

Agent Object
GetMonitoredCall

GetNumProperties
For more information about the GetNumProperties method, see CtiOs Object, on page 291.

GetPropertyName
For more information about the GetNumProperties method, see CtiOs Object, on page 291.

GetPropertyType
For more information about the GetNumProperties method, see CtiOs Object, on page 291.

GetSkillGroups
If skillgroupstats is enabled, the GetSkillGroups method allows a client to retrieve a list that contains references
to all the skill group objects to which the agent belongs. To retrieve skill groups enable skill group statistics,
and turn off agent event minimization by setting its value to 0 on the CTI OS server in the registry key, for
example:

HKLM\SOFTWARE\Cisco

Systems,Inc.\Ctios\<Customer-Instancename>\CTIOS1\Server\Agent\MinimizeAgentStateEvents

The skill group information is available on the agent state change event if the minimization is turned off. The
following code example shows how to access the skill group properties of the Agent object:

Log m_Agent.DumpProperties
Dim i As Integer

For i = 1 To 20
If m_Agent.IsValid("SkillGroup[" & i & "]") Then

Set argskills = m_Agent.GetValueArray("SkillGroup[" & i & "]")
Log "SkillGroup[" & i & "]:" & argskills.DumpArgs

Else
Log "SkillGroup[" & i & "] args doesnt exist"

End If
Next i

Syntax

C++
Arguments & GetSkillGroups();

COM
HRESULT GetSkillGroups (/*[out,retval]*/ VARIANT * pVariantArgs);

VB
GetSkillGroups () As Variant

Java
Arguments GetSkillGroups()

.NET
Arguments GetSkillGroups()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
360

Agent Object
GetNumProperties

Parameters

None.

Return Value

This method returns -1 if skillgroupstats is not enabled.

C++

In C++ the GetSkillGroups method returns an Arguments array containing references to CSkillGroup objects.

Each element in the returned Arguments array consists of a key/value pair, in which the element key is the
Unique Object Id of the skill group object and the value is a reference to a CILRefArg object instance that
contains the actual reference to a CSkillGroup object. To retrieve a reference to a skill group object, you need
to do something similar to what is shown in the following code example.

Arguments & arSkills = m_Agent->GetSkillGroups();
if(Arguments::IsValidReference(arSkills)){

for(int nI = 1; nI <= arSkills.NumElements(); nI ++){
string strUOID = arSkills.GetElementKey(nI);
CilRefArg & pRefArg = (CilRefArg &) arSkills.GetValue(strUOID);
if(Arg::IsValidReference(*pRefArg)){

CSkillGroup * pSkill = pRefArg->GetValue();
pRefArg->Release();

cout << "Skill Object (" << strUOID << ") ;
cout << " Skill Group Number: " << ;

pSkill->GetValueInt(CTIOS_SKILLGROUPNUMBER);
}

}

COM

In COM the GetSkillGroups method returns a pointer to a variant that encapsulates a Safearray where each
element is a pointer to an ISkillGroup object.

To retrieve references to skill group objects, you need to do something similar to what is shown in the following
code example.

HRESULT hr = S_OK;VARIANT varSkills;

VariantInit(&varSkills)

hr = m_Agent->GetSkillGroups(&varSkills);

if(SUCCEDED(hr)){
if(varSkills.vt == (VT_ARRAY | VT_DISPATCH)){

long lNumElements = 0;

SafeArrayGetUBound(varSkills.parray,1,&lNumElements);

for(long nI = 0; nI < lNumElements; nI ++){
ISkillGroup * pSkill= NULL;
hr=SafeArrayGetElement(varSkills.parray,&nI,&pSkill);
if(SUCCEDED(hr)){

int nSkillGrpNumber = 0;
VARIANT vPropKey;
VariantInit(&vPropKey);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
361

Agent Object
GetSkillGroups

vPropKey.vt = VT_BSTR;
vPropKey.bstr = OLESTR("SkillGroupNumber");
pSkill->GetValueInt(vPropKey,&nSkillGrpNumber);
pSkill->Release();
VariantClear(&vPropKey);

}
}

}
}

VB

In VB, the GetSkillGroups method returns a variant array where each element is a reference to a
CTIOSClientLib.SkillGroup object.

To retrieve references to skill group objects you need to do something similar to what is shown in the following
code example:

Dim obSkill As CTIOSClientLib.SkillGroupDim arSkills As Variant
Dim lNumElements as Long

arSkills = m_Agent.GetSkillGroups()
lNumElements = UBound(arSkills,1)
For nI = 0 to lNumElements

Set obSkill = arSkills(nI)
Print "SkillGroup" &

obSkill.GetValueString(CStr("UniqueObjectId")) & _
"Skill Group Number: " &

obSkill.GetValueInt(CStr("SkillGroupNumber"))
Next
End For

GetValue Methods
For more information about the GetValue, GetValueInt, GetValueArray, and GetValueString methods, see
CtiOs Object, on page 291.

IsAgent
The IsAgent method determines whether the AgentMode connection is for an agent rather than a supervisor.

Syntax

C++
bool IsAgent()

COM
HRESULT IsAgent (VARIANT_BOOL *bIsAgent)

VB
IsAgent () As Boolean

Java
boolean IsAgent()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
362

Agent Object
GetValue Methods

.NET
bool IsAgent()

Parameters

IsAgent

Output parameter (return parameter in VB) that returns true if the current AgentMode connection is for an
agent and false if it is for a supervisor.

Return Value

Returns true if the current AgentMode connection is for an agent and false if the connection is for a supervisor.

IsSupervisor
The IsSupervisor method determines whether the AgentMode connection is for a supervisor.

Syntax

C++
bool IsSupervisor()

COM
HRESULT IsSupervisor (VARIANT_BOOL * bIsSupervisor)

VB
IsSupervisor () As Boolean

Java
boolean IsSupervisorMode()

.NET
bool IsSupervisor()

Parameters

bIsSupervisor

Output parameter (return parameter in VB) that returns true if the current AgentMode connection is for a
supervisor and false if it is for an agent.

Return Values

If the current session is for a supervisor, this method returns true. Otherwise the method returns false.

Login
The Login method performs a login to the ACD (if supported). Generally, the minimum parameters required
to log in to an ACD are AgentID and AgentInstrument. Often, based on customer configuration, the minimum
requirements include an ACD password (AgentPassword). Some switches require PositionID in place of (or
in addition to) AgentInstrument. Optional arguments include Extension or AgentWorkMode.

To sign on a mobile agent, you must set the following parameters:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
363

Agent Object
IsSupervisor

• CTIOS_REMOTELOGIN set to true

• CTIOS_AGENTREMOTENUMBER

• CTIOS_AGENTCALLMODE

Example

rArgs.SetValue(Enum_CtiOs.CTIOS_REMOTELOGIN, "true");

rArgs.SetValue(Enum_CtiOs.CTIOS_AGENTREMOTENUMBER,"777989");

rArgs.SetValue(Enum_CtiOs.CTIOS_AGENTCALLMODE, 4);

Syntax

C++
virtual int Login(Arguments & args);

COM
HRESULT Login (/*[in]*/ IArguments * pVariantArgs, /*[out]*/ int * errorcode);

VB
Login (args As CTIOSCLIENTLib.IArguments) As Long

Java
int Login(Arguments args)

.NET
CilError Login(Arguments args)

Input Parameters

args

Arguments array that contains the login parameters that are listed in the following table:

Table 133: Login Parameters

DescriptionTypeKeyword

The agent's login ID.STRING*AgentID (required)**

The agent's instrument number.STRING*AgentInstrument

The agent's login name.STRINGLoginName (required)**

The agent's teleset extension.
Optional if AgentInstrument is
provided.

STRING*AgentExtension

The agent's password.STRING*AgentPassword (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
364

Agent Object
Login

DescriptionTypeKeyword

A value representing the desired
work mode of the agent. Used by
Avaya Communications Manager
(ACM) ECS with default value of
ManualIn.

INTAgentWorkMode (optional)

The number of Skill Groups that
the agent is currently associated
with, up to a maximum of 20.

INTNumSkillGroups (optional)

The Unified ICM Peripheral ID of
the ACD the agent is attached to.

INTPeripheralID (optional)

The number of an agent skill group
associated with the agent.

INTSkillGroupNumber (optional)

The priority of an agent skill group
associated with the agent.

INTSkillGroupPriority (optional)

A value that indicates the agent's
call mode. Valid values are
call-by-call (3) and nailed-up (4).

INTAgent CallMode

The phone number that the agent
uses for remote login.

STRINGAgentRemote Number

A value that indicates the agent is
configured for remote login as a
remote agent.

INTRemoteLogin

*The CTI OS server imposes no restriction on the maximum length of this string. However, such restrictions
are generally imposed by your switch/ACD and Cisco CTI Server. Consult the documentation for the
switch/ACD or CTI Server for information on length restrictions for this string.

** Either AgentID or LoginName is required.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

If the Login request is successful, it returns a CIL_OKCtiOs_Enums.CilError code In addition, the requesting
client can expect an AgentStateChange event if the request is successful with an Arguments member with
keyword “AgentState” and value of the agent's current state. (For more information about possible values,
see GetAgentState.)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
365

Agent Object
Login

If the Login request is unsuccessful, the client receives an OnControlFailureConf event and the request returns
one of the following CtiOs_Enums.CilError codes:

• E_CTIOS_INVALID_SESSION -- either the agent is not associated with the session or the session is
not connected.

• E_CTIOS_INVALID_ARGUMENT -- null or invalid arguments were provided.

• E_CTIOS_LOGIN_INCONSISTENT_ARGUMENTS -- Login request argument values for AgentId
and/or PeripheralID do not match the values that were set by SetAgent() prior to the Login request.

Logout
The Logout method logs the agent out of the ACD. If the ACD configuration requires or supports other
parameters, you can pass these in as logout parameters. Examples are logout reason codes (supported on ACM
ECS, Unified CCE).

Syntax

C++
int Logout (Arguments& args)

COM
HRESULT Logout (/*[in]*/ IArguments args, /*[out,retval]*/ int * errorcode)

VB
Logout (args As CTIOSCLIENTLib.IArguments) As Long

Java
int Logout(Arguments args)

.NET
CilError Logout(Arguments args)

Input Parameters

args

Input parameter in the form of an Arguments array that contains the Logout parameters that are listed in the
following table:

Table 134: Logout Parameters

DescriptionTypeKeyword

Reason for logging out. Required
for Unified CCE , optional for all
other switches.

INTEventReasonCode

The agent's password.STRING*AgentPassword (optional)

The number of Skill Groups that
the agent is currently associated
with, up to a maximum of 20.

INTNumSkillGroups (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
366

Agent Object
Logout

DescriptionTypeKeyword

The number of an agent skill group
associated with the agent.

INTSkillGroupNumber (optional)

The priority of an agent skill group
associated with the agent.

INTSkillGroupPriority (optional)

The agent's login ID.STRING*AgentID (optional)

The agent's instrument number.STRING*AgentInstrument

The Unified ICM Peripheral ID of
the ACD the agent is attached to.

INTPeripheralID (optional)

*The CTI OS server imposes no restriction on the maximum length of this string. However, such restrictions
are generally imposed by your switch/ACD and Cisco CTI Server. Consult the documentation for the
switch/ACD or CTI Server for information on length restrictions for this string.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

If the request is successful, the client receives an OnAgentStateChange event with an Arguments member
with keyword “AgentState” and value eLogout. If it is unsuccessful, the client receives anOnControlFailureConf
event. The client also receives an OnPreLogout event before the OnAgentStateChange event, and an
OnPostLogout event afterwards.

MakeCall
The MakeCall method initiates a call to a device or agent. The simplest form of the request requires only a
DialedNumber.

You can select and make the call against the skillgroup. Do not set the value if the default skillgroup is desired.Note

Syntax

C++
int MakeCall (Arguments& args)

COM
HRESULT MakeCall (/*[in]*/ IArguments *args, /*[out,retval]*/ int * errorcode)

VB
MakeCall (args As CTIOSCLIENTLib.IArguments) As Long

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
367

Agent Object
MakeCall

Java
int MakeCall(Arguments args)

.NET
CilError MakeCall(Arguments args)

Input Parameters

args

Input parameter in the form of an Arguments array that contains the MakeCall parameters that are listed in
the following table:

Table 135: MakeCall Parameters

DescriptionTypeKeyword

The number to be dialed to
establish the new call.

STRING, maximum length 40DialedNumber (required)

The Unified ICM Peripheral ID of
the ACD the agent is attached to.

INTPeripheralID (optional)

The agent's instrument number.STRING*AgentInstrument (optional)

A value specifying how the call is
to be placed is identified in Table
136: Call Placement Types, on page
370.

STRING, maximum length 40CallPlacementType (optional)

A value specifying additional call
processing options is identified in
Table 137: Unified CM Type, on
page 370.

INTCallMannerType (optional)

The maximum amount of time that
the call's destination remains
alerting, specified as an
approximate number of rings. A
zero value indicates that the
peripheral default (typically 10
rings) is used.

INTAlertRings (optional)

A value from Table 138:
Peripheral-Specific Call Options,
on page 371 specifying additional
peripheral-specific call options.

INTCallOption (optional)

A value from Table 139: Facility
Types, on page 371 indicating the
type of facility to use.

INTFacilityType (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
368

Agent Object
MakeCall

DescriptionTypeKeyword

A value from Table 140:
Answering Machine Actions, on
page 371 specifying the action to be
taken if the call is answered by an
answering machine.

INTAnsweringMachine (optional)

This field should be set to TRUE if
the call receives priority handling.

BOOLPriority (optional)

When this field is set to TRUE, the
Post-Routing capabilities of the
Unified ICM are used to determine
the new call destination.

BOOLPostRoute (optional)

The ISDNuser-to-user information.STRING, maximum length 40UserToUserInfo (optional)

Call variable data set in the new
call in place of the corresponding
data in the active call.

STRING, maximum length 40CallVariable1 (optional)

.........

CallVariable10 (optional)

ECC data that is set in the new call
in place of the corresponding data
in the active call.

ARGUMENTSECC (optional)

Call-related wrapup data.STRING, maximum length 40CallWrapupData (optional)

Set the FacilityType to 1 for trunk
groups and enter the trunk access
code in the FacilityCode.

Set the FacilityType to 2 for skill
groups and enter the SkillGroupID
in the FacilityCode.

Set the FacilityType to 0 for
unspecified and enter a split
extension or other data needed to
access the chosen facility in the
FacilityCode.

STRING, maximum length 40FacilityCode (optional)

An authorization code needed to
access the resources required to
initiate the call.

The AuthorizationCode
parameter is not used
and is not supported.

Note

STRING, maximum length 40AuthorizationCode (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
369

Agent Object
MakeCall

DescriptionTypeKeyword

A cost-accounting or client number
used by the peripheral for
charge-back purposes.

STRING, maximum length 40AccountCode (optional)

This keyword is not functional in
MakeCall. Instead, to specify the
skill group in MakeCall, enter a
FacilityType of 2 and enter the
SkillGroupID in the FacilityCode.

INTSkillGroupNumber

Table 136: Call Placement Types

ValueDescriptionCallPlacementType

0Use default call placement.CPT_UNSPECIFIED

1An inside line call.CPT_LINE_CALL

2An outbound call.CPT_OUTBOUND

3An outbound call that does not
require an access code.

CPT_OUTBOUND_NO_
ACCESS_CODE

4A call placed directly to a specific
position.

CPT_DIRECT_POSITION

5A call placed directly to a specific
agent.

CPT_DIRECT_AGENT

6A call placed to a supervisor for
call handling assistance.

CPT_SUPERVISOR_ASSIST

*The CTI OS server imposes no restriction on the maximum length of this string.However, such restrictions
are generally imposed by your switch/ACD and Cisco CTI Server. Consult the documentation for the
switch/ACD or CTI Server for information on length restrictions for this string.

Table 137: Unified CM Type

ValueDescriptionCallMannerType

0Use default call manner.CMT_UNSPECIFIED

1Attempt the call only if the
originating device is idle.

CMT_POLITE

2Always attempt the call,
disconnecting any currently active
call.

CMT_BELLIGERENT

3Attempt the call only if the
originating device is idle or is
receiving dial tone.

CMT_SEMI_POLITE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
370

Agent Object
MakeCall

Table 138: Peripheral-Specific Call Options

ValueDescriptionCallOption

0No call options specified, use
defaults.

COPT_UNSPECIFIED

1Attempt the call only if the calling
agent is “online” (available to
interact with the destination party).

COPT_CALLING_
AGENT_ONLINE

2Attempt the call only if ACDNR
on the calling agent's set is
activated.

COPT_CALLING_
AGENT_RESERVED

3Attempt the call only if ACDNR
on the calling agent's set is not
activated.

COPT_CALLING_
AGENT_NOT_ RESERVED

4Applies a buzz to the base of the
telephone set as the call is initiated.

COPT_CALLING_
AGENT_BUZZ_BASE

5Applies a tone to the agent headset
as the call is initiated.

COPT_CALLING_
AGENT_BEEP_HSET

6Applies a call classifier to the call
(ACM ECS).

COPT_SERVICE_ CIRCUIT_ON

Table 139: Facility Types

ValueDescriptionFacilityType

0Use default facility type.FT_UNSPECIFIED

1Facility is a trunk group.FT_TRUNK_GROUP

2Facility is a skill group or split.FT_SKILL_GROUP

Table 140: Answering Machine Actions

ValueDescriptionAnsweringMachine

0Use default behavior.AM_UNSPECIFIED

1Connect call to agent when call is
answered by an answeringmachine.

AM_CONNECT

2Disconnect call when call is
answered by an answeringmachine.

AM_DISCONNECT

3Do not use answering machine
detection.

AM_NONE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
371

Agent Object
MakeCall

ValueDescriptionAnsweringMachine

4Do not use answering machine
detection, but disconnect call if
answered by a modem.

AM_NONE_NO_ MODEM

5Connect call when call is answered
by an answering machine,
disconnect call if answered by a
modem.

AM_CONNECT_NO_MODEM

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

If the request is successful, the client receives one or more of the following call related events:

• OnCallBegin

• OnCallDelivered

• OnServiceInitiated

• OnCallOriginated

• OnCallReachedNetwork

If the request is unsuccessful, the client receives an OnControlFailureConf event.

MakeEmergencyCall
The MakeEmergencyCall method makes an emergency call to the Agent's supervisor.

Syntax

C++
int MakeEmergencyCall ()

int MakeEmergencyCall (Arguments& reserved_args)

COM
HRESULT MakeEmergencyCall (/*[in, optional]*/ IArguments reserved_args, /* [out, retval]*/

int * errorcode)

VB
MakeEmergencyCall () As Long

MakeEmergencyCall (reserved_args As CTIOSCLIENTLib.IArguments) As Long

Java
int MakeEmergencyCall (Arguments args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
372

Agent Object
MakeEmergencyCall

.NET
CilError MakeEmergencyCall(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

Remarks

The MakeEmergencyCall request is very similar to the RequestSupervisorAssist request in the following two
ways:

• Both requests place a call from the requesting agent to a supervisor and are routed employing the same
script. A typical script might attempt to route the call to the primary supervisor first (if logged in and in
available state) and, failing that, to route the call to a skillgroup that all supervisors belong to.

• You can configure Unified ICM Agent Desk Settings to make both call requests via a single step
conference or consult call. If the consult method is chosen, the agent can complete the established consult
call as a transfer or conference.

These two requests have the following important differences:

• Only Emergency calls can be recorded, if so configured in the Unified ICM Agent Desk Settings.

• The calls are reported separately in Unified ICM reporting.

Having these two separate requests gives a site some flexibility in implementing supervisor help for its agents,
instructing agents to use one for certain cases and the other for different situations. In general, use the
MakeEmergencyCall method for higher priority calls than calls made with the RequestSupervisorAssist
method. For example, you can train agents to click the Emergency button if the customer has more than
$1,000,000 in an account, and otherwise to click the Supervisor Assist button. The Supervisor can differentiate
the agent's request by noting the CallType.

The MakeEmergencyCall request is specific to the Supervisor feature and should only be used on switches
or configurations that have the necessary support (currently,

QueryAgentState
The QueryAgentState method lets a client retrieve the current state of the agent.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
373

Agent Object
QueryAgentState

Syntax

C++
int QueryAgentState (Arguments & args);

COM
HRESULT QueryAgentState (/*[in]*/ IArguments * args, /*[out,retval]*/ int * errorcode

);

VB
QueryAgentState (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Java
int QueryAgentState (Arguments args)

.NET
CilError QueryAgentState(Arguments args)

Input Parameters

args

Arguments array that contains the parameters listed in the following table.

Table 141: QueryAgentState parameters

DescriptionTypeKeyword

Agent's login ID.STRINGAgent ID

Agent's instrument number.STRINGAgentInstrument

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

If the request is successful, the client receives an OnQueryAgentStateConf event. If it is unsuccessful, the
client receives an OnControlFailureConf event.

ReportBadCallLine
The ReportBadCallLine method informs the CTI OS server of the poor quality of the agent's line. A note of
this is recorded in the database.

Syntax

C++
int ReportBadCallLine ()
int ReportBadCallLine (Arguments& reserved_args)

COM
HRESULT ReportBadCallLine (/*[in, optional]*/ IArguments reserved_args, /* [out, retval]*/

int * errorcode)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
374

Agent Object
ReportBadCallLine

VB
ReportBadCallLine () As Long

Java
int ReportBadCallLine (Arguments args)

.NET
CilError ReportBadCallLine(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19

RequestAgentTeamList
The RequestAgentTeamList method is called by a supervisor to make a request to the CTI OS server for a
list of agents in the supervisor's team.

Syntax

C++
int RequestAgentTeamList ()
int RequestAgentTeamList (Arguments& reserved_args)

COM
HRESULT RequestAgentTeamList (/*[in, optional]*/ IArguments reserved_args, /* [out,

retval]*/ int * errorcode)

VB
RequestAgentTeamList () As Long

Java
int RequestAgentTeamList ()
int RequestAgentTeamList (Arguments args)

.NET
CilError RequestAgentTeamList(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
375

Agent Object
RequestAgentTeamList

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Supported for use with Unified CCE only.

If this request is successful, the CTI OS server sends a separate OnNewAgentTeamMember event for each
agent in the supervisor's team. If this request is unsuccessful, the client receives an OnControlFailureConf
event.

RequestSupervisorAssist
The RequestSupervisorAssist method allows the agent to call an available supervisor for assistance.

Syntax

C++
virtual int RequestSupervisorAssist();
int RequestSupervisorAssist (Arguments& reserved_args)

COM
HRESULT RequestSupervisorAssist (/*[in, optional]*/ IArguments reserved_args, /* [out,

retval]*/ int * errorcode)

VB
RequestSupervisorAssist () As Long

Java
int RequestSupervisorAssist(Arguments args)

.NET
CilError RequestSupervisorAssist(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
376

Agent Object
RequestSupervisorAssist

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Supported for use with Unified CCE only. For more information, see MakeEmergencyCall, on page 372.

SendChatMessage
The SendChatMessage method sends asynchronous chat-like messages between CTI OS clients. Users can
specify a distribution of one or more clients, and attach a text message.

Syntax

C++
int SendChatMessage (Arguments& args)

COM
HRESULT SendChatMessage (/*[in]*/ IArguments *args, /*[out,retval]*/ int * errorcode)

VB
SendChatMessage (args As CTIOSCLIENTLib.IArguments) As Long)

Java
int SendChatMessage(Arguments args)

.NET
CilError SendChatMessage(Arguments args)

Parameters

args

Input parameter in the form of an Arguments array that contains one or more of the SendChatMessage
parameters listed in the following table.

DescriptionTypeKeyword

Currently the only supported value is “agent”.STRINGDistribution (required)

When the Distribution is set to DistributeToAgent, you must
include this field with the AgentID of the intended recipient.

STRINGTarget (optional)

When the LoginName is set to the LoginName of the agent to
receive the chat message, you must also set this field to the login
name of the agent to which to chat.

The text of the user message. Maximum message size is 255
bytes.

STRINGMessage (optional)

Login name of the agent to receive the chat message. To chat
to an agent by login name, set “LoginName” and “Target” to
the login name of the agent to which to chat.

STRINGLoginName (optional)

errorcode

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
377

Agent Object
SendChatMessage

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

The recipient receives the message via the OnChatMessage event.

SetAgentGreetingAction
The SetAgentGreetingAction Sets the value of the Agent Greeting Action to enable or disable Agent Greeting
for the logged in agent.

Agent Greeting is supported with CTI OS desktops created using the COM or C++ CILs.

Syntax

C++
int SetAgentGreetingAction(Arguments& args)

COM
HRESULT SetAgentGreetingAction (/*[in]*/ IArguments *args, int * errorcode)

VB
SetAgentGreetingAction (args As CTIOSCLIENTLib.IArguments) As Long

Input Parameters

args

Arguments array containing the following fields.

Table 142: SetAgentGreetingAction Parameters

DescriptionTypeKeyword

1 = Disable Agent Greeting for the
logged in agent.

2 = Enable agent greeting for the
logged in agent/-The state to which
to set the specified agent. The value
of this field must be one of the
values in Table 89: AgentState
values, on page 234.

INTAgentAction

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
378

Agent Object
SetAgentGreetingAction

Remarks

A successful request results in an OnAgentGreetingControlConf event. If this request is unsuccessful, the
client receives an OnControlFailureConf event.

SetAgentState
The SetAgentState method requests a new agent state. Login and Logout are valid agent states and can be set
using the SetAgentState method as well as by using the Login and Logout methods.

Syntax

C++
int SetAgentState(Arguments& args)

COM
HRESULT SetAgentState (/*[in]*/ IArguments *args, /*[out,retval]*/ int * errorcode)

VB
SetAgentState (args As CTIOSCLIENTLib.IArguments) As Long

Java
int SetAgentState(Arguments args)

.NET
CilError SetAgentState(Arguments args)

Input Parameters

args

Input parameter in the form of an Arguments array that contains one or more of the SetAgentState parameters
listed in the following table.

Table 143: SetAgentState Parameters

DescriptionTypeKeyword

The state to which to set the
specified agent. The value of this
field must be one of the values in
Table 89: AgentState values, on
page 234.

INTAgentState (required)

The agent's login ID.STRING*AgentID (required)

The agent's instrument number.
Optional if Agent Extension is
provided.

STRING*AgentInstrument

The agent's password.STRING*AgentPassword (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
379

Agent Object
SetAgentState

DescriptionTypeKeyword

A value representing the desired
work mode of the agent. Used by
ACM ECS with default value of
ManualIn.

INTAgentWorkMode (optional)

The number of Skill Groups that
the agent is currently associated
with, up to a maximum of 20.

INTNumSkillGroups (optional)

Reason for logging out. Required
for Unified CCE , optional for all
other switches.

INTEventReasonCode (optional)

The Unified ICM Peripheral ID of
the ACD the agent is attached to.

INTPeripheralID (optional)

The optional, user-defined number
of an agent skill group associated
with the agent.

INTSkillGroupNumber (optional)

The priority of an agent skill group
associated with the agent.

INTSkillGroupPriority (optional)

*The CTI OS server imposes no restriction on the maximum length of this string. However, such restrictions
are generally imposed by your switch/ACD and Cisco CTI Server. Consult the documentation for the
switch/ACD or CTI Server for information on length restrictions for this string.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

A successful request results in an OnAgentStateChanged event. It can also result in OnPreLogout,
OnPostLogout, and/or OnLogoutFailed events. If this request is unsuccessful, the client receives an
OnControlFailureConf event.

StartMonitoringAgent
The StartMonitoringAgent method allows the client, which must be a supervisor, to start monitoring the
specified Agent object. This call causes the supervisor to receive all of the monitored call events (See
IMonitoredCallEvents Interface, on page 262 in Event Interfaces and Events, on page 167) for this agent until
the supervisor calls StopMonitoringAgent.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
380

Agent Object
StartMonitoringAgent

Syntax

C++
int StartMonitoringAgent(Arguments& args)

COM
HRESULT StartMonitoringAgent (/*[in]*/ IArguments * args, /*[out,retval]*/ int *

errorcode)

VB
StartMonitoringAgent (args As CTIOSCLIENTLib.IArguments) As Long

Java
int StartMonitoringAgent(Arguments args)

.NET
CilError StartMonitoringCall(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_AGENTREFERENCE set to the string value of the
UniqueObjectID of the agent to be monitored.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently, Unified CCE only).

The following code snippet gets the unique object ID string for an agent, then uses uses the SetValue method
to store the Agent object ID and string constant CTIOS_AGENTREFERENCE in an Arguments array.
String StrUID = agent.GetValueString(CTIOS_UNIQUEOBJECTID Id);
arg.SetValue(CTIOS_AGENTREFERENCE, StrUID);

StartMonitoringAgentTeam
The StartMonitoringAgentTeam method allows the client, which must be a supervisor, to start monitoring
the specified agent team. A client supervisor uses this method to receive all of the OnMonitorAgentStateChange
events for every agent on the specified team.

Syntax

C++
int StartMonitoringAgentTeam (Arguments& args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
381

Agent Object
StartMonitoringAgentTeam

COM
HRESULT StartMonitoringAgentTeam (/*[in]*/ IArguments args, /*[out,retval]*/ int *

errorcode)

VB
StartMonitoringAgentTeam (args as CTIOSCLIENTLib.IArguments) As Long

Java
int StartMonitoringAgentTeam (Arguments args)

.NET
CilError StartMonitoringAgentTeam(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_TEAMID set to the integer TeamID to be monitored.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently, Unified CCE only).

StartMonitoringAllAgentTeams
The StartMonitoringAllAgentTeamsmethod allows the client, which must be a supervisor, to start monitoring
all the agents on all the supervisor's teams. This causes the supervisor to receive monitored agent events for
all of the agents in the supervisor's team (for more information, see IMonitoredAgentEvents Interface, on
page 262 in Event Interfaces and Events, on page 167).

Syntax

C++
int StartMonitoringAllAgentTeams (Arguments& reserved_args)

COM
HRESULT StartMonitoringAllAgentTeams (/*[in, optional]*/ IArguments reserved_args,

/*[out,retval]*/ int * errorcode)

VB
StartMonitoringAllAgentTeams ([reserved_args as CTIOSCLIENTLib.IArguments]) As Long

Java
int StartMonitoringAllAgentTeams (Arguments args)

.NET
CilError StartMonitoringAllAgentTeams(Arguments args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
382

Agent Object
StartMonitoringAllAgentTeams

Parameters

reserved_args

Not currently used, reserved for future use.

args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently, Unified CCE only).

StartMonitoringCall

Description

The StartMonitoringCall method allows the client, whichmust be a supervisor, to set the value of the currently
monitored call that is used in the SuperviseCall method. Since there is no StopMonitoringCall, call this method
with an empty args parameter to clear the value of the currently monitored call.

Syntax

C++
int StartMonitoringCall(Arguments& args)

COM
HRESULT StartMonitoringCall (/*[in]*/ IArguments * args, /*[out,retval]*/ int * errorcode)

VB
StartMonitoringCall (args As CTIOSCLIENTLib.IArguments) As Long

Java
int StartMonitoringCall(Arguments args)

.NET
CilError StartMonitoringCall(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_CALLREFERENCE set to the string value of the
UniqueObjectID of the call to be monitored.

errorCode

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
383

Agent Object
StartMonitoringCall

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently,

StopMonitoringAgent
The StopMonitoringAgent method allows the client, which must be a supervisor, to stop monitoring the
specified Agent object. This stops all Monitored Call events being sent to the supervisor.

Syntax

C++
int StopMonitoringAgent(Arguments& args)

COM
HRESULT StopMonitoringAgent (/*[in]*/ IArguments * args, /*[out,retval]*/ int * errorcode)

VB
StopMonitoringAgent (args As CTIOSCLIENTLib.IArguments) As Long

Java
int StopMonitoringAgent(Arguments args)

.NET
CilError StopMonitoringAgent(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_AGENTREFERENCE set to the string value of the
UniqueObjectID of the agent to stop monitoring.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
384

Agent Object
StopMonitoringAgent

StopMonitoringAgentTeam
The StopMonitoringAgentTeam method allows the client, which must be a supervisor, to stop monitoring all
the agents on all the supervisor's teams.

Syntax

C++
int StopMonitoringAgentTeam (Arguments& args)

COM
HRESULT StopMonitoringAgentTeam (/*[in]*/ IArguments args, /*[out,retval]*/ int *

errorcode)

VB
StopMonitoringAgentTeam (args as CTIOSCLIENTLib.IArguments) As Long

Java
int StopMonitoringAgentTeam(Arguments args)

.NET
CilError StopMonitoringAgentTeam(Arguments args)

Parameters

args

Arguments array that contains a constant CTIOS_TEAMID set to the integer TeamID of the team to stop
monitoring.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently,

StopMonitoringAllAgentTeams
The StopMonitoringAllAgentTeams method allows the client, which must be a supervisor, to stop monitoring
all of the agents on all the supervisor's teams.

Syntax

C++
int StopMonitoringAllAgentTeams (Arguments& reserved_args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
385

Agent Object
StopMonitoringAgentTeam

COM
HRESULT StopMonitoringAllAgentTeams (/*[in,optional]*/ IArguments reserved_args,

/*[out,retval]*/ int * errorcode)

VB
StopMonitoringAllAgentTeams([reserved_args as CTIOSCLIENTLib.IArguments]) As Long

Java
int StopMonitoringAllAgentTeams(Arguments args)

.NET
CilError StopMonitoringAgentTeam(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently,

SuperviseCall
The SuperviseCall method allows the client, which must be a supervisor, to perform a supervisory action
specified by the args parameter.

The SuperviseCall method is the CTI OS version of the SUPERVISE_CALL_REQ message. This method is
used to barge-into and intercept agent calls by specifying a supervisory action of eSupervisorBargeIn and
eSupervisorIntercept respectively. To support Cisco Unified Communications Manager silent monitor, the
supervisory action eSupervisorMonitor was added. For more information, see Unified CM-Based Silent
Monitoring in Your Application, on page 92.

Syntax

C++
int SuperviseCall(Arguments& args)

COM
HRESULT SuperviseCall (/*[in]*/ IArguments * args, /*[out,retval]*/ int errorCode)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
386

Agent Object
SuperviseCall

VB
SuperviseCall (args As CTIOSCLIENTLib.IArguments) As Long

Java
int SuperviseCall(Arguments args)

.NET
CilError SuperviseCall(Arguments args)

Parameters

args

An input parameter in the form of a pointer to an Arguments array that contains members with string
values that are the UniqueObjectIDs of the desired agent (AgentUniqueObjectID) and call
(CallUniqueObjectID). Package these with the keywords “AgentReference” and “CallReference”
respectively.

The third required parameter is one of the following integers representing the desired supervisory action.

Table 144: SuperviseCall Parameters

DescriptionEnumValue

BargeIn to the specified call of the specified
agent.

eSupervisorBargeIn3

Intercept the specified call of the specified
agent.

eSupervisorIntercept4

Used to silently monitor the call of the
specified agent.

eSupervisorMonitor1

Used to clear the silent monitor call.eSupervisorClear0

Both SupervisorMonitor and eSupervisorClear only apply to Cisco Unified Communications Manager based
silent monitor.

This is packaged with the constant CTIOS_SUPERVISORYACTION or the string “SupervisoryAction”.

Note

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

This request is specific to the Supervisor feature and should only be used on switches or configurations that
have the necessary support (currently,

A BargeIn action is very similar to a Single Step Conference where the agent is the conference controller. As
such, only this agent can add other parties to the conference; the supervisor cannot do this.

An Intercept can only be performed by a supervisor who has already performed a BargeIn. The Intercept
simply hangs up the original agent, leaving only the customer and the supervisor talking.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
387

Agent Object
SuperviseCall

E_CTIOS_INVALID_SILENT_MONITOR_MODE is returned when Agent.SuperviseCall() is called when
CTI OS Based silent monitor is configured.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
388

Agent Object
SuperviseCall

C H A P T E R 10
Call Object

• Call Object, on page 389
• Current Call, on page 389
• ECC Variables, on page 390
• Passing Call Variables, on page 390
• ECC Variable Value Retrieval, on page 390
• ECC Values, on page 392
• Properties, on page 393
• Methods, on page 395

Call Object
The Call object provides developers using the CTI OS Client Interface Library with an interface to Call
behavior and control. The Call object enables you to perform all call behaviors, such as answering, hanging
up, or transferring a call. The Call object represents one call connection of a call. For a call between two
parties there are two call connections, and thus there are two distinct CIL Call objects.

The object stores specific call information as properties, including the ICMEnterpriseUniqueID, ANI, DNIS,
Call variables, and ExpandedCallContext variables. The Call object is created in response to call events
received at the CIL. The Call object properties and state are updated throughout the lifetime of the call
connection.

For more information about accessing Call and ECC variables via the GetValue mechanism, see CIL Coding
Conventions, on page 19.

Related Topics
CIL Coding Conventions

Current Call
The Client Interface Library uses the concept of a Current Call. The CTI OS Toolkit uses the Current Call
concept as a way for the controls and the application to communicate with each other regarding which call is
currently selected and is the one to act on. For example, if an agent has a call and receives a new Ringing call,
they might select the Talking call on the grid. At this click, CallAppearanceMgr control calls SetCurrentCall()
to make this call the Current Call. When the agent clicks the Hold control, this control calls GetCurrentCall()
to obtain a call pointer through which to call the Hold() method. The agent can then select the Ringing call,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
389

which again causes the CallAppearanceMgr control to call SetCurrentCall() to make this new call the current
call. Then, when the agent clicks the Answer control, this control again calls GetCurrentCall() to obtain a call
pointer through which to call the Answer() method.

If your application uses Cisco's out-of-the-box button controls (for more information, see CTI OS ActiveX
Controls, on page 119), but not the CallAppearanceMgr grid control, you need to use SetCurrentCall() and
GetCurrentCall() for the button controls to enable and disable correctly when switching between multiple
calls.

The CurrentCall concept does not place any limitations on call control of non-current calls. All of the call
behaviors implemented by method calls on the Call object work on any Call object that is available at the
CIL, even if it is not the CurrentCall.

Note

ECC Variables
The Unified ICM provides a customer-defined data layout for sending call context data with a call. This
mechanism is called Expanded Call Context, or ECC. You define ECC variables in the Unified ICM
Configuration Manager. You send ECC variables between Unified ICM servers in ECC payloads. After
configuring an ECC variable, you must include it in an ECC payload before using it. The mechanism for
accessing ECC variables from CTI OS is similar to accessing all other call variables.

To simplify the organization of properties on the Call object, the ECC variables are stored in their own
Arguments structure which is nested in the Call object Arguments structure.

Passing Call Variables
• A consultative transfer is one in which the transferring or forwarding party either connects the caller to
a ringing phone or speaks with the third party before connecting the caller to the third party. In a
consultative transfer on the same peripheral gateway, if a variable is updated with data during the primary
call, and the same variable is then updated with data during the transferred call, the call data from the
initial call takes precedence and replaces the call data from the transferred call.

• For calls that are transferred between peripheral gateways, update call variables on the primary call before
transferring the call. Only call variable information from the primary call is included in the route request
to the other peripheral gateway. Any call variable information that you change after the call is transferred
is lost because the call variable information was not included in the route request when the call was
transferred.

• The Unified ICM call control variable map is a string that describes the mappings of a peripheral's call
control variables to Unified ICM call control variables. You can edit this string to identify the call variables
that an agent can change.

ECC Variable Value Retrieval
To retrieve an ECC variable from the Call object, first retrieve the ECC (Arguments) structure from the Call
object using GetValueArray with keyword ECC. Then, retrieve the specific ECC variable required by using

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
390

Call Object
ECC Variables

its name as the keyword to GetValueInt, GetValueArray, or GetValueString, depending on its type. The
following is some sample code for C++ without COM:

Arguments * pECCData = NULL;string sMyECCVariable;
int nMyECCArrayVariable;

if (pCall->IsValid(CTIOS_ECC))
{
pCall->GetValueArray(CTIOS_ECC, &pECCData);

if (pECCData)
{
if (pECCData->IsValid("user.MyECC"))
pECCData->GetValueString->("user.MyECC", &sMyECCVariable);

if(pECCData->IsValid("user.MyArray[2]"))
pECCData->GetValueInt("user.MyArray[2]", &nMyECCArrayVariable);

pECCData->Release();
pECCData = NULL;
}
}

Sample code for VB without COM:

Dim MyECCData As CTIOSARGUMENTSLib.Arguments Dim MyECCVariable As String
Dim MyECCArrayVariable As Integer

If MyCall.IsValid(CTIOS_ECC) = True Then
Set MyECCData = MyCall.GetValueArray(CTIOS_ECC)

If MyECCData.IsValid("user.MyECC") Then
MyECCVariable = MyECCData.GetValueString("user.MyECC")
End If

If MyECCData.IsValid("user.MyArray[2]") Then
MyECCArrayVariable = MyECCData.GetValueInt("user.MyArray[2]")
End If
End If

The same thing in Java is as follows:

if(Call != null){
Arguments rArgEcc = new Arguments();
rArgEcc = Call.GetValueArray(CTIOS_ECC);
if(null != rArgEcc)
{
rArgEcc.NumElements();
Integer intVal =
rArgEcc.GetValueIntObj("user.MyECC");
String strVal =
rArgEcc.GetValueString("userMyArray[2]");
}
}

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
391

Call Object
ECC Variable Value Retrieval

ECC Values
If you want to add ECC values to a call without deleting ones that are already set in the call, retrieve the ECC
variables and then add the new ones as shown in C++ without COM:

Arguments & RequestArgs = Arguments::CreateInstance();
Arguments * pECCData = NULL;

// presumes that we have a Call object pointer in pCall
if (pCall->IsValid (CTIOS_ECC))
pCall->GetValueArray(CTIOS_ECC, &pECCData);

else
Arguments::CreateInstance(&pECCData);

pECCData->AddItem("user.MyECC", "FirstECCVariable");
pECCData->AddItem("user.MyArray[2]", 2222);

RequestArgs.AddItem(CTIOS_ECC, *pECCData);
pCall->SetCallData(RequestArgs);

RequestArgs.Release();
pECCData->Release();

The same thing in VB is as follows:

Dim MyRequestArgs As New CTIOSARGUMENTSLib.Arguments
Dim MyECCData As CTIOSARGUMENTSLib.Arguments

If MyCall.IsValid(CTIOS_ECC) Then
Set MyECCData = MyCall.GetValueArray(CTIOS_ECC)

Else
Set MyECCData = New CTIOSARGUMENTSLib.Arguments
End If

MyECCData.AddItem("user.MyECC", "FirstECCVariable")
MyECCData.AddItem("user.MyArray[2]", 2222)

MyRequestArgs.AddItem("ECC", MyECCData)

MyCall.SetCallData(MyRequestArgs)

The same thing in Java is as follows:

Arguments rRequestArgs = new Arguments();
if(Call != null)
{

Arguments rArgEcc = Call.GetValueArray(CTIOS_ECC);
if(null == rArgEcc)
{

rArgEcc = new Arguments();
}
rArgEcc.SetValue("user.MyEcc", 22222);
rArgEcc.SetValue("user.MyArray[3]", "new data");

rRequestArgs.SetValue(CTIOS_ECC, rArgEcc);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
392

Call Object
ECC Values

Call.SetCallData(rRequestArgs);
}

Properties
The following table lists the available Call object properties.

The data type listed for each keyword is the standardized data type discussed in CTI OS CIL Data Types, on
page 19. For more information, see Table 5: CTI OS CIL Data Type, on page 20 for the appropriate language
specific types for these keywords.

Note

Table 145: Call Object Properties

DescriptionTypeKeyword

The calling line ID of the caller.STRINGANI

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits

The current status of the call.SHORTCallStatus

The general classification of the
call type.

SHORTCallType

Call-related variable data.STRINGCallVariable1

Call-related variable data.STRINGCallVariable2

Call-related variable data.STRINGCallVariable3

Call-related variable data.STRINGCallVariable4

Call-related variable data.STRINGCallVariable5

Call-related variable data.STRINGCallVariable6

Call-related variable data.STRINGCallVariable7

Call-related variable data.STRINGCallVariable8

Call-related variable data.STRINGCallVariable9

Call-related variable data.STRINGCallVariable10

Call-related variable data.STRINGCallWrapupData

Private; for internal use only.INTClassIdentifier

The number dialed.STRINGDialedNumber

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
393

Call Object
Properties

DescriptionTypeKeyword

The DNIS provided with the call.STRINGDNIS

Arguments structure of key-value
pairs of ECC variables.

ARGUMENTSECC

Required only when the call is
pre-routed.

STRINGICMEnterpriseUniqueID

Indicates the type of the teleset line.SHORTLineType

Number of seconds this call was in
a local queue before being
delivered to the agent.

INTMeasuredCallQTime

The Unified ICM PeripheralID of
the ACD where the call activity
occurred.

INTPeripheralID

The call key created by the Unified
ICM. The Unified ICM resets this
counter at midnight .

INTRouterCallKeyCallID

Together with the RouterCall
KeyCallID field forms the unique
64-bit key for locating this call's
records in the Unified ICM
database . Only provided for
Post-routed and Translation-routed
calls.

INTRouter CallKeyDay

The Unified ICM ServiceID of the
service that the call is attributed to.
May contain the special value
NULL_SERVICE when not
applicable or not available.

INTServiceID

The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

INTServiceNumber

The system-assigned identifier of
the agent SkillGroup the call is
attributed to. May contain the
special value NULL_SKILL_
GROUPwhen not applicable or not
available.

INTSkillGroupID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
394

Call Object
Properties

DescriptionTypeKeyword

The optional, user-defined number
of the agent SkillGroup the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_ SKILL_GROUP
when not applicable or not
available.

INTSkillGroupNumber

An object ID that uniquely
identifies the Call object.

STRINGUniqueObjectID

The ISDN user-to-user information
element.

STRINGUserToUserInfo

Methods
The following table lists the available Call object methods.

Table 146: Call Object Methods

DescriptionMethod

Places the current call on hold and retrieves a
previously held call.

Alternate

Answers a call that is in the alerting or ringing state.Answer

Clears a call, dropping all parties to the call.Clear

Hangs up a call, leaving other parties in a conference
call. If there are only two parties on the call it clears
the call.

ClearConnection

Either establishes a three party conference call or adds
a new party to an existing conference call.

Conference

For more information, see CtiOs Object, on page 291DumpProperties

For more information, see CtiOs Object, on page 291GetAllProperties

Gets data associated with the call other than call and
expanded call context (ECC) variables.

GetCallContext

Obtains call and expanded call context (ECC)
variables.

GetCallData

For more information, see CtiOs Object, on page 291GetElement

Returns the last error that occurred on the calling
thread.

GetLastError (.NET only)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
395

Call Object
Methods

DescriptionMethod

For more information, see CtiOs Object, on page 291GetNumProperties

For more information, see CtiOs Object, on page 291GetPropertyName

For more information, see CtiOs Object, on page 291GetPropertyType

Retrieve a property from the Call object based on the
property's name key.

GetValue methods

Places a current call on hold.Hold

For more information, see CtiOs Object, on page 291IsValid

Places a current call on hold and makes a new call.MakeConsultCall

Clears the current call and then retrieves a held call.Reconnect

Retrieves a held call.Retrieve

Sets call and expanded call context (ECC) variables.SetCallData

Requests the ACD to send a sequence of DTMF tones.SendDTMFSignal

Performs a single step conference.SingleStepConference

Performs a single step transfer.SingleStepTransfer

Issues a server request to get the current call
information, including call data and a list of associated
devices and the connection state for the call of each
device.

Snapshot

Starts recording of a call.StartRecord

Stops recording of a call.StopRecord

Transfers a call to a third party.Transfer

Argument Parameters
The following rules apply to the optional_args and reserved_args parameters in Call object methods:

• In VB, you can ignore these parameters altogether. For example, you can treat the line:

Answer([reserved_args As IArguments]) As Long

as follows:

Answer()

• To ignore these parameters in COM you must send a NULL, as shown:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
396

Call Object
Argument Parameters

Answer (NULL)

Alternate
The Alternate method combines the action of placing a talking call on hold and then retrieving a previously
held call at the same device. If there are only two calls at the device, this method can be called via either the
current or the held call.

Syntax

C++
int Alternate()
int Alternate(Arguments & reserved_args);

COM
HRESULT Alternate (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int

* errorcode);

VB
Alternate([reserved_args As IArguments]) As Long

Java
int Alternate(Arguments rArgs);

.NET
CilError Alternate(Arguments args)

Parameters

reserved_args

A valid Arguments object, which can be empty. Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

For switches that allow more than two calls at a device (for example G3), make this request only through the
desired held call, because of the ambiguity caused by multiple held calls at the device.

You must make the Alternate request via a call whose status is either LCS_CONNECT or LCS_HELD or it
fails.

The following events are received if this request is successful.

For the call making the Alternate request:

• OnAlternateCallConf event

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
397

Call Object
Alternate

For the originally current call:

• OnCallHeld event

For the originally held call:

• OnCallRetrieved event

The following events are received by the call making the Alternate request if this request fails:

• OnControlFailureConf event

Answer
The Answer method answers a call that is in the alerting or ringing state (i.e., call status of LCS_ALERTING).

Syntax

C++
int Answer()
int Answer(Arguments & reserved_args)

COM
HRESULT Answer (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int *

errorcode)

VB
Answer([reserved_args As IArguments]) As Long

Java
int Answer(Arguments rArgs)

.NET
CilError Answer(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

You can answer a call after the OnCallDelivered event is received. You must make the Answer request via a
call whose call status LCS_ALERTING or it fails.

The following events are received if this request is successful:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
398

Call Object
Answer

• OnAnswerCallConf event

• OnCallEstablished event

The following events are received if this request fails:

• OnControlFailureConf event

Clear
The Clear method clears the call and drops all parties to the call.

Syntax

C++
int Clear()int Clear(Arguments & reserved_args);

COM
HRESULT Clear (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int *

errorcode)

VB
Clear([reserved_args As IArguments]) As Long

Java
int Clear(Arguments rArgs);

.NET
CilError Clear(Arguments args);

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

In the case of a multi-party Conference call, calling Clear() results in all of the parties to the call being hung
up. (If this is not the desired behavior, see the ClearConnection method.) Under certain switches the Clear
request is made via a call whose status is LCS_CONNECT or LCS_INITIATE or it fails. Many other switches
allow the Clear method to be called via a call whose status is LCS_ALERTING or LCS_HOLD. It can never
be made via a call whose status is LCS_NULL indicating that it is already cleared.

The following events are received if this request is successful:

• OnClearCallConf event

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
399

Call Object
Clear

• OnCallCleared event

The following events are received if this request fails:

• OnControlFailureConf event

The Clear method is not supported on Unified CCE. Use of the Clear method with Unified CCE results in
loss of third-party call control. To avoid this error, applications should use the ClearConnection method instead
of Clear to hang up a call.

Note

ClearConnection
If there are only two parties to the call, ClearConnection clears the call. However, for a multi-party conference
call, only one connection is dropped, which is its own connection.

Syntax

C++
int ClearConnection()
int ClearConnection(Arguments & reserved_args);

COM
HRESULT ClearConnection (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/

int * errorcode)

VB
ClearConnection([reserved_args As IArguments]) As Long

Java
int ClearConnection(Arguments rArgs);

.NET
CilError ClearConnection(Arguments args);

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Aswith the Clear method, under certain switches youmust make the ClearConnection request via a call whose
status is LCS_CONNECT or LCS_INITIATE or it fails. Many other switches allow the Clear method to be

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
400

Call Object
ClearConnection

called via a call whose status is LCS_ALERTING or LCS_HOLD. It can never be made via a call whose
status is LCS_NULL indicating that it is already cleared.

The following events are received if this request is successful:

• OnClearConnectionConf event

• OnCallConnectionlCleared event

If this is a two party call, these events are followed by:

• OnCallCleared event

The following events are received if this request fails:

• OnControlFailureConf event

Conference
The Conference method either begins a new conference call or adds an additional call to an existing conference
call. When it begins a new conference call, it combines an original two-party call with a two-party consult
call (where the two calls have a common party) into a single three party call. Only the common party (which
is called the “Conference Controller”) can call this method to make the new conference call. You can call this
method on either of the Conference Controller's calls.

Syntax

C++
int Conference();
int Conference(Arguments& optional_args)

COM
HRESULT Conference (/*[in, optional]*/ IArguments *optional_args, (/*[out, retval]*/

int * errorcode)

VB
Conference([optional_args As IArguments]) As Long

Java
int Conference(Arguments optional_args)

.NET
CilError Conference(Arguments optional_args)

Parameters

optional_args

An optional input parameter, which is a pointer or reference to an Arguments array that contains a member
with the string value that is the UniqueObjectID of the call to which this call is conferenced. If this argument
is used, add it to the Arguments parameter with the keyword of “CallReferenceObjectID”. This is only
necessary in an environment where there are multiple held calls and the request is made through the talking
call. If the request is made through a specific held call in this scenario, or if there are only two calls at the
device, this parameter is unnecessary.

errorcode

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
401

Call Object
Conference

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Before making this request, the original call must be in the held state and the consult call in the talking state
or the request fails. Therefore, if the calls are alternated (see Alternate), they must be alternated again to return
the two calls to their appropriate states.

If there are only two calls at the device, you can call this method using either the current or held call. For
switches which allow more than two calls at a device (for example G3), make this request through the desired
held call to avoid the ambiguity caused by multiple held calls at the device. Otherwise, indicate the desired
held call using the optional parameter.

You must make the Conference request via a call whose call status is LCS_CONNECT or LCS_HELD or it
fails.

On certain switches (notably Unified CCE), only the Conference Controller (the party that first initiated the
conference call) can add additional parties to an existing conference call.

The following events are received if this request is successful:

• OnConferenceCallConf event

• OnCallConferenced event

The following events are received if this request fails:

• OnControlFailureConf event

GetCallContext
The GetCallContext method returns an Arguments array containing the values for call properties other than
CallVariables and ECC Variables, such as ANI, DNIS, and the other properties listed in the following table.

Syntax

C++
int GetCallContext(Arguments& args)

COM
HRESULT GetCallContext (/*[out,retval]*/ IArguments ** args)

VB
GetCallContext (CTIOSCLIENTLib.IArguments args)

Java
Arguments GetCallContext()

.NET
Arguments GetCallContext()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
402

Call Object
GetCallContext

Parameters

args

C++, COM, and VB: An output parameter containing a reference or a pointer to an Arguments array containing
any of the members in the following table that are present in the call.

Return Value

C++, COM, and VB: Default HRESULT return values. For more information, see CIL Coding Conventions,
on page 19.

Java/.NET: A reference to an Arguments array that, on return, holds name/value pairs from the following
table. You can access any of these parameters included from the Arguments array using the associated keyword.

Table 147: GetCallContext Arguments Array Contents

DescriptionTypeKeyword

The calling line ID of the caller.STRINGANI

The digits entered by the caller in
response to VRU prompting.

STRINGCallerEnteredDigits

The general classification of the
call type.

SHORTCallType

Call-related wrapup data.STRINGCallWrapupData

The Call ID value assigned to this
call by the peripheral or the Unified
ICM.

UINTConnectionCallID

The number dialed.STRINGDialedNumber

The DNIS provided with the call.STRINGDNIS

A unique identifier for this contact
throughout the enterprise. This can
track a single customer contact
across multiple sites, for example,
when a call is transferred between
agents.

STRINGICMEnterpriseUniqueID

The Unified ICM identifier for the
Service to which this call was
routed.

INTServiceID

The ACD number of the Service to
which this call was routed.

INTServiceNumber

The system-assigned identifier for
the SkillGroup to which this call
was routed.

INTSkillGroupID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
403

Call Object
GetCallContext

DescriptionTypeKeyword

An optional, user-defined number
of the SkillGroup at the ACD to
which this call was routed.

INTSkillGroupNumber

A unique object ID for the call.STRINGUniqueObjectID

The ISDN user-to-user information
element.

STRINGUserToUserInfo

Remarks

This is a convenience method to call and get all of a call's non-CallVariable data at one time. If only certain
data members are desired, call the appropriate GetValue method for each instead.

GetCallData
The GetCallData method returns the values ofCallVariable1 through CallVariable10 and all of the ECC
(Extended CallContext) variables.

Syntax

C++
int GetCallData(Arguments& args)

COM
HRESULT GetCallData (/*[out,retval]*/ IArguments ** args)

VB
GetCallData (CTIOSCLIENTLib.IArguments args)

Java
Arguments GetCallData()

.NET
Arguments GetCallData()

Parameters

args

C++, COM, and VB: An output parameter containing a reference or a pointer to an Arguments array containing
the call data, as described under Remarks.

Return Value

C++, COM, and VB: Default HRESULT return values. For more information, see CIL Coding Conventions,
on page 19.

Java/.NET: A reference to an Arguments array that, on return, holds parameters described under Remarks.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
404

Call Object
GetCallData

Remarks

This is a conveniencemethod to call and get all of a call's CallVariables (1 through 10) and ECCCall Variables
at one time. If only certain call variables are desired, call the appropriate GetValue method for each instead.

Access the data in the following way:

• To access the values for individual CallVariables from the arguments parameter, use GetValueString
with either the keywords of “CallVariable1” through “CallVariable10”.

To access ECC call data, use the following procedure:

• First, get the ECC variables as a whole from the arguments parameter, using GetValueArray with the
keyword “ECC”. This returns another Arguments array that is nested in the Arguments array returned
from GetCallData.

• To access an individual ECC scalar variable from this Arguments array, use the appropriate
GetValueString, GetValueInt, etc. depending on the variable's type, using the string keyword
“user.VariableName”.

• To access an individual ECC array variable from this Arguments array, use the appropriate GetValueString,
GetValueInt, etc. depending on the variable's type, using the string keyword “user.ArrayName[n]”, where
n is a zero based integer that notes the offset in the array.

Hold
The Hold method holds a current call.

Syntax

C++
int Hold()
int Hold(Arguments & reserved_args);

COM
HRESULT Hold (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int *

errorcode)

VB
Hold([reserved_args As IArguments]) As Long

Java
Arguments Hold(Arguments rArgs)

.NET
Arguments Hold(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
405

Call Object
Hold

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

You must make the Hold request via a call whose call status is LCS_CONNECT or it fails.

The following events are received if this request is successful:

• OnHoldCallConf event

• OnCallHeld event

The following events are received if this request fails:

• OnControlFailureConf event

MakeConsultCall
The MakeConsultCall method initiates the combined action of placing the associated current call on hold and
then making a new call. By default, the call context data (including call variables) of the current call is used
to initialize the context data of the new consultation call. The application can override some or all of the
original call context in the consultation call by providing the desired values in this request.

The simplest form of the request only requires a dialed number and a consult type. The request can also include
optional parameters, as listed in the following table.

Syntax

C++
int MakeConsultCall (Arguments& args))

COM
HRESULT MakeConsultCall (/*[in]*/ IArguments *args, /*[out, retval]*/ int * errorcode)

VB
MakeConsultCall (args As CTIOSCLIENTLib.IArguments) As Long

Java
int MakeConsultCall(Arguments args)

.NET
CilError MakeConsultCall(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array that contains parameters from
the following table. Any of these parameters included are added to the Arguments array using the associated
key word.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
406

Call Object
MakeConsultCall

Table 148: MakeConsultCall Parameters

DescriptionTypeParameter

Dialed number; the number to be
dialed to establish the new call.

STRING, maximum length 40DialedNumber (required)

A value specifying whether this
consult call is in preparation for
either a transfer or a conference, as
specified in the ConsultType Table.

INTConsultType (required)

A value specifying how the call is
to be placed identified in Table 149:
CallPlacementType Values, on
page 408.

STRING, maximum length 40CallPlacementType (optional)

A value specifying additional call
processing options identified in
Table 150: CallMannerType
Values, on page 408.

INTCallMannerType (optional)

A value from Table 151:
CallOption Values, on page 409
specifying additional
peripheral-specific call options.

INTCallOption (optional)

A value from Table 152:
FacilityType Values, on page 409
indicating the type of facility to be
used.

INTFacilityType (optional)

Set this field to TRUE if the call
should receive priority handling.

BOOLPriority (optional)

When this field is set to TRUE, the
Post-Routing capabilities of the
Unified ICM determine the new
call destination.

BOOLPostRoute (optional)

The ISDNuser-to-user information.STRING, maximum length 40UserToUserInfo (optional)

Call variable data that is set in the
new call in place of the
corresponding data in the current
call.

STRING, maximum length 40CallVariable1 (optional)

.........

CallVariable10 (optional)

ECC data that is set in the new call
in place of the corresponding data
in the current call.

ARGUMENTSECC

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
407

Call Object
MakeConsultCall

DescriptionTypeParameter

Call-related wrapup data.STRING, maximum length 40CallWrapupData (optional)

A trunk access code, split
extension, or other data needed to
access the chosen facility.

STRING, maximum length 40FacilityCode (optional)

An authorization code needed to
access the resources required to
initiate the call.

STRING, maximum length 40AuthorizationCode (optional)

A cost-accounting or client number
used by the peripheral for
charge-back purposes.

STRING, maximum length 40AccountCode (optional)

Table 149: CallPlacementType Values

ValueDescriptionCallPlacementType

0Use default call placement.CPT_UNSPECIFIED

1An inside line call.CPT_LINE_CALL

2An outbound call.CPT_OUTBOUND

3An outbound call that does not
require an access code.

CPT_OUTBOUND_NO_
ACCESS_CODE

4A call placed directly to a specific
position.

CPT_DIRECT_POSITION

5A call placed directly to a specific
agent.

CPT_DIRECT_AGENT

6A call placed to a supervisor for
call handling assistance.

CPT_SUPERVISOR_ASSIST

Table 150: CallMannerType Values

ValueDescriptionCallMannerType

0Use default call manner.CMT_UNSPECIFIED

1Attempt the call only if the
originating device is idle.

CMT_POLITE

2Always attempt the call,
disconnecting any currently active
call.

CMT_BELLIGERENT

3Attempt the call only if the
originating device is idle or is
receiving dial tone.

CMT_SEMI_POLITE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
408

Call Object
MakeConsultCall

Table 151: CallOption Values

ValueDescriptionCallOption

0No call options specified, use
defaults.

COPT_UNSPECIFIED

1Attempt the call only if the calling
agent is “online” (available to
interact with the destination party).

COPT_CALLING_
AGENT_ONLINE

2Attempt the call only if ACDNR
on the calling agent's set is
activated.

COPT_CALLING_
AGENT_RESERVED

3Attempt the call only if ACDNR
on the calling agent's set is not
activated.

COPT_CALLING_
AGENT_NOT_ RESERVED

4Applies a buzz to the base of the
telephone set as the call is initiated.

COPT_CALLING_
AGENT_BUZZ_BASE

5Applies a tone to the agent headset
as the call is initiated.

COPT_CALLING_
AGENT_BEEP_HSET

6Applies a call classifier to the call
(ACM ECS)

COPT_SERVICE_ CIRCUIT_ON

Table 152: FacilityType Values

ValueDescriptionFacilityType

0Use default facility type.FT_UNSPECIFIED

1Facility is a trunk group.FT_TRUNK_GROUP

2Facility is a skill group or split.FT_SKILL_GROUP

Table 153: AnsweringMachine Values

ValueDescriptionAnsweringMachine

0Use default behavior.AM_UNSPECIFIED

1Connect call to agent when call is
answered by an answeringmachine.

AM_CONNECT

2Disconnect call when call is
answered by an answeringmachine.

AM_DISCONNECT

3Do not use answering machine
detection.

AM_NONE

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
409

Call Object
MakeConsultCall

ValueDescriptionAnsweringMachine

4Do not use answering machine
detection, but disconnect call if
answered by a modem.

AM_NONE_NO_ MODEM

5Connect call when call is answered
by an answering machine,
disconnect call if answered by a
modem.

AM_CONNECT_NO_MODEM

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Youmust make theMakeConsultCall request via a call whose call status is LCS_CONNECT or it fails. Calling
MakeConsultCall successfully results in the same events as a successful MakeCall called on the agent.

The following events are received if this request is successful:

For the call making the MakeConsultCallRequest:

• OnMakeConsultCallConf event

• OnCallHeld event

For the newly created outgoing consult call:

• OnBeginCall event

• OnServiceInitiated event

• OnCallOriginated event

• OnCallDelivered event

For the new connection that is ringing as a result of the consult call:

• OnBeginCall event

• OnCallDelivered event

The following events are received if this request fails:

• OnControlFailureConf event

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
410

Call Object
MakeConsultCall

Reconnect
The Reconnect method combines the action of releasing a current call and then retrieving a previously held
call at the same device. If there are only two calls at the device, this method can be called via either the talking
or the held call.

Syntax

C++
int Reconnect()
int Reconnect(Arguments & reserved_args)

COM
HRESULT Reconnect (/*[in,optional]*/ IArguments * reserved_args, (/*[out, retval]*/ int

* errorcode)

VB
Reconnect([reserved_args As IArguments]) As Long

Java
int Reconnect(Arguments rArgs)

.NET
CilError Reconnect(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

For switches that allow more than two calls at a device (for example G3), make this request only through the
desired held call because of the ambiguity caused by multiple held calls at the device.

You must make the Alternate request via a call whose status is either LCS_CONNECT or LCS_HELD or it
fails.

The following events are received if this request is successful:

For the call making the Reconnect request:

• OnReconnectCallConf event

For the originally current call:

• OnCallConnectionCleared event

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
411

Call Object
Reconnect

• OnCallCleared event

• OnCallEnd event

For the originally held call:

• OnCallRetrieved event

The following events are received by the call making the Alternate request if this request fails:

• OnControlFailureConf event

Retrieve
The Retrieve method unholds a held call.

Syntax

C++
int Retrieve()
int Retrieve(Arguments & reserved_args)

COM
HRESULT Retrieve (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int

* errorcode)

VB
Retrieve([reserved_args As IArguments]) As Long

Java
int Retrieve(Arguments rArgs)

.NET
CilError Retrieve(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

You must make the Retrieve request via a call whose call status is LCS_HELD or it fails.

The following events are received if this request is successful:

• OnRetrieveCallConf event

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
412

Call Object
Retrieve

• OnCallRetrieved event

The following events are received if this request fails:

• OnControlFailureConf event

SendDTMFSignal
The SendDTMFSignal method requests that the ACD send a sequence of DTMF tones.

Syntax

C++
int SendDTMFSignal(Arguments& args)

COM
HRESULT SendDTMFSignal (/*[in]*/ args *arguments, /*[out, retval]*/ int * errorcode)

VB
SendDTMFSignal (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SendDTMFSignal(Arguments rArgs)

.NET
CilError SendDTMFSignal(Arguments args)

Parameters

args

An input parameter of either a reference or a pointer to an Arguments array containing parameters from
following table. You can add any of these parameters included to the Arguments array using the associated
key word.

Table 154: SendDTMFSignal Parameters

DescriptionTypeParameter

The sequence of tones to be
generated.

STRING. maximum length 32DTMFString (required)

Specifies the duration in
milliseconds of DTMF digit tones.
Use 0 to take the default. Can be
ignored if the peripheral is unable
to alter the DTMF tone timing.

INTToneDuration (optional)

Specifies the duration in
milliseconds of DTMF inter-digit
spacing. Use 0 to take the default.
Can be ignored if the peripheral is
unable to alter the DTMF tone
timing.

INTPauseDuration (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
413

Call Object
SendDTMFSignal

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

• The OnSendDTMFSignalConf event is received if this request succeeds.

• The OnControlFailureConf event is received if this request fails.

SetCallData
The SetCallData method sets any or all of a call's CallVariables (1 through 10) and ECC data at one time.

• When writing a custom application, in any language, call variables are not blanked out if it they are set
to a NULL value. While the application attempts to clear any call variable using a NULL value, the CTI
OS server application ignores the NULL value call variables and does not pass them to the CTI Server
application. As a result, the call variables set to NULL are not reset.

• To clear the value of a call variable, set its value to a blank character. Setting the call variable to a single
space character places a space in the call variable's values for the duration of the call. This space is
considered a NULL value by the application.

Note

Syntax

C++
int SetCallData(Arguments& args)

COM
HRESULT SetCallData (/*[in]*/ args *arguments, /*[out]*/ int * errorcode)

VB
SetCallData (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SetCallData(Arguments rArgs)

.NET
CilError SetCallData(Arguments args)

Parameters

args

An input parameter of either a reference or a pointer to an Arguments array containing parameters
described under Remarks for GetCallData.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
414

Call Object
SetCallData

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes,
on page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

You must specify the data for all elements in the Arguments array, not just those elements that you want to
change. Failure to do so causes the unchanged elements to disappear.

The following events are sent if this request succeeds:

• OnSetCallDataConf

• OnCallDataUpdate

The OnControlFailureConf event is sent if this request fails.

SingleStepConference
The SingleStepConference method initiates a one-step conference without the intermediate consultative call
so that when the called party answers, they are joined in the current call. This method requires a DialedNumber
argument. This method is not supported under all switches.

The SingleStepConference method is not supported for the Unified CCE .Note

Syntax

C++
int SingleStepConference(Arguments& args)

COM
HRESULT SingleStepConference (IArguments *args, int * errorcode)

VB
SingleStepConference (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SingleStepConference(Arguments rArgs)

.NET
CilError SingleStepConference(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array containing parameters from the
following table. You can add any of these parameters included to the Arguments array using the associated
keyword.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
415

Call Object
SingleStepConference

Table 155: SingleStepConference Parameters

DescriptionTypeParameter

Dialed number; the number to be
dialed to establish the new call.

STRING, maximum length 40DialedNumber (required)

A value specifying how the call is
to be placed identified in Table 149:
CallPlacementType Values, on
page 408.

STRING, maximum length 40CallPlacementType (optional)

A value specifying additional call
processing options identified in
Table 150: CallMannerType
Values, on page 408.

INTCallMannerType (optional)

The maximum amount of time that
the call's destination will remain
alerting, specified as an
approximate number of rings. A
zero value indicates that the
peripheral default (typically 10
rings) should be used.

INTAlertRings (optional)

A value from Table 151:
CallOption Values, on page 409
specifying additional
peripheral-specific call options.

INTCallOption (optional)

A value from Table 152:
FacilityType Values, on page 409
indicating the type of facility to be
used.

INTFacilityType (optional)

A value from Table 153:
AnsweringMachine Values, on
page 409 specifying the action to be
taken if the call is answered by an
answering machine.

INTAnsweringMachine (optional)

Set this field to TRUE if the call
should receive priority handling.

BOOLPriority (optional)

When this field is set to TRUE, the
Post-Routing capabilities of the
Unified ICM determines the new
call destination.

BOOLPostRoute (optional)

The ISDNuser-to-user information.STRING, maximum length 40UserToUserInfo (optional)

Set call variable data in the new call
in place of the corresponding data
in the current call.

STRING, maximum length 40CallVariable1 (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
416

Call Object
SingleStepConference

DescriptionTypeParameter

.........

CallVariable10 (optional)

Set ECC data in the new call in
place of the corresponding data in
the current call.

ARGUMENTSECC

A trunk access code, split
extension, or other data needed to
access the chosen facility.

STRING, maximum length 40FacilityCode (optional)

An authorization code needed to
access the resources required to
initiate the call.

STRING, maximum length 40AuthorizationCode (optional)

A cost-accounting or client number
used by the peripheral for
charge-back purposes.

STRING, maximum length 40AccountCode (optional)

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

TheDialedNumber is the only requiredmember necessary in theArguments parameter. A SingleStepConference
request fails if the call's status is not LCS_CONNECT.

The following events are received if this request is successful:

• OnAgentStateChange event (Hold)

• OnCallHeld event

• OnAgentStateChange event (Talking)

• OnBeginCall event

• OnServiceInitiated event

• OnCallOriginated event

• OnCallDelivered event

• OnCallConferenced event

• OnCallEnd event

• ConferenceCallConf event

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
417

Call Object
SingleStepConference

The OnControlFailureConf event is received if this request fails.

SingleStepTransfer
The SingleStepTransfer method initiates a one-step transfer without the intermediate consultative call. When
the called party answers the call, the called party is talking to the party to be transferred and the transferring
party drops out of the call. The method requires a DialedNumber argument.

Syntax

C++
int SingleStepTransfer(Arguments& args)

COM
HRESULT SingleStepTransfer (/*[in]*/ IArguments * args, /*[out, retval]*/ int * errorcode)

VB
SingleStepTransfer (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SingleStepTransfer(Arguments rASrgs)

.NET
CilError SingleStepTransfer(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array containing parameters from
Table 155: SingleStepConference Parameters, on page 416. You can add any of these parameters included to
the Arguments array using the associated keyword.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Snapshot
The Snapshot method issues a server request to retrieve the current call information. If values are passed in
the optional args parameter, the snapshot request returns the server's current call values for only the requested
arguments. Otherwise all call information is returned, including the fields described under GetCallContext
and GetCallData. For more information about OnCallDataUpdate, see OnCallDataUpdate in Event Interfaces
and Events, on page 167.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
418

Call Object
SingleStepTransfer

Syntax

C++
int Snapshot()
int Snapshot(Arguments & optional_args)

COM
HRESULT Snapshot (/*[in,optional]*/ IArguments * optional_args, (/*[out, retval]*/ int

* errorcode)

VB
Snapshot([optional_args As IArguments]) As Long

Java
int Snapshot(Arguments rArgs)

.NET
CilError Snapshot(Arguments Args)

Parameters

optional_args

An input parameter of either a pointer or a reference to an Arguments array.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

The current information about the call is received in the OnCallDataUpdate event.

• The OnCallDataUpdate event is received if this request is successful.

• The OnControlFailureConf event is received if this request fails.

StartRecord
The StartRecord method is used to start recording a call.

Syntax

C++
int StartRecord()
int StartRecord(Arguments & reserved_args);

COM
HRESULT StartRecord (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/

int * errorcode)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
419

Call Object
StartRecord

VB
StartRecord([reserved_args As IArguments]) As Long

Java
int StartRecord(Arguments rArgs)

.NET
CilError StartRecord(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Calling this method causes the CTI Server to forward the request to one or more server applications that have
registered the “Cisco:CallRecording” service as described in the CTI Server Message Reference Guide
(Protocol Version 14) for Cisco Unified ICM/Contact Center Enterprise & Hosted (Protocol Version 14) for
Cisco Unified ICM/Contact Center Enterprise & Hosted. It fails if there is no recording server available to
CTIServer.

• The OnStartRecordingConf event is received if this request is successful.

• The OnControlFailureConf event is received if this request fails.

StopRecord
The StopRecord method is used to stop recording a call.

Syntax

C++
int StopRecord()
int StopRecord(Arguments & reserved_args);

COM
HRESULT StopRecord (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int

* errorcode)

VB
StopRecord([reserved_args As IArguments]) As Long

Java
int StopRecord(Arguments rArgs)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
420

Call Object
StopRecord

.NET
CilError StopRecord(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Calling this method causes the CTIServer to forward the request to the server application with the SessionID
received in the OnStartRecordingConf event if non-zero, or if that SessionID is zero, to one or more server
applications that have registered the “Cisco:CallRecording” service as described in the CTI Server Message
Reference Guide (Protocol Version 14) for Cisco Unified ICM/Contact Center Enterprise & Hosted. It fails
if there is no recording server available to CTIServer.

• The OnStopRecordConf event is received if this request is successful.

• The OnControlFailureConf event is received if this request fails.

Transfer
The Transfer method transfers a call to a third party. You can call this method on either the held original call
or the current consult call. If the device has only these two calls, the optional parameter is not necessary. At
the end of a successful transfer, both of these calls are gone from the device. For more information, see the
Conference method.

Syntax

C++
int Transfer();
int Transfer(Arguments& optional_args)

COM
HRESULT Transfer ([in, optional] IArguments *optional_args, (/*[out, retval]*/ int *

errorcode)

VB
Transfer([optional_args As IArguments]) As Long

Java
int Transfer(Arguments rArgs)

.NET
CilError Transfer(Arguments args)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
421

Call Object
Transfer

Parameters

optional_args

An optional input parameter containing a member with a string value that is the UniqueObjectID of the call
that is participating in the transfer. If this argument is used, add it to the Arguments parameter with the keyword
of “CallReferenceObjectID”. This is only necessary in an environment where there are multiple held calls
and the request is made through the current call. If the request is made through a specific held call in this
scenario, or if there are only two calls at the device, this parameter is unnecessary.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

Before making this request, the original call must be in the held state and the consult call in the talking state
or the request fails. Therefore, if the calls are alternated (for more information, see Alternate), they must be
alternated again to return the two calls into their appropriate states.

If there are only two calls at the device, call this method using either the current or held call. For switches
that allow more than two calls at a device (for example G3), make this request only through the desired held
call to avoid the ambiguity caused by multiple held calls at the device. Otherwise, indicate the desired held
call by using the optional parameter.

You must make the Transfer request via a call whose call status is LCS_CONNECT or LCS_HELD or it fails.

The following events are received by the transfer initiator if this request is successful:

• OnCallTransferred event

• OnCallEnd event

• OnCallEnd event

• OnAgentStateChange event

• OnTransferCallConf event

The OnControlFailureConf event is received if this request fails.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
422

Call Object
Transfer

C H A P T E R 11
SkillGroup Object

• SkillGroup Object, on page 423
• Properties, on page 423
• Statistics, on page 424
• Methods, on page 436

SkillGroup Object
The SkillGroup object provides developers using the CTI OS Client Interface Library with an interface to
Skill Group properties and data. The SkillGroup is mainly a representation used for accessing statistics, which
you can enable or disable via method calls to the SkillGroup object. The SkillGroups are accessible directly
from the Session object or the Agent object.

The SkillGroup object methods can be accessed as follows:

• Via the Agent object inside the Session in Agent mode

• Via the Agent object inside the Session in Monitor mode

• In C++, Java, and .NET, via the session object inside the session in Monitor mode when the special
SkillGroupStats filter is set. For more information about code examples related to the special
SkillGroupStats filter, see Skill Group Statistics, on page 341 in Chapter 8.

Properties
The following table lists the available SkillGroup properties.

The data type listed for each keyword is the standardized data type discussed in the section CTI OS CIL Data
Types, on page 19 in CIL Coding Conventions, on page 19 For more information about the appropriate
language specific types for these keywords, see Table 5: CTI OS CIL Data Type, on page 20.

Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
423

Table 156: SkillGroup Properties

DescriptionTypeKeyword

The optional, user-defined number
of the SkillGroup from the
Peripheral.

INTSkillGroupNumber

The system-assigned identifier of
the SkillGroup, if available.

STRINGSkillGroupID

The Unified ICMSkillGroupName
of the SkillGroup, if available.

STRINGSkillGroupName

Values representing the current
state of the associated agent with
respect to the indicated Agent
SkillGroup.

INTSkillGroupState

Value represents SkillGroup class.INTClassIdentifier

To access statistics, first use GetValue on the SkillGroup object to obtain the Statistics Arguments array, then
use GetValue to obtain the desired value.

Not all the statistics values listed in the above table are present in every system configuration. Whether a
particular statistic value is available depends on both the protocol version of CTI Server with which CTI OS
connects and on the peripheral on which the agent resides. The statistics listed in Table 157: SkillGroup
Statistics, on page 424 are available in Protocol Version 8 of CTI Server.

Note

One very important real-time skillgroup statistic is the number of calls currently in queue. Previously, this
value was provided in CallsQNow. Now the number of calls currently in queue is stored in RouterCallsQNow.

Statistics
The following table lists the available SkillGroup statistics.

Table 157: SkillGroup Statistics

DefinitionStatistic

Number of agents that are currently logged on to the
SkillGroup.

AgentsLoggedOn

Number of agents for the SkillGroup in Available
state ready to take calls.

AgentsAvail

Number of agents in the Not Ready state for the
SkillGroup.

AgentsNotReady

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
424

SkillGroup Object
Statistics

DefinitionStatistic

Number of agents that are in work state (TALKING,
HELD, WORK_READY, AVAILABLE, or
RESERVED). This statistic is used by the router to
determine the number of working agents in the
SkillGroup when estimating the expected delay. It is
the difference between AgentsLoggedOn and
AgentsNotReady. Reference AgentsAvail to get the
number of agents that are available to take calls right
now.

AgentsReady

Number of agents in the SkillGroup currently talking
on inbound calls.

AgentsTalkingIn

Number of agents in the SkillGroup currently talking
on outbound calls.

AgentsTalkingOut

Number of agents in the SkillGroup currently talking
on internal (not inbound or outbound) calls.

AgentsTalkingOther

Number of agents in the SkillGroup in the Work Not
Ready state.

AgentsWorkNot Ready

Number of agents in the SkillGroup in the Work
Ready state.

AgentsWorkReady

Number of agents currently busy with calls assigned
to other SkillGroups.

AgentsBusyOther

Number of agents for the SkillGroup currently in the
Reserved state.

AgentsReserved

Number of calls to the SkillGroup currently on hold.AgentsHold

Number of agents in the SkillGroup currently in the
ICMAvailable state.

AgentsICM Available

Number of agents in the SkillGroup currently in the
Application Available state.

AgentsApplication Available

Number of calls to the SkillGroup currently talking
on AutoOut (predictive) calls.

AgentsTalkingAutoOut

Number of calls to the SkillGroup currently talking
on outbound Preview calls.

AgentsTalking Preview

Number of calls to the SkillGroup currently talking
on agent reservation calls.

AgentsTalking Reservation

The number of calls currently queued by the
CallRouter for this SkillGroup. This field is set to
0xFFFFFFFF when this value is unknown or
unavailable.

RouterCallsQNow**

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
425

SkillGroup Object
Statistics

DefinitionStatistic

The queue time, in seconds, of the currently Unified
ICM call router queued call that has been queued to
the SkillGroup the longest. This field is set to
0xFFFFFFFF when this value is unknown or
unavailable.

LongestRouterCallQNow**

The number of calls currently queued to the
SkillGroup. This field is set to 0xFFFFFFFF when
this value is unknown or unavailable.

CallsQNow*

The total queue time, in seconds, of calls currently
queued to the SkillGroup. This field is set to
0xFFFFFFFF when this value is unknown or
unavailable.

CallsQTimeNow*

The queue time, in seconds, of the currently queued
call that has been queued to the SkillGroup the
longest. This field is set to 0xFFFFFFFF when this
value is unknown or unavailable.

LongestCallQNow*

Total seconds agents in the SkillGroup were in the
Available state.

AvailTimeTo5

Total time, in seconds, agents in the SkillGroup were
logged in.

LoggedOnTimeTo5

Total seconds agents in the SkillGroup were in the
Not Ready state.

NotReadyTimeTo5

Total number of completed outboundACD calls made
by agents in the SkillGroup.

AgentOutCallsTo5

Total talk time, in seconds, for completed outbound
ACD calls handled by agents in the SkillGroup. The
value includes the time spent from the call being
initiated by the agent to the time the agent begins after
call work for the call. The time includes hold time
associated with the call.

AgentOutCallsTalk TimeTo5

Total handle time, in seconds, for completed outbound
ACD calls handled by agents in the SkillGroup. The
value includes the time spent from the call being
initiated by the agent to the time the agent completes
after call work time for the call. The time includes
hold time associated with the call.

AgentOutCallsTimeTo5

The total number of completed outbound ACD calls
agents in the SkillGroup have placed on hold at least
once.

AgentOutCallsHeldTo5

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
426

SkillGroup Object
Statistics

DefinitionStatistic

Total number of seconds outbound ACD calls were
placed on hold by agents in the SkillGroup.

AgentOutCallsHeldTimeTo5

The number of inbound ACD calls handled by agents
in the SkillGroup.

HandledCallsTo5

Total talk time in seconds for Inbound ACD calls
counted as handled by agents in the SkillGroup.
Includes hold time associated with the call.

HandledCallsTalk TimeTo5

Total after call work time in seconds for InboundACD
calls counted as handled by agents in the SkillGroup.

HandledCallsAfter CallTimeTo5

Total handle time, in seconds, for inbound ACD calls
counted as handled by agents in the SkillGroup. The
time spent from the call being answered by the agent
to the time the agent completed after call work time
for the call. Includes hold time associated with the
call.

HandledCallsTime To5

The total number of completed inbound ACD calls
agents in the SkillGroup placed on hold at least once.

IncomingCallsHeldTo5

Total number of seconds completed inbound ACD
calls were placed on hold by agents in the SkillGroup.

IncomingCallsHeldTimeTo5

Number of internal calls received by agents in the
SkillGroup.

InternalCallsRcvdTo5

Number of seconds spent on internal calls received
by agents in the SkillGroup.

InternalCallsRcvd TimeTo5

The total number of internal calls agents in the
SkillGroup placed on hold at least once.

InternalCallsHeldTo5

Total number of seconds completed internal calls were
placed on hold by agents in the SkillGroup.

InternalCallsHeld TimeTo5

Total number of AutoOut (predictive) calls completed
by agents in the SkillGroup.

AutoOutCallsTo5

Total talk time, in seconds, for completed AutoOut
(predictive) calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

AutoOutCallsTalk TimeTo5

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
427

SkillGroup Object
Statistics

DefinitionStatistic

Total handle time, in seconds, for completed AutoOut
(predictive) calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

AutoOutCallsTime To5

The total number of completed AutoOut (predictive)
calls that agents in the SkillGroup have placed on hold
at least once.

AutoOutCallsHeld To5

Total number of seconds AutoOut (predictive) calls
were placed on hold by agents in the SkillGroup.

AutoOutCallsHeld TimeTo5

Total number of outbound Preview calls completed
by agents in the SkillGroup.

PreviewCallsTo5

Total talk time, in seconds, for completed outbound
Preview calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

PreviewCallsTalk TimeTo5

Total handle time, in seconds, for completed outbound
Preview calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

PreviewCallsTime To5

The total number of completed outbound Preview
calls that agents in the SkillGroup have placed on hold
at least once.

PreviewCallsHeld To5

Total number of seconds outbound Preview calls were
placed on hold by agents in the SkillGroup.

PreviewCallsHeld TimeTo5

Total number of agent reservation calls completed by
agents in the SkillGroup.

ReservationCallsTo5

Total talk time, in seconds, for completed agent
reservation calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

ReservationCalls TalkTimeTo5

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
428

SkillGroup Object
Statistics

DefinitionStatistic

Total handle time, in seconds, for completed agent
reservation calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

ReservationCalls TimeTo5

The total number of agent reservation calls that agents
in the SkillGroup have placed on hold at least once.

ReservationCalls HeldTo5

Total number of seconds agent reservation calls were
placed on hold by agents in the SkillGroup.

ReservationCalls HeldTimeTo5

Total number of supervisor call barge-ins completed
in the SkillGroup.

BargeInCallsTo5

Total number of supervisor call intercepts completed
in the SkillGroup.

InterceptCallsTo5

Total number of supervisor call monitors completed
in the SkillGroup.

MonitorCallsTo5

Total number of supervisor call whispers completed
by agents in the SkillGroup.

WhisperCallsTo5

Total number of emergency calls completed by agents
in the SkillGroup.

EmergencyCallsTo5

The number of calls queued to the SkillGroup during
the current five-minute. This field is set to
0xFFFFFFFF when this value is unknown or
unavailable.

CallsQ5*

The total queue time, in seconds, of calls queued to
the SkillGroup during the current five-minute. This
field is set to 0xFFFFFFFF when this value is
unknown or unavailable.

CallsQTime5*

The longest queue time, in seconds, of all calls queued
to the SkillGroup during the current five-minute. This
field is set to 0xFFFFFFFF when this value is
unknown or unavailable.

LongestCallQ5*

Total seconds agents in the SkillGroup were in the
Available state.

AvailTimeToHalf

Total time, in seconds, agents in the SkillGroup were
logged in.

LoggedOnTime ToHalf

Total seconds agents in the SkillGroup were in the
Not Ready state.

NotReadyTime ToHalf

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
429

SkillGroup Object
Statistics

DefinitionStatistic

Total number of completed outboundACD calls made
by agents in the SkillGroup.

AgentOutCallsTo Half

Total talk time, in seconds, for completed outbound
ACD calls handled by agents in the SkillGroup. The
value includes the time spent from the call being
initiated by the agent to the time the agent begins after
call work for the call. The time includes hold time
associated with the call.

AgentOutCallsTalk TimeToHalf

Total handle time, in seconds, for completed outbound
ACD calls handled by agents in the SkillGroup. The
value includes the time spent from the call being
initiated by the agent to the time the agent completes
after call work time for the call. The time includes
hold time associated with the call.

AgentOutCallsTimeToHalf

The total number of completed outbound ACD calls
agents in the SkillGroup have placed on hold at least
once.

AgentOutCallsHeldToHalf

Total number of seconds outbound ACD calls were
placed on hold by agents in the SkillGroup.

AgentOutCallsHeldTimeToHalf

The number of inbound ACD calls handled by agents
in the SkillGroup.

HandledCallsToHalf

Total talk time in seconds for Inbound ACD calls
counted as handled by agents in the SkillGroup.
Includes hold time associated with the call.

HandledCallsTalk TimeToHalf

Total after call work time in seconds for InboundACD
calls counted as handled by agents in the SkillGroup.

HandledCallsAfter CallTimeToHalf

Total handle time, in seconds, for inbound ACD calls
counted as handled by agents in the SkillGroup. The
time spent from the call being answered by the agent
to the time the agent completed after call work time
for the call. Includes hold time associated with the
call.

HandledCallsTime ToHalf

The total number of completed inbound ACD calls
agents in the SkillGroup placed on hold at least once.

IncomingCallsHeldToHalf

Total number of seconds completed inbound ACD
calls were placed on hold by agents in the SkillGroup.

IncomingCallsHeldTimeToHalf

Number of internal calls received by agents in the
SkillGroup.

InternalCallsRcvdToHalf

Number of seconds spent on internal calls received
by agents in the SkillGroup.

InternalCallsRcvd TimeToHalf

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
430

SkillGroup Object
Statistics

DefinitionStatistic

The total number of internal calls agents in the
SkillGroup placed on hold at least once.

InternalCallsHeldToHalf

Total number of seconds completed internal calls were
placed on hold by agents in the SkillGroup.

InternalCallsHeld TimeToHalf

Total number of AutoOut (predictive) calls completed
by agents in the SkillGroup.

AutoOutCallsToHalf

Total talk time, in seconds, for completed AutoOut
(predictive) calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

AutoOutCallsTalk TimeToHalf

Total handle time, in seconds, for completed AutoOut
(predictive) calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

AutoOutCallsTime ToHalf

The total number of completed AutoOut (predictive)
calls that agents in the SkillGroup have placed on hold
at least once.

AutoOutCallsHeld ToHalf

Total number of seconds AutoOut (predictive) calls
were placed on hold by agents in the SkillGroup.

AutoOutCallsHeld TimeToHalf

Total number of outbound Preview calls completed
by agents in the SkillGroup.

PreviewCallsToHalf

Total talk time, in seconds, for completed outbound
Preview calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

PreviewCallsTalk TimeToHalf

Total handle time, in seconds, for completed outbound
Preview calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

PreviewCallsTime ToHalf

The total number of completed outbound Preview
calls that agents in the SkillGroup have placed on hold
at least once.

PreviewCallsHeldToHalf

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
431

SkillGroup Object
Statistics

DefinitionStatistic

Total number of seconds outbound Preview calls were
placed on hold by agents in the SkillGroup.

PreviewCallsHeld TimeToHalf

Total number of agent reservation calls completed by
agents in the SkillGroup.

ReservationCallsToHalf

Total talk time, in seconds, for completed agent
reservation calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

ReservationCalls TalkTimeToHalf

Total handle time, in seconds, for completed agent
reservation calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

ReservationCalls TimeToHalf

The total number of agent reservation calls that agents
in the SkillGroup have placed on hold at least once.

ReservationCalls HeldToHalf

Total number of seconds agent reservation calls were
placed on hold by agents in the SkillGroup.

ReservationCalls HeldTimeToHalf

Total number of supervisor call barge-ins completed
in the SkillGroup.

BargeInCallsToHalf

Total number of supervisor call intercepts completed
in the SkillGroup.

InterceptCallsTo Half

Total number of supervisor call monitors completed
in the SkillGroup.

MonitorCallsToHalf

Total number of supervisor call whispers completed
by agents in the SkillGroup.

WhisperCallsToHalf

Total number of emergency calls completed by agents
in the SkillGroup.

EmergencyCalls ToHalf

The number of calls queued to the SkillGroup during
the current half hour. This field is set to 0xFFFFFFFF
when this value is unknown or unavailable.

CallsQHalf*

The total queue time, in seconds, of calls queued to
the SkillGroup during the current half hour. This field
is set to 0xFFFFFFFF when this value is unknown or
unavailable.

CallsQTimeHalf*

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
432

SkillGroup Object
Statistics

DefinitionStatistic

The longest queue time, in seconds, of all calls queued
to the SkillGroup during the current half hour. This
field is set to 0xFFFFFFFF when this value is
unknown or unavailable.

LongestCallQHalf*

Total seconds agents in the SkillGroup were in the
Available state.

AvailTimeToday

Total time, in seconds, agents in the SkillGroup were
logged in.

LoggedOnTime Today

Total seconds agents in the SkillGroup were in the
Not Ready state.

NotReadyTime Today

Total number of completed outboundACD calls made
by agents in the SkillGroup.

AgentOutCalls Today

Total talk time, in seconds, for completed outbound
ACD calls handled by agents in the SkillGroup. The
value includes the time spent from the call being
initiated by the agent to the time the agent begins after
call work for the call. The time includes hold time
associated with the call.

AgentOutCallsTalk TimeToday

Total handle time, in seconds, for completed outbound
ACD calls handled by agents in the SkillGroup. The
value includes the time spent from the call being
initiated by the agent to the time the agent completes
after call work time for the call. The time includes
hold time associated with the call.

AgentOutCallsTimeToday

The total number of completed outbound ACD calls
agents in the SkillGroup have placed on hold at least
once.

AgentOutCallsHeldToday

Total number of seconds outbound ACD calls were
placed on hold by agents in the SkillGroup.

AgentOutCallsHeldTimeToday

The number of inbound ACD calls handled by agents
in the SkillGroup.

HandledCallsToday

Total talk time in seconds for Inbound ACD calls
counted as handled by agents in the SkillGroup.
Includes hold time associated with the call.

HandledCallsTalk TimeToday

Total after call work time in seconds for InboundACD
calls counted as handled by agents in the SkillGroup.

HandledCallsAfter CallTimeToday

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
433

SkillGroup Object
Statistics

DefinitionStatistic

Total handle time, in seconds, for inbound ACD calls
counted as handled by agents in the SkillGroup. The
time spent from the call being answered by the agent
to the time the agent completed after call work time
for the call. Includes hold time associated with the
call.

HandledCallsTime Today

The total number of completed inbound ACD calls
agents in the SkillGroup placed on hold at least once.

IncomingCallsHeldToday

Total number of seconds completed inbound ACD
calls were placed on hold by agents in the SkillGroup.

IncomingCallsHeldTimeToday

Number of internal calls received by agents in the
SkillGroup.

InternalCallsRcvd Today

Number of seconds spent on internal calls received
by agents in the SkillGroup.

InternalCallsRcvd TimeToday

The total number of internal calls agents in the
SkillGroup placed on hold at least once.

InternalCallsHeld Today

Total number of seconds completed internal calls were
placed on hold by agents in the SkillGroup.

InternalCallsHeld TimeToday

Total number of AutoOut (predictive) calls completed
by agents in the SkillGroup.

AutoOutCallsToday

Total talk time, in seconds, for completed AutoOut
(predictive) calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

AutoOutCallsTalk TimeToday

Total handle time, in seconds, for completed AutoOut
(predictive) calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

AutoOutCallsTime Today

The total number of completed AutoOut (predictive)
calls that agents in the SkillGroup have placed on hold
at least once.

AutoOutCallsHeld Today

Total number of seconds AutoOut (predictive) calls
were placed on hold by agents in the SkillGroup.

AutoOutCallsHeld TimeToday

Total number of outbound Preview calls completed
by agents in the SkillGroup.

PreviewCallsToday

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
434

SkillGroup Object
Statistics

DefinitionStatistic

Total talk time, in seconds, for completed outbound
Preview calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

PreviewCallsTalk TimeToday

Total handle time, in seconds, for completed outbound
Preview calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

PreviewCallsTime Today

The total number of completed outbound Preview
calls that agents in the SkillGroup have placed on hold
at least once.

PreviewCallsHeld Today

Total number of seconds outbound Preview calls were
placed on hold by agents in the SkillGroup.

PreviewCallsHeld TimeToday

Total number of agent reservation calls completed by
agents in the SkillGroup.

ReservationCalls Today

Total talk time, in seconds, for completed agent
reservation calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent begins after call work
for the call. The time includes hold time associated
with the call.

ReservationCalls TalkTimeToday

Total handle time, in seconds, for completed agent
reservation calls handled by agents in the SkillGroup.
The value includes the time spent from the call being
initiated to the time the agent completes after call
work time for the call. The time includes hold time
associated with the call.

ReservationCalls TimeToday

The total number of agent reservation calls that agents
in the SkillGroup have placed on hold at least once.

ReservationCalls HeldToday

Total number of seconds agent reservation calls were
placed on hold by agents in the SkillGroup.

ReservationCalls HeldTimeToday

Total number of supervisor call barge-ins completed
in the SkillGroup.

BargeInCallsToday

Total number of supervisor call intercepts completed
in the SkillGroup.

InterceptCallsToday

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
435

SkillGroup Object
Statistics

DefinitionStatistic

Total number of supervisor call monitors completed
in the SkillGroup.

MonitorCallsToday

Total number of supervisor call whispers completed
by agents in the SkillGroup.

WhisperCallsToday

Total number of emergency calls completed by agents
in the SkillGroup.

EmergencyCalls Today

The number of calls queued to the skill. This field is
set to 0xFFFFFFFF when this value is unknown or
unavailable.

CallsQToday*

The total queue time, in seconds, of calls queued to
the SkillGroup. This field is set to 0xFFFFFFFFwhen
this value is unknown or unavailable.

CallsQTimeToday*

The longest queue time, in seconds, of all calls queued
to the SkillGroup. This field is set to 0xFFFFFFFF
when this value is unknown or unavailable.

LongestCallQToday*

* This statistic is available for TDM switches only. It is not valid for Unified CCE.

** This statistic is available for Unified CCE only or Network Queuing.

Methods
The following table lists the SkillGroup object methods.

Table 158: SkillGroup Object Methods

DescriptionMethod

Disables SkillGroup statistic messages.GroupStatistics

For more information, see CtiOs Object, on page 291DumpProperties

Enables SkillGroup statistic messages.EnableSkillGroupStatistics

For more information, see CtiOs Object, on page 291GetElement

For more information, see CtiOs Object, on page 291GetNumProperties

For more information, see CtiOs Object, on page 291GetPropertyName

For more information, see CtiOs Object, on page 291GetValue

For more information, see CtiOs Object, on page 291GetValueInt (C++)

GetValueIntObj (Java)

For more information, see CtiOs Object, on page 291GetValueString

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
436

SkillGroup Object
Methods

DescriptionMethod

For more information, see CtiOs Object, on page 291IsValid

For more information, see CtiOs Object, on page 291SetValue

DisableSkillGroupStatistics
The DisableSkillGroupStatistics method requests that real-time statistics stop being sent to the SkillGroup
object.

Syntax

C++
int DisableSkillGroupStatistics(Arguments & args)

COM
HRESULT DisableSkillGroupStatistics (IArguments * args, int * errorCode)

VB
DisableSkillGroupStatistics (args As CTIOSCLIENTLib.IArguments, errorCode As Long)

Java
int DisableSkillGroupStatistics(Arguments args)

.NET
CilError DisableSkillGroupStatistics(Arguments args)

Parameters

args

If this method is called in C++, Java, or .NET via the session object in monitor mode with the special
SkillGroupStats filter, the args parameter has two required values for PeripheralId and SkillGroupNumber.
For more information about a code example, see the Remarks section. Otherwise, this parameter is not
used.

errorCode

An output parameter (return parameter in VB) that contains an error code, if any.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

The CTI OS server sends SkillGroup statistics in an OnSkillGroupStatisticsUpdated event. If this request is
successful, the OnNewSkillGroupStatistics event is no longer received.

The following is a C++ code example where the args parameter contains values for PeripheralID and
SkillGroupNumber.

Arguments & argsStatBroadcast = Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SkillGroupNUMBER, intSG);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
437

SkillGroup Object
DisableSkillGroupStatistics

argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession->DisableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

DumpProperties
For more information about the DumpProperties method, see CtiOs Object, on page 291.

EnableSkillGroupStatistics
The EnableSkillGroupStatistics method requests that real-time statistics be sent to the SkillGroup object. In
an agent mode application, this request is usually made through the Agent object (see Call Object, on page
389). If the argument array is empty, then statistics for all SkillGroups are enabled. This is useful when a
monitoring application needs to view all statistics without having to enumerate and loop over each statistic
to enable it.

Syntax

C++
int EnableSkillGroupStatistics(Arguments & args)

COM
HRESULT EnableSkillGroupStatistics (IArguments * args, int * errorCode)

VB
EnableSkillGroupStatistics (args As CTIOSCLIENTLib.IArguments, errorCode As Long)

Java
int EnableSkillGroupStatistics(Arguments args)

.NET
CilError EnableSkillGroupStatistics(Arguments args)

Parameters

args

If this method is called via the session object in monitor mode with the special SkillGroupStats filter,
the args parameter has two required values for PeripheralId and SkillGroupNumber. For more information
about a code example, see the Remarks section. Otherwise, this parameter is not used.

errorCode

An output parameter (return parameter in VB) that contains an error code, if any.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

CTI OS Server sends SkillGroup statistics in an OnSkillGroupStatisticsUpdated event.

The following is a C++ code example where the args parameter contains values for PeripheralID and
SkillGroupNumber.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
438

SkillGroup Object
DumpProperties

Arguments & argsStatBroadcast = Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SkillGroupNUMBER, intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession-> EnableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

GetElement
For more information about the GetElement method, see CtiOs Object, on page 291.

GetValue Methods
For more information about the GetValue, GetValueInt, GetValueList, and GetValueString methods, see
CtiOs Object, on page 291.

IsValid
For more information about the IsValid method, see CtiOs Object, on page 291.

SetValue
For more information about the SetValue method, see CtiOs Object, on page 291.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
439

SkillGroup Object
GetElement

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
440

SkillGroup Object
SetValue

C H A P T E R 12
Helper Classes

• Helper Classes, on page 441
• Arg Class, on page 442
• Arguments Class, on page 450
• CILRefArg Class (C++ Java and .NET Only), on page 465
• CCtiOsException Class (C++ Java and .NET Only), on page 468
• CWaitObject Class, on page 470
• Logger Class (.NET and Java Only), on page 474
• LogWrapper Class (.NET and Java Only), on page 477

Helper Classes
The CTI OS Client Interface Library uses several custom data structures. This chapter describes the CTI OS
Helper Classes (data structures). The following helper classes are distributed with the Client Interface Library:

• Arg. The Arg structure is the basic data type the CIL uses for any parameter included in methods or
events. Objects of this type allow the CIL to be fully extensible and reusable. Arg supports many useful
types including string, integer, Boolean, and Arguments array. Arg is the base class for the Arguments
class. In most programming scenarios, programmers do not use Arg directly, but indirectly through the
Arguments class.

• Arguments. You use the Arguments structure to maintain and send a set of key-value pairs between the
CIL and CTI OS Server for events and requests. The Arguments array elements must all be of type Arg.
The Arguments structure enables future growth of the CTI OS feature set, without requiring changes to
the method call signature.

• CilRefArg. The CilRefArg class is a specialized subclass of Arg. It stores a reference to an object derived
from CCtiOsObject (C++ only). For instance, it can hold reference to a CAgent, CCall, CSkillGroup,
CCtiOsSession, or CWaitObject.

• CCtiosException. The CTI OS uses CCtiosException class to provide detailed information when an
exception occurs (C++ and Java only). When an exception is caught as CCtiosException, the programmer
can query it for details such as error codes and error messages.

• CWaitObject. CWaitObject is a CIL object that derives from CtiOsObject. It is a utility class (available
in all CILs except COM) that enables a thread to wait for one or more CTI events. The user can provide
a list of events along with a wait timeout. You create wait objects with the CreateWaitObject Session
Object method and destroy them with the DestroyWaitObject Session Object method.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
441

• Logger. The Logger class creates a Logger object and a LogManager object, if one does not already exist.
Any object that needs to perform loggingmust instantiate the Logger class. The Logger class communicates
with the singleton LogManager object, which acts as the centralized logging facility. The Logger class
also defines tracing constants.

• LogWrapper. The LogWrapper class provides a default Logging mechanism. By default, the LogWrapper
traces to the console. If you create the LogWrapper with a filename, then it traces to that file.

Arg Class
The Arg is a generic class used in parameters or return values in CIL methods. Information sent by CTI OS
server to the CIL in an event is packed in an Arguments object where each element of the array is an object
of type Arg. An Arg object's absolute data type is determined by the type of data it stores. The basic types an
object can store are identified by the enumerated constants in Table 160: enumArgTypes, on page 446.

Arg class methods do conversion between types whenever possible. For example, you can do a SetValue(25)
and then do a GetValueString(), which returns the string “25”. You can also do a SetValue(“25”) and then do
a GetValueIntObj, which returns an Integer object containing the numeric value 25. However, if you call
SetValue “abc” and try to retrieve it as an int, it fails.

The following table lists the available Arg class methods.

Table 159: Arg Class Methods

DescriptionMethod

Increments the reference count for the data item.AddRef

Creates an exact copy of the Arg object.Clone

Creates an Arg object.CreateInstance

Builds a string containing the value stored in the Arg.DumpArg

Returns the type of the data stored in the argument
(one of the values in Table 160: enumArgTypes, on
page 446).

GetType

Returns the value stored in the argument.GetValueInt GetValueUInt GetValueUInt
GetValueUShort GetValueShort GetValueBool
GetValueString

Sets the data in the Arg object.SetValue

In many scenarios, programmers stick to Arguments (see the preceding section), which wraps many Arg
methods and encapsulates a collection of Arg objects.

AddRef
The AddRef method increments the reference count for the data item. It is necessary to call this if you are
storing a pointer to the item for some time (for example, if you plan to store and use Arguments received in

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
442

Helper Classes
Arg Class

an event handler after the event thread has returned to the calling code). When you are finished with the item,
you must call the Release method or a memory leak occurs.

Syntax

C++
unsigned long AddRef()

COM
HRESULT AddRef()

VB, Java, .NET
Not used

Parameters

None.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

C++: The current reference count after the AddRef() call.

Clone
The Clone method allocates a new Arg in memory and copies its key, value, and type to the new instance.
When using the C++ or COM CILs, it is important to release the object when it is no longer needed.

Syntax

C++
Arg & Clone()

COM
HRESULT Clone(/*[out, retval]*/ IArg** arg);

VB
Clone() as CTIOSCLIENTLib.IArg

Java
Arg Clone()

.NET
Ojbect Clone()

Output Parameters

arg

Pointer to an IArg instance that is a copy of the object.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
443

Helper Classes
Clone

Others: If successful, returns a reference to a new Arg object. If unsuccessful in C++ or VB, it throws a
CCtiosException with iCode set to E_CTIOS_ARGUMENT_ALLOCATION_FAILED. If unsuccessful in
Java, it returns null but does not throw an exception.

CreateInstance
The CreateInstance method creates an object of type Arg class and sets the reference count of the object to 1.
It is important to release the object when it is no longer in use in the program.

Syntax

C++
static Arg& CreateInstance();
// static creation mechanism.
static Arg& CreateInstance(Arg& arg);
// static creation mechanism.
static bool CreateInstance(Arg ** arg);
// static creation mechanism,
// alternate version

COM
Wrapped by CoCreateInstance

VB
Wrapped by New

Java, .NET
Not available

Parameters

arg

(output) Pointer to the newly created Arg.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Either a reference to the newly created Arg or a boolean indicating method success. If the methods
not returning bool are unsuccessful, they raise a CCtiosException with iCode set to
E_CTIOS_ARGUMENT_ALLOCATION_FAILED.

Remarks

This method increments the Arg's reference count, so do not call AddRef(). However, you must call Release()
after you are finished with the Arg.

DumpArg
The DumpArg method builds a string containing the value stored in the Arg. This involves doing any type
conversion required to display the data as a string. For example, it automatically converts an INTEGER type
to a string that can be logged for debugging. In the event that a Arg object is actually an Arguments object,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
444

Helper Classes
CreateInstance

the string returned is the one built by Arguments.DumpArg, and thus enabled printing of nested Arguments
structures.

Syntax

C++
string DumpArg()

COM
HRESULT DumpArg([out,retval] BSTR* arg_string);

VB
DumpArg() as String

Java, .NET
Not available. Use the ToString method.

Parameters

arg_string

The pointer to the string where the contents of the Arg object are written.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: A string containing the contents of the structure.

GetArgType (.NET Only)
The GetArgType method returns the type of the contained value. This returned value is one of the following:

• ARG NOTSET

• ARG_BOOL

• ARG_SHORT

• ARG_USHORT

• ARG_INT

• ARG_UINT

For more information about valid types, see Table 160: enumArgTypes, on page 446.

Syntax

C++, COM, Java
Use GetType.

.NET
ArgDataType GetArgType()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
445

Helper Classes
GetArgType (.NET Only)

Parameters

None.

Returns

int code for the type of value contained in this Arg.

GetType
The GetType method returns the type of the data stored by the Arg. For more information about possible
types, see the following table.

Syntax

C++
enumArgTypes GetType()

COM
HRESULT GetType(/*[out, retval]*/ int* type);

VB
GetType () as Integer

Java
int GetType(

.NET
Use the GetArgType method.

Output Parameters

type

Integer that receives the enumerated constant that identifies data type stored in IArg.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Returns the enumerated value that identifies the data type stored in the Arg (for more information,
see the following table).

Table 160: enumArgTypes

DescriptionArgument Type

Argument type not determinedARG_NOTSET

Signed integerARG_INT

Unsigned integerARG_UINT

2 bytes unsigned integerARG_USHORT

2 bytes signed integerARG_SHORT

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
446

Helper Classes
GetType

DescriptionArgument Type

1 byte integerARG_BOOL

Character stringARG_STRING

Variable length Arguments arrayARG_ARGARRAY

GetValue Methods
The GetValue method returns the value stored in the object. To extract a specific type of data you invoke the
method designated for it. For more information about GetValueArray, GetValueInt, and GetValueString, see
the corresponding methods described in CtiOs Object, on page 291

Syntax

C++
int GetValueInt();

unsigned int GetValueUInt();

unsigned shortGetValueUShort();

short GetValueShort();

string& GetValueString();

bool GetValueBool();

bool GetValueInt(int * value);

bool GetValueUInt(unsigned int * value);

bool GetValueUShort(unsigned short * value);

bool GetValueShort(short * psVallue);

bool GetValueBool(bool * value);

bool GetValueString(string* value);

COM
HRESULT GetValue(/*[out, retval]*/ VARIANT* value);

VB
GetValue() as Variant

GetValue (key as String, value as Variant) as Boolean

Java
Integer GetValueIntObj()

Long GetValueUIntObj()

Short GetValueShortObj()

Integer GetValueUShortObj()

Boolean GetValueBoolObj()

String GetValueString()

.NET
System.Boolean GetValueInt(out System.Int32 nValue)

System.Boolean GetValueUInt(out System.Int64 nValue)

System.Boolean GetValueShort(out System.Int16 nValue)

System.Boolean GetValueUShort(out System.Int32 nValue)

System.Boolean GetValueBool(out System.Boolean bValue)

System.Boolean GetValueString(out System.String strValue)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
447

Helper Classes
GetValue Methods

Parameters

Value

Output parameter of the specified type containing the value of the Arg.

For COM, this value is of type VARIANT * whose type is one of the types listed in the following table.

Table 161: Variant Types Supported by GetValue (COM)

Standard C++ TypeVariant Type

IntVT_INT

Unsigned intVT_UINT

ShortVT_I2

Unsigned shortVT_UI2

BoolVT_BOOL

string, const string and char *VT_BSTR

Return Values

C++

Methods taking no parameters, if successful, return the value in the object; otherwise, they raise a
CCtiosException with iCode set to E_CTIOS_INVALID_ARGUMENT.

The methods taking a pointer to the variable receiving the result return true, if the method was able to
get the value, otherwise, false.

Java

Returns null if method failed.

.NET

Returns false if method failed.

COM

If the method was able to set the variant type of the value to any of the types listed in the above table, it
returns the value in the appropriate field of the variant. Otherwise it returns VT_EMPTY.

Release
The Release method decrements the reference count for the data item. It is necessary to call Release when
you are finished with a data item that had its reference count incremented via CreateInstance or AddRef;
otherwise, a memory leak occurs.

Syntax

C++
unsigned long Release()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
448

Helper Classes
Release

COM
HRESULT Release()

VB, Java, .NET
Not used

Parameters

None.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

C++: The current reference count after the Release() call.

SetValue
The SetValue method sets the value in the Arg object.

Syntax

C++
bool SetValue(int value);
bool SetValue(unsigned int value);
bool SetValue(unsigned short value);
bool SetValue(short value);
bool SetValue(bool value);
bool SetValue(char * value);
bool SetValue(string& value);
bool SetValue(const string& value);
bool SetValue(Arg & value);

COM
HRESULT SetValue(/*[in]*/ VARIANT * pVariant, /*[out,retval]*/ VARIANT_BOOL * errorcode

);

VB
SetValue(value as Variant) as Boolean

Java
boolean SetValue(Arg rArg)
boolean SetValue(int iVal)
boolean SetValue(short nValue)
boolean SetValue(String sValue)
boolean SetValueUInt(long lValue)
boolean SetValueUShort(int iValue

.NET
System.Boolean SetValue(System.Int32 iValue)
System.Boolean SetValueUInt(System.Int64 lValue)
System.Boolean SetValueUShort(System.Int32 iValue)
System.Boolean SetValue(System.Int16 nValue)
System.Boolean SetValue(System.Boolean bValue)
System.Boolean SetValue(System.String sValue)
System.Boolean SetValue(Arg rArg)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
449

Helper Classes
SetValue

Parameters

value

The value of the specified type to assign to the Arg.

For COM, this value is of type VARIANT * whose type is one of the types listed in the following table.

Table 162: Supported Variant Types

Standard C++ TypeVariant Type

IntVT_INT

Unsigned intVT_UINT

ShortVT_I2

Unsigned shortVT_UI2

BoolVT_BOOL

string, const string and char *VT_BSTR

Pointer to an IArg interfaceVT_DISPATCH

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

C++

If the method was able to set the value it returns true, otherwise it returns false.

COM, VB

If the method was able to set the value it returns VARIANT_TRUE. Otherwise, it returns VARIANT_FALSE.

Java, .NET

This method returns true if the method succeeds, otherwise false.

Arguments Class
The Arguments structure (class) provides key/value support to form a collection of values. Each value stored
in an Arguments structure is associated with a key. To add an item, use the AddItem or SetValue method and
pass a key and a value. The key must be a string or an enumerated value, and the value can be almost any
type (i.e. all types supported by Arg). To retrieve the item, use the appropriate GetValue method with a key,
and the value is returned. Keys are not case sensitive, and leading and trailing spaces are always removed
from the key.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
450

Helper Classes
Arguments Class

Arguments also supports access by index. The index is useful for retrieving items sequentially, but may not
be as fast as retrieval by key. The Arguments structure's index is 1-based, to provide easier support for Visual
Basic programmers. Internally, the Arguments structure uses a binary tree and other techniques to provide
fast access to any item. Arguments can support a virtually unlimited number of key-value pairs, and supports
nested Arguments structure as well.

The following table lists the Arguments class methods.

Table 163: Arguments Class Methods

DescriptionMethod

Adds an item to an Arguments array.AddItem

Increments the reference count for the data item.AddRef

Deletes all elements from an Arguments array.Clear

Creates a copy of an Arguments array.Clone

Creates an Arguments array.CreateInstance

Returns Arguments object as a stringDumpArgs

Returns the value stored under a specified index.GetElement (also GetElementInt, GetElementUInt,
GetElementUShort, GetElementShort,
GetElementBool, GetElementString, GetElementArg,
GetElementKey GetElementArgType)

Returns the value stored under a specified key.GetValue (also GetValueInt, GetValueUShort,
GetValueShort, GetValueBool, GetValueUInt,
GetValueString, GetValueArray, GetValueArg)

Tests if a key is present in the current Arguments
array.

IsValid

Returns the number of arguments in the current
Arguments array,.

NumElements

Decrements the reference count for the data item.Release

Removes an item from an Arguments array.RemoveItem

Sets the value of an index.SetElement

Sets the value of a key.SetValue

Usage Notes
When writing an application using the CTI OS SDK, the following sequence of steps in the program can
produce a problem:

• Programmer passes an Arguments array into a CTI OS SDK method (methodA)

• MethodA returns

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
451

Helper Classes
Usage Notes

• Programmer modifies the same Arguments array

• Programmer passes the modified Arguments array into another CTI OS SDK method (methodB)

When running the application, the call to methodA can behave as if it was passed the modified Arguments
array. This is because many CTI OS methods simply place a pointer to the Arguments array on a queue of
items to send to CTI OS server. When the same Arguments array is later modified, as in the preceding example,
the pointer on the queue now points to the modified array and the modified array is sent to CTI OS server. A
problem can occur depending on timing, as there are multiple threads involved: the thread pulling items off
the queue and the thread modifying the Arguments array. If the queued message is sent to CTI OS before the
Arguments array is modified, the problem does not occur.

To avoid this problem, call the Clone method on the initial Arguments array and modify the copy rather than
modifying the original. For example, the preceding example would change as follows:

• Programmer passes an Arguments array (initialArray) into a CTI OS SDK method (methodA)

• MethodA returns

• modifiedArray = initialArray.Clone()

• Programmer modifies modifiedArray

• Programmer passes the modifiedArray into another CTI OS SDK method (methodB)

AddItem (C++ COM VB Only)
The AddItem method expects a key-value pair. The key value can be a string or an integer. The value can be
a string, an integer, or an object reference. If there is an entry with the same key, it is replaced with this entry,
otherwise the new key-value pair is added to the Arguments array. Keys are not case sensitive. Leading and
trailing spaces are always removed from the key.

Syntax

C++
bool AddItem(std::string & key, int value);
bool AddItem(std::string& key, unsigned int value);
bool AddItem(std::string& key, unsigned short value);
bool AddItem(std::string& key, short value);
bool AddItem(std::string& key, bool value);

bool AddItem(std::string& key, char * pchar);
bool AddItem(std::string& key, std::string& value);
bool AddItem(std::string& key, Arg& value);
bool AddItem(std::string& key, const Arg& value);
bool AddItem(std::string& key, Arguments& value);
bool AddItem(std::string& key, const Arguments& value);

bool AddItem(char * key, int value);
bool AddItem(char * key, unsigned int value);
bool AddItem(char * key, unsigned short value);
bool AddItem(char * key, short value);
bool AddItem(char * key, bool value);

bool AddItem(char * key, char * value);
bool AddItem(char * key, std::string& value);
bool AddItem(char * key, Arg& cArg);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
452

Helper Classes
AddItem (C++ COM VB Only)

bool AddItem(char * key, const Arg& value);
bool AddItem(char * key, Arguments& value);
bool AddItem(char * key, const Arguments& value);

bool AddItem(enum_Keywords key, int value);
bool AddItem(enum_Keywords key, unsigned int value);
bool AddItem(enum_Keywords key, unsigned short value);
bool AddItem(enum_Keywords key, short value);
bool AddItem(enum_Keywords key, bool value);

bool AddItem(enum_Keywords key, char * value);
bool AddItem(enum_Keywords key, std::string& value);
bool AddItem(enum_Keywords key, Arg& cArg);
bool AddItem(enum_Keywords key, const Arg& value);
bool AddItem(enum_Keywords key, Arguments& value);
bool AddItem(enum_Keywords key, const Arguments& value)

COM
HRESULT AddItem(/*[in]*/ VARIANT *key, /*[in]*/ VARIANT *value, /*[out,retval]*/

VARIANT_BOOL success) As Boolean;

VB
AddItem(Key as Variant, Value as Variant)

Java, .NET
Not Applicable. Use the SetValue method.

Parameters

key

Key name for the item to be added.

value

Value of the item to be added.

success

An output parameter (return parameter in C++ and VB) that contains a boolean indicating success or lack
thereof.

Return Value

C++: Returns True in if the entry was successfully added, otherwise False.

COM and VB: Standard return values are valid; For more information, see CIL Coding Conventions, on page
19.

AddRef (C++ and COM Only)
The AddRef method increments the reference count for the data item. You must call this if you are storing a
pointer to the item for some time. When you are finished with the item, you must call the Release method or
a memory leak occurs.

Syntax

C++
unsigned long AddRef()

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
453

Helper Classes
AddRef (C++ and COM Only)

COM
HRESULT AddRef()

VB, Java, .NET
Not used

Parameters

None.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

C++: Current reference count.

Others: None.

Clear
The Clear method deletes all the elements from Arguments object.

Syntax

C++
void Clear()

COM
HRESULT Clear()

VB
Clear()

Java, .NET
void Clear()

Parameters

None.

Return Value

None.

Clone
The Clone method creates a copy of the Arguments structure. Because in C++ this method is implemented in
the base class (Arg), it returns a reference to an Arg, but this is actually a reference to an Arguments array.
Therefore, it is necessary to cast the return value of this method. The following C++ code sample shows this
casting:

Arguments & argsCopy = (Arguments&) argsOrig.Clone ();

To cast in VB, do the following:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
454

Helper Classes
Clear

Dim Args As CTIOSCLIENTLib.IArgumentsSet Args = Orig.Clone()

Syntax

C++
Arg & Clone()

COM
HRESULT Clone(/*[out, retval]*/ IArguments ** args);

VB
Clone() as CTIOSCLIENTLib.IArguments

Java
Arg Clone()

.NET
object Clone()

Parameters

args

An output parameter containing a pointer to an Arguments array that is a copy of the object.

Return Value

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: A reference to the Arg structure that is a copy of the object.

CreateInstance (C++ and COM Only)
The CreateInstance method creates an object of type Arguments class and sets the reference count of the object
to 1. It is important to release the object when it is no longer in use in the program.

Syntax

C++
static Arguments & CreateInstance()
static bool CreateInstance(Arguments ** args)

COM
Not exposed, called by CoCreateInstance.

VB
Not exposed, called by New.

Java, .NET
Not implemented.

Parameters

args

A pointer to the newly created Arguments structure.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
455

Helper Classes
CreateInstance (C++ and COM Only)

Return Value

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Either a reference to the newly created Arguments structure or a boolean indicating method success.

Remarks

C++, COM: Internally this method increments the Arg's reference count, so do not call AddRef(). However,
you must call Release() when you are finished with the Arg.

DumpArgs
The DumpArgs method builds a string showing all of the members of the Arguments structure in the form
“key1 = value1; key2 = value2;...”. It is primarily used for debugging.

The trace mask must be set in order to run the DumpArgs method on the Arguments array of call variables.

For information on setting the trace level see, Set Trace Levels (COM and C++), on page 504.

Note

Syntax

C++
string DumpArgs()

COM
HRESULT DumpArgs([out,retval] BSTR* arg_string);

VB
DumpArgs() as String

Java, .NET
string DumpArgs()

Parameters

arg_string

The pointer to the string containing the contents of the Arguments array listing all of the key/value pairs in
the format of “key1 = value1; key2 = value2;...”.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: A string containing the contents of the Arguments array listing all key/value pairs.

GetElement Methods
The GetElement method is similar to GetValue, except that it uses an index value instead of a key. The index
value is not related to the order in which items are added or removed. The order of items in Arguments is
never guaranteed. This method is useful for sequentially iterating over all items in Arguments. The Index is

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
456

Helper Classes
DumpArgs

1-based. The Index should never be less than one or greater than NumElements. see also NumElements method.
The GetElementKey returns the key of a given index.

Syntax

C++
Arg& GetElement(int index);
bool GetElement(int index, Arg ** value);
int GetElementInt(int index);
bool GetElementInt(int index, int * value);
unsigned int GetElementUInt(int index);
bool GetElementUInt(int index, unsigned int * value);
unsigned short GetElementUShort(int index);
bool GetElementUShort(int index, unsigned short * value);
short GetElementShort(int index);
bool GetElementShort(int index, short * value);
bool GetElementBool(int index);
bool GetElementBool(int index, bool * value);
std::string GetElementString(int index);
bool GetElementString(int index, std::string * value);
Arguments& GetElementArg(int index);
bool GetElementArg(int index, Arguments ** key);
std::string GetElementKey(int index);
bool GetElementKey(int nIndex, std::string * key);
bool GetElementKey(int nIndex, int * key);

COM
HRESULT GetElementKey(/*[in]*/ int index, /*[out]*/ BSTR *
key);
HRESULT GetElement(/*[in]*/ int index, /*[out]*/ VARIANT *
value);

VB
GetElement (Integer index, Variant value)
GetElement (Integer index, String key)

Java
Arg GetElement(int iIndex)
Arguments GetElementArguments(int iIndex)
Integer GetElementIntObj(int iIndex)
Long GetElementUIntObj(int iIndex)
Short GetElementShortObj(int iIndex)
Integer GetElementUShortObj(int iIndex)
Boolean GetElementBoolObj(int iIndex)
String GetElementString(int iIndex)
String GetElementKey(int iIndex)

.NET
Boolean GetElement(System.Int32 iIndex, out Arg obArg)
Boolean GetElementInt(System.Int32 iIndex, out System.Int32
iValue)
Boolean GetElementUInt(System.Int32 iIndex, out System.Int64
nValue)
Boolean GetElementUShort(System.Int32 iIndex, out System.Int32
nValue)
Boolean GetElementShort(System.Int32 iIndex, out System.Int16
nValue)
Boolean GetElementBool(System.Int32 iIndex, out System.Boolean
bValue)
Boolean GetElementString(System.Int32 iIndex, out System.String

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
457

Helper Classes
GetElement Methods

strValue)
Boolean GetElementArguments(System.Int32 iIndex, out Arguments
argArguments)
Boolean GetElementKey(System.Int32 iIndex, out System.String
strKey)

Parameters

value

An output parameter containing the value of the member at the specified index.

key

An output parameter containing the key of the member at the specified index.

index

An input parameter containing an index into the Arguments array.

Return Value

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Returns either the value at the index specified independently from its key, or a boolean indicating
success or failure.

GetValue Methods
The GetValue method returns the value stored under a key. You can test the existence of a key using IsValid.
Keys are not case sensitive. Leading and trailing spaces are always removed from the key. For more information
about GetValueArray, GetValueInt, and GetValueString, see the corresponding methods described in CtiOs
Object, on page 291

Syntax

C++
Arg& GetValue(enum_Keywords eKey);
bool GetValue(enum_Keywords key, Arg ** value);
Arg& GetValue(std::string& key);
bool GetValue(std::string& key, Arg ** value);
Arg& GetValueArg(std::string& key);
bool GetValueArg(std::string& key, Arg ** value);
int GetValueInt(enum_Keywords key); /*throws exception*/
bool GetValueInt(enum_Keywords key, int * value);
unsigned int GetValueUInt(enum_Keywords key);
bool GetValueUInt(enum_Keywords key, unsigned int * value);
unsigned short GetValueUShort(enum_Keywords key);
bool GetValueUShort(enum_Keywords key, unsigned short * value);
short GetValueShort(enum_Keywords key);
bool GetValueShort(enum_Keywords key, short * value);
bool GetValueBool(enum_Keywords key);
bool GetValueBool(enum_Keywords key, bool * value);
std::string GetValueString(enum_Keywords key);
bool GetValueString(enum_Keywords key, std::string * value);
int GetValueInt(std::string& key); /*throws exception*/
bool GetValueInt(std::string& key , int * value);
unsigned int GetValueUInt(std::string& key);
bool GetValueUInt(std::string& key , unsigned int * value);
unsigned short GetValueUShort(std::string& key);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
458

Helper Classes
GetValue Methods

bool GetValueUShort(std::string& key , unsigned short * value);
short GetValueShort(std::string& key);
bool GetValueShort(std::string& key , short * value);
bool GetValueBool(std::string& key);
bool GetValueBool(std::string& key , bool * value);
std::string GetValueString(std::string& key);
bool GetValueString(std::string& key , std::string * value);
Arguments& GetValueArray(std::string& key);
bool GetValueArray(std::string& key , Arguments ** value);
Arguments& GetValueArray(enum_Keywords key);
bool GetValueArray(enum_Keywords key , Arguments ** value);
Arg& GetValue(char * key);
bool GetValue(char * key, Arg ** value);
Arguments& GetValueArray(char * key);
bool GetValueArray(char * key, Arguments ** value);
int GetValueInt(char * key);
bool GetValueInt(char * key, int * value);
unsigned int GetValueUInt(char * key);
bool GetValueUInt(char * key, unsigned int * value);
unsigned short GetValueUShort(char * key);
bool GetValueUShort(char * key, unsigned short * value);
short GetValueShort(char * key);
bool GetValueShort(char * key, short * value);
bool GetValueBool(char * key);
bool GetValueBool(char * key, bool * value);
std::string GetValueString(char * key);
bool GetValueString(char * key, std::string * value);
Arg& GetValueArg(char * key);
bool GetValueArg(char * key, Arg ** value);

COM
HRESULT GetValue(/*[in]*/ BSTR key, /*[out, retval]*/ VARIANT * pVvalue);
HRESULT GetValueInt(/*[in]*/ VARIANT *key, /*[out, retval]*/ int *value);
HRESULT GetValueString(/*[in]*/ VARIANT *key, /*[out, retval]*/ BSTR *value);
HRESULT GetValueArray(/*[in]*/ VARIANT *key, /*[out, retval]*/ IArguments **pArguments);
HRESULT GetValueBool(/*[in]*/ VARIANT *key, /*[out, retval]*/ VARIANT_BOOL * value);

VB
GetValue (Key as String) as Variant
GetValue(key As Variant) As Arg
GetValueArray(key As Variant) As Arguments
GetValueBool(key As Variant) As Boolean
GetValueInt(key As Variant) As Long
GetValueString(key As Variant) As String

Java
Arg GetValue(int iKey)
Arg GetValue(String sKey)
Arguments GetValueArray(int iKey)
Arguments GetValueArray(String sKey)
Integer GetValueIntObj(int iKey)
Integer GetValueIntObj(String sKey)
Long GetValueUIntObj(int iKey)
Long GetValueUIntObj(String sKey)
Short GetValueShortObj(int iKey)
Short GetValueShortObj(String sKey)
Integer GetValueUShortObj(int iKey)
Integer GetValueUShortObj(String sKey)
Boolean GetValueBoolObj(int iKey)
Boolean GetValueBoolObj(String sKey)
String GetValueString(int iKey)
String GetValueString(String sKey)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
459

Helper Classes
GetValue Methods

.NET
Boolean GetValue(System.String sKey, out Arg obArg)
Boolean GetValueInt(System.String sKey, out System.Int32 nValue)
Boolean GetValueUInt(System.String sKey, out System.Int64 nValue)
Boolean GetValueShort(System.String sKey, out System.Int16 nValue)
Boolean GetValueUShort(System.String sKey,out System.Int32 nValue)
Boolean GetValueBool(System.String sKey, out System.Boolean bValue)
Boolean GetValueString(System.String sKey, out System.String strValue)
Boolean GetValueArray(System.String sKey, out Arguments arArguments)
Boolean GetValue(Enum_CtiOs eKey, out Arg obArg)
Boolean GetValueInt(Enum_CtiOs eKey, out System.Int32 nValue)
Boolean GetValueShort(Enum_CtiOs eKey, out System.Int16 nValue)
Boolean GetValueUShort(Enum_CtiOs eKey, out System.Int32 nValue)
Boolean GetValueBool(Enum_CtiOs eKey, out System.Boolean bValue)
Boolean GetValueString(Enum_CtiOs eKey, out System.String strValue)
Boolean GetValueArray(Enum_CtiOs eKey, out Arguments arArguments)

Parameters

An enumerated keyword (for more information, see CTI OS Keywords and Enumerated Types, on page 499)
or a string specifying the keyword of the value to retrieve.

Return Values

In C++, the two-parameter version returns a boolean indicating success or failure. The one-parameter version
returns the value and throws an exception upon failure.

COM returns an HRESULT. For more information, see CIL Coding Conventions, on page 19.

Java methods return a null object if the method fails.

Remarks

Visual Basic's Integer type is a 16-bit integer. However, the GetValueInt method returns a 32-bit integer.
Thus, in Visual Basic the return type for GetValueInt is actually a Visual Basic type Long. Visual Basic
Programmers can use the GetValueInt method and receive the return value as an Integer, and Visual Basic
will perform an implicit cast. However, if the value retrieved is a 32-bit integer, an overflow error occurs. To
resolve this error, use a 32-bit integer (Long).

Those methods that do not return a bool indicating success or failure throw a CtiosException if the method
fails. The most common reasons for failure are NULL key or element with specified key not found.

IsValid
The IsValid method returns True if the specified key exists in the current Arguments array, otherwise it returns
False.

Syntax

C++
bool IsValid(std::string& key);
bool IsValid(char * key);
bool IsValid(Arg& arg);
bool IsValid(enum_Keywords key);

COM
HRESULT IsValid(/*[in]*/ VARIANT* key, /*[out, retval]*/ VARIANT_BOOL* bIsvalid);

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
460

Helper Classes
IsValid

VB
IsValid (key as string) as Boolean

Java, .NET
boolean IsValid(int key)
boolean IsValid(String key)
boolean IsValid(Arg rArg)

Parameters

key/arg

Either the key of the desired Arguments member or an Arg containing a string key.

C++ and COM allow you to specify the key as a string or enumerated (for more information, see CTI OS
Keywords and Enumerated Types, on page 499); all others expect the key as a string.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: True if key exists in the current Arguments array, otherwise False.

NumElements
The NumElements method returns the number of elements stored in the current Arguments array. This method
is useful in combination with GetElement to implement a “for” loop to iterate over all values of an Arguments
array without knowing the keywords (you can retrieve those at the same time using GetElementKey).

Syntax

C++
int NumElements();

COM
HRESULT NumElements(/*[out, retval]*/ int * num_elements);

VB
NumElements as Integer

Java
int NumElements()

.NET
int NumElements()

Parameters

num_elements

Pointer to an integer value containing the number of elements in the Arguments array.

Return Value

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Number of elements in Arguments array.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
461

Helper Classes
NumElements

Release (C++ and COM Only)
The Release method decrements the reference count for the data item. You must call Release when you are
finished with a data item that has had its reference count incremented via CreateInstance or AddRef; otherwise,
a memory leak occurs.

Syntax

C++
unsigned long Release()

COM
HRESULT Release()

VB, Java, .NET
Not used

Parameters

None.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

C++: The current reference count after the Release() call.

RemoveItem
The RemoveItem method removes a value and its associated key from an Arguments array. Subsequent
attempts to access a value that was removed using RemoveItem fail.

Syntax

C++
bool RemoveItem(std::string& key);
bool RemoveItem(char * key);
bool RemoveItem(enum_Keywords key);

COM
HRESULT RemoveItem(/*[in]*/ VARIANT* key, /*[out, retval]*/ VARIANT_BOOL* bSuccess);

VB
RemoveItem (key as Variant) as Boolean

Java
boolean RemoveItem(int key)
boolean RemoveItem(String key)

Parameters

key

The key to use to locate and remove the item in the Arguments array. Leading and trailing spaces are always
removed from the key.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
462

Helper Classes
Release (C++ and COM Only)

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Returns true if the entry was located and removed.

SetElement (C++ COM and VB Only)
The SetElement method is identical to SetValue (which is similar to AddItem), except that it uses an index
value instead of a key.

Syntax

C++
bool SetElement(int index, int value);
bool SetElement(int index, unsigned int value);
bool SetElement(int index, unsigned short value);
bool SetElement(int index, short value);
bool SetElement(int index, bool value);
bool SetElement(int index, std::string& value);
bool SetElement(int index, char * pchar);
bool SetElement(int index, Arg& value);
bool SetElement(int index, Arguments& value);

COM
HRESULT SetElement(/*[in]*/ int index, /*[in]*/ VARIANT * value, /*[out,retval]*/

success);

VB
SetElement (index as Integer, value as Variant) as Boolean

Java
Not available.

.NET
Not available.

Parameters

index

The index at which the value is to be set. This index value is not related to the order in which items are added
or removed. The order of items in Arguments is never guaranteed. This method is useful for sequentially
iterating over all items in Arguments. Index is 1-based. Index should never be less than 1 or greater than
NumElements (see above). C++ implements several overloadedmethods for different value types, while COM
and VB use Variants.

value

The associated value to be set in the element at the designated index.

success

Output parameter (return parameter in C++ and VB) containing a boolean indicating success or failure.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
463

Helper Classes
SetElement (C++ COM and VB Only)

Others: A boolean indicating success or failure.

SetValue
The SetValue method sets a value for a key. Keys are not case sensitive. Leading and trailing spaces are always
removed from the key.

Syntax

C++
bool SetValue(std::string& key, int value);
bool SetValue(std::string& key, unsigned int value);
bool SetValue(std::string& key, unsigned short value);
bool SetValue(std::string& key, short value);
bool SetValue(std::string& key, bool value);
bool SetValue(std::string& key, std::string& value);
bool SetValue(std::string& key, char * pchar);
bool SetValue(std::string& key, Arg& value);
bool SetValue(std::string& key, Arguments& value);
bool SetValue(std::string& key, const Arguments& value);
bool SetValue(char * key, int value);
bool SetValue(char * key, unsigned int value);
bool SetValue(char * key, unsigned short value);
bool SetValue(char * key, short value);
bool SetValue(char * key, bool value);
bool SetValue(char * key, std::string& value);
bool SetValue(char * key, char * value);
bool SetValue(char * key, Arg& value);
bool SetValue(char * key, Arguments& value);
bool SetValue(char * key, const Arguments& value);
bool SetValue(enum_Keywords key, int value);
bool SetValue(enum_Keywords key, unsigned int value);
bool SetValue(enum_Keywords key, unsigned short value);
bool SetValue(enum_Keywords key, short value);
bool SetValue(enum_Keywords key, bool value);
bool SetValue(enum_Keywords key, std::string& value);
bool SetValue(enum_Keywords key, Arg& value);
bool SetValue(enum_Keywords key, const Arg& value);
bool SetValue(enum_Keywords key, Arguments& value);
bool SetValue(enum_Keywords key, const Arguments& cArguments);
bool SetValue(enum_Keywords key, char * value);

COM
HRESULT SetValue(/*[in]*/ VARIANT* key, /*[in]*/ VARIANT*
value,/*[out, retval]*/ VARIANT_BOOL* success);

VB
SetValue (key as String, value as Variant) as Boolean

Java
boolean SetValue(Arguments rArguments)
boolean SetValue(int iKey, Arg rArg)
boolean SetValue(String sKey, Arg rArg)
boolean SetValue(int iKey, int iVal)
boolean SetValue(String sKey, int iVal)
boolean SetValue(int iKey, short nValue)
boolean SetValue(String sKey, short nValue)
boolean SetValue(int iKey, String sValue)
boolean SetValue(String sKey, String sValue)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
464

Helper Classes
SetValue

boolean SetValueUInt(int iKey, long lValue)
boolean SetValueUInt(String sKey, long lValue)
boolean SetValueUShort(int iKey, int iValue)
boolean SetValueUShort(String sKey, int iValue)
boolean SetValue(int iKey, Arg rArg)

.NET
System.Boolean SetValueArguments(Arguments rArguments)
System.Boolean SetValue(System.String sKey, System.Int32
iValue)
System.Boolean SetValueUInt(System.String sKey, System.Int64
lValue)
System.Boolean SetValue(System.String sKey, System.Int16
nValue)
System.Boolean SetValueUShort(System.String sKey, System.Int32
iValue)
System.Boolean SetValue(System.String sKey, System.String
sValue)
System.Boolean SetValue(System.String sKey, Arg rArg)
System.Boolean SetValue(Enum_CtiOs eKey, System.Int32 iValue)
System.Boolean SetValueUInt(Enum_CtiOs eKey, System.Int64
lValue)
System.Boolean SetValue(Enum_CtiOs eKey, System.Int16 nValue)
System.Boolean SetValueUShort(Enum_CtiOs eKey, System.Int32
iValue)
System.Boolean SetValue(Enum_CtiOs eKey, System.Boolean bValue)
System.Boolean SetValue(Enum_CtiOs eKey, System.String sValue)
System.Boolean SetValue(Enum_CtiOs eKey, Arg rArg)

Parameters

key

The key whose value is to be set.

value

The value to use in setting the element with the designated key.

success

Output parameter (return parameter in C++ and VB) containing a boolean indicating success or failure.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: A boolean indicating success or failure.

Remarks

The C++ methods overload several implementations for different value types and allow you to specify a key
via enumerated keywords (for more information, see CTI OS Keywords and Enumerated Types, on page 499)
as well as string. COM and VB use String keywords and Variants as values.

CILRefArg Class (C++ Java and .NET Only)
The CILRefArg class is a subclass of the Arg class. Its main responsibility is to store a reference of a
CCtiOsObject object (for more information, see CtiOsObject, on page 291). This class includes object references

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
465

Helper Classes
CILRefArg Class (C++ Java and .NET Only)

in argument structure. The object types you can use are any of the following: CAgent, CCall, CSkillGroup,
CWaitObject, or CCtiOsSession.

In addition to the methods inherited from the Arg class, the CILRefArg class contains the methods listed in
the following table.

DescriptionMethod

Returns the ARG_REFERENCE.GetType

Returns the UID of the contained CtiOsObject.GetUniqueObjectID

Returns the encapsulated pointer in the object.GetValue

Encapsulates the pointer to CTI OS object into the
CILRefArg object.

SetValue

GetType
The GetType method returns the type of the data stored by the Arg. For a CilRefArg, this is always
ARG_REFERENCE.

Syntax

C++
enumArgTypes GetType()

COM
HRESULT GetType(/*[out, retval]*/ int* type);

VB
GetType () as Integer

Java
int GetType()

.NET
Use the GetArgType method.

Output Parameters

type

Integer that receives the enumerated constant that identifies the data type stored in Arg. In this case, that data
type is ARG_REFERENCE.

Return Values

COM: Default HRESULT return values. For more information, see CIL Coding Conventions, on page 19.

Others: Returns the enumerated value that identifies the data type stored in the Arg (for more information,
see Table 160: enumArgTypes, on page 446). For CilRefArg, this is always ARG_REFERENCE.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
466

Helper Classes
GetType

GetUniqueObjectID (Java and .NET Only)
The GetUniqueObjectID method returns the unique objectID of the contained CtiOsObject.

Syntax

String GetUniqueObjectID()

Parameters

None.

Return Values

If successful, it returns the unique objectID of the contained CtiOsObject. If no object is contained in the
CilRefArg, it returns null.

Remarks

To obtain a unique object ID in C++, use bool GetValueString(string* pString).

GetValue
The GetValue method returns the reference to CTI OS object encapsulated in the CILRefArg.

Syntax

C++
C++: CCtiOsObject * GetValue()

Java
CCtiOsObject GetValue();

.NET
System.Boolean GetValue(out CtiOsObject sValue)

Output Parameters

.NET:sValue

Reference to the contained CtiOsObject derived class.

Return Values

C++: Returns NULL on failure.

.NET: Returns false if the method fails.

Java: Returns a null reference if the method fails.

SetValue
Sets the reference to the CTI OS Object in the CILRefArg.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
467

Helper Classes
GetUniqueObjectID (Java and .NET Only)

Syntax

bool SetValue(CCtiOsObject * pObject);

Input Parameters

pObject

A pointer to a CtiOsObject to encapsulate (e.g. CCall, CAgent, etc.).

Return Values

If the method was able to set the reference it returns true. Otherwise, it returns false.

CCtiOsException Class (C++ Java and .NET Only)
The CCtiosException class is normally used within the Arguments class. It provides access to additional
information when exceptions are thrown, such as what parameter is in error, memory allocation failed, and
so on.

The following table lists the available CCtiOsException class methods.

DescriptionMethod

Class constructor.CCtiosException

Returns the error code that generated the exception.GetCode

Returns the error status that generated the exception.GetStatus

Returns a text string containing the description of the exception.GetString

Returns a text string containing the description of the exception, the code
of an error and the status.

What

CCtiosException Constructor
The CCtiosException constructor initializes an object of type CCtiosException.

Syntax

C++, Java, .NET
CCtiosException(const char *pMsg, int iCode, int iStatus);

C++
CCtiosException(const string& rstrMsg, int iCode, int iStatus);

Parameters

pMsg

Pointer to string that holds a description of an error.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
468

Helper Classes
CCtiOsException Class (C++ Java and .NET Only)

iCode

Number that identifies an error.

iStatus

Status of an error.

rstrMsg

An STL string that holds a description of an error.

Return Values

None.

GetCode
The GetCode method returns the error code that generated the exception.

Syntax

C++, Java, .NET
int GetCode();

Parameters

None.

Return Values

Returns an integer error code that generated the exception. The errors are described in the Cilerror.h include
file—for more information, see CTI OS Keywords and Enumerated Types, on page 499.

GetStatus
The GetStatus method returns the error status that generated the exception.

Syntax

C++, Java, and .NET
int GetStatus ();

Parameters

None.

Return Values

Returns an integer error status that generated the exception.

GetString
The GetString method returns a text string containing the description of the exception.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
469

Helper Classes
GetCode

Syntax

C++
const char* GetString();

Java, .NET
String GetString();

Parameters

None.

Return Values

Returns a text string containing the description of the exception.

What
The What method returns a text string containing the description of the exception, the code of an error, and
the status.

Syntax

const char* What();

Parameters

None.

Return Values

Returns a text string containing the description of the exception, the code of an error, and the status.

CWaitObject Class
CWaitObject is a CIL object that derives from CtiOsObject. It is a utility class that enables a thread to wait
for one or more CTI events. The user can provide a list of events along with a wait timeout. Wait objects are
created with the CreateWaitObject Session Object method and destroyed with the DestroyWaitObject Session
Object method.

You must not use a WaitObject instance within an event handler. Events are sent to desktop applications by
a single thread in the CIL. If that thread is blocked while waiting for a specific event, the thread deadlocks
and the event handler does not receive any more events.

Warning

Methods
The following table list the CWaitObject class methods.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
470

Helper Classes
What

Table 164: CWaitObject Class Methods

DescriptionMethod

For more information, see Session Object, on page
307.

CreateWaitObject

For more information, see Session Object, on page
307.

DestroyWaitObject

Returns a printable string listing the events in the
CWaitObject's mask.

DumpEventMask

Sets a user provided pointer to an Arguments object
that contains the list of events that the object waits
for.

GetMask

Gets the ID of the event that triggered the
WaitOnMultipleEvents method to wake.

GetTriggerEvent

Returns true if the specified event ID is in the list of
events that the object waits for.

InMask

Set the list of events that the object waits for.SetMask

Waits for the events in the object's event mask for the
specified time period or until one of the events occurs.

WaitOnMultipleEvents

CreateWaitObject
For more information, see Session Object, on page 307.

DestroyWaitObject
For more information, see Session Object, on page 307.

DumpEventMask
The DumpEventMask method returns a printable string listing the events in the CWaitObject's mask.

Syntax

C++, Java, .NET
string DumpEventMask();

Parameters

None.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
471

Helper Classes
CreateWaitObject

Return Values

A printable string object listing the events in the wait mask.

GetMask
The GetMask method gets the list of events that the CWaitObject waits for.

Syntax

C++
bool GetMask(Arguments ** pMask);

Java, .NET
Arguments GetMask();

Parameters

pMask

A pointer to an Arguments object pointer. GetMask sets the value of pMask to a pointer to an Arguments
object that contains the event mask.

Return Values

If the method was able to get the mask it returns true; otherwise, it returns false. For Java and .NET, the
method returns null upon failure.

GetTriggerEvent
The GetTriggerEvent method returns the ID of the last event in the CWaitObject's mask that triggered the
WaitOnMultipleEvents method to wake.

Syntax

C++
EnumCTIOS_EventID GetTriggerEvent()

Java
int GetTriggerEvent()

.NET
EventID GetTriggerEvent()

Parameters

None.

Return Values

The ID of the event or eUnknownEvent if no event triggered a wakeup.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
472

Helper Classes
GetMask

InMask
The InMask method checks to see if the specified event is in the mask of events that the CWaitObject waits
for.

Syntax

C++
bool InMask(int iEventId);

Java, .NET
boolean InMask(int iEventId);

Parameters

iEventId

The enumerated event ID of the event to check for.

Return Values

If the event is in the mask it returns true. Otherwise, it returns false.

SetMask
The SetMask method sets the list of events that the CWaitObject waits for.

Syntax

C++
bool SetMask(Arguments & args);

Java, .NET
boolean SetMask(Arguments rArgs);

Parameters

args

A reference to an Arguments object containing the list of events to wait for. The Arguments contains values
where the keys are “Event1” through “EventN” and the values are the enumerated event IDs.

Return Values

The method returns true if it is able to set the. Otherwise it returns false.

WaitOnMultipleEvents
The WaitOnMultipleEvents method waits for the events in the CWaitObject's wait mask or returns if one of
the events has not occurred after the specified timeout period. This is a “one of” method that returns after one
of the specified events occurs.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
473

Helper Classes
InMask

Syntax

C++
int WaitOnMultipleEvents(DWORD dwMilliseconds = INFINITE);

Java, .NET
int WaitOnMultipleEvents(long iMilliseconds);

Parameters

Milliseconds

The maximum length of time in milliseconds to wait before timing out. The default is INFINITE if called
without arguments. For Java and .NET, a value of zero causes this method to wait infinitely.

Return Values

The WaitOnMultipleEvents method returns one of the values listed in the following table.

Table 165: WaitOnMultipleEvents Return Values

When ReturnedValue

If one of the events in the mask occurred.EVENT_SIGNALED

If the timeout period elapsed.EVENT_WAIT_TIMEDOUT

If unable to wait on the events in the mask.WAIT_FAILED

Logger Class (.NET and Java Only)
The Logger class creates a Logger object and a LogManager object, if one does not already exist. Any object
that needs to perform logging must instantiate the Logger class. The Logger class communicates with the
singleton LogManager object, which acts as the centralized logging facility. The Logger class also defines
tracing constants.

Methods
The following table list the methods in the Logger class.

Table 166: CWaitObject Class Methods

DescriptionMethod

Registers a listener with the LogManager.AddLogListener

Gets the current trace mask. Trace masks define trace
levels, such as TRACE_MASK_CRITICAL, which
enables tracing for critical errors. See the LogManager
Javadoc for a description of trace masks that define
tracing.

GetTraceMask

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
474

Helper Classes
Logger Class (.NET and Java Only)

DescriptionMethod

Creates a Logger object and also a LogManager object
if one does not already exist. If one is already created,
it just gets a reference to the existing singleton
LogManager object.

Logger (Constructor)

Unregisters a listener from the LogManager.RemoveLogListener

Sets the current trace mask.SetTraceMask

Sends a tracemessage to the central LogManager with
the specified trace mask.

Trace

Logger() Constructor
The Logger constructor creates a Logger object and also a LogManager object if one does not already exist.
If a LogManager exists, the Logger gets a reference to the existing singleton LogManager object.

Syntax

void Logger()

Parameters

None.

Return Values

None.

GetTraceMask
The GetTraceMask method gets the current trace mask.

Syntax

int GetTraceMask()

Parameters

None.

Return Values

An int containing the current trace mask.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
475

Helper Classes
Logger() Constructor

SetTraceMask
The SetTraceMask method sets the current trace mask.

Syntax

void SetTraceMask(int iTraceMask)

Parameters

iTraceMask

The binary or combination of trace mask bits.

For more information about trace masks available in the .NET CIL, see Table 181: Trace Masks in .NET CIL,
on page 509.

Note

Return Values

None.

AddLogListener
The AddLogListener method registers a listener with the LogManager.

Syntax

Java
void AddLogListener(ILogListener rListener)

.NET
void AddLogListener (LogEventHandler rListener)

Parameters

rListener
Java: Reference to the new listener.
.NET: Reference to a LogManager LogEventHandler delegate.

Return Values

None.

RemoveLogListener
The RemoveLogListener method unregisters a listener from the LogManager.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
476

Helper Classes
SetTraceMask

Syntax

Java
void RemoveLogListener(ILogListener rListener)

.NET
void RemoveLogListener (LogEventHandler rListener)

Parameters

rListener
Java: Reference to the listener to be removed.
.NET:Reference to a LogManager LogEventHandler delegate to be removed.

Return Values

None.

Trace
The Trace method sends a trace message to the central LogManager with the specified trace mask. If the trace
mask set on the Logger contains all the bits in the trace mask that is passed into this method, the LogManager
sends the trace string to all log listeners.

Syntax

int Trace(int iTraceMask, String sMessage)

Parameters

traceMask

Trace mask for this message.

traceMessage

String containing trace message.

Return Values

int 0 if traced; -1 if not traced.

LogWrapper Class (.NET and Java Only)
The LogWrapper class instantiates the default logging mechanism. By default, the LogWrapper writes trace
messages to System.Console.Out. If you instantiate the LogWrapper by passing it a filename, then the
LogWrapper writes trace messages to the specified file.

Methods
The following table lists the LogWrapper class methods.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
477

Helper Classes
Trace

Table 167: LogWrapper Class Methods

DescriptionMethod

Releases system resources used by the LogWrapper
(.NET only).

Dispose

Obtains the current log file age threshold beyond
which the active log file is rolled over into a new file
regardless of file size.

GetMaxDaysBeforeExpire (.NET Only)

Obtains the current log file size threshold beyond
which a new file is created.

GetMaxFileSize(.NET only)

Obtains the current number of log files threshold
beyond which older files are deleted.

GetMaxNumberOfFiles (.NET Only)

Gets the current trace mask.GetTraceMask

Creates a new LogWrapper object that writes tracing
messages to System.Console.Out.

LogWrapper()Constructor

Creates a new LogWrapper object that traces to the
file specified in the fileName parameter.

LogWrapper (String fileName)Constructor

Creates a new LogWrapper object that traces to the
file specified in the fileName parameter and sets all
the provided tracing properties. If the corresponding
parameter value is set to 0 then the default value is
used.

LogWrapper (string, int, int, int)

Changes the current log file age threshold beyond
which the active log file is rolled over into a new file
regardless of file size.

SetMaxDaysBeforeExpire

Changes the current log file size threshold beyond
which a new file is created.

SetMaxFileSize

Changes the current number of log files threshold
beyond which older files are deleted.

SetMaxNumberOfFiles

Sets the current trace mask.SetTraceMask

Parses TraceConfig.cfg and imports the settings
contained within.

UpdateTraceSettings

Prints a string to the active trace file or to
System.Console.Out if no active trace file exists.

WriteTraceLine

LogWrapper() Constructor
The LogWrapper constructor creates a new LogWrapper object that writes tracing messages to
System.Console.Out. This constructor also creates an instance of the LogManager, if one does not already

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
478

Helper Classes
LogWrapper() Constructor

exist. If you are using the .NET CIL, call the Dispose method to release system resources when you no longer
need the LogWrapper.

Syntax

void LogWrapper()

Parameters

None.

Return Values

None.

LogWrapper(string filename) Constructor
This constructor creates a new LogWrapper object that traces to the file specified in the fileName parameter.
If you are using the .NET CIL, call the Dispose method to release system resources when you no longer need
the LogWrapper.

Syntax

void LogWrapper (string sFileName)

Parameters

sFileName

Name of the trace file.

Return Values
None.

LogWrapper(string int int int) Constructor
Creates a new LogWrapper object that traces to the file specified in the fileName parameter and sets all the
provided tracing properties. If the corresponding parameter value is set to 0 then the default value is used. If
you are using the .NET CIL, call the Dispose method to release system resources when you no longer need
the LogWrapper.

Syntax

Java
void LogWrapper (string sFileName, long iMaxSize, int iArchives, int iFlushIntervalMs)

.NET
void LogWrapper (string sFileName, int maxSizeKB, int maxFiles, int daysUntilExpiration)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
479

Helper Classes
LogWrapper(string filename) Constructor

Parameters

.NET and Java:sFfileName

Name of the trace file.

.NET:maxSizeKB

Maximum size of a single trace file in KB (default is 2048 KB).

Java:iMaxSize

Maximum size of a single trace file.

.NET:maxFiles

Maximum number of trace files to create before older files are deleted (default is 4).

Java:iArchives

Maximum number of trace files stored.

.NET:daysUntilExpiration

Maximum age (in days) of the active trace file before it is rolled over to a new file regardless of size (default
is 1 day).

Java:iExpires

Number of days before the trace file expires.

Java:iFlushIntervalMs

Number of milliseconds before data is flushed to the trace file. There is no .NET counterpart for this parameter.

Return Values

None.

Dispose (.NET Only)
The Dispose method releases system resources used by the LogWrapper.

Syntax

void Dispose ()

Parameters

None.

Return Values

None.

GetMaxDaysBeforeExpire (.NET Only)
The GetMaxDaysBeforeExpire method gets the current log file age threshold beyond which the active log
file is rolled over into a new file regardless of file size.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
480

Helper Classes
Dispose (.NET Only)

Syntax

int GetMaxDaysBeforeExpire ()

Parameters

None.

Return Values

Current age threshold.

SetMaxNumberFiles
The SetMaxNumberFiles method changes the current number of log files threshold beyond which older files
are deleted. If the provided value is not greater than zero, the default value of 4 is used.

Syntax

Java
void SetMaxNumberFiles (int iArchives)

.NET
void SetMaxNumberFiles (int maxFiles)

Parameters

maxTraceFiles

New number of files threshold. If 0 is specified, the default value is used.

Return Values

None.

GetMaxNumberFiles (.NET Only)
The GetMaxNumberFiles method gets the current number of log files threshold beyond which older files are
deleted.

Syntax

int GetMaxNumberFiles ()

Parameters

None.

Return Values

Current number of files threshold.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
481

Helper Classes
SetMaxNumberFiles

SetMaxDaysBeforeExpire
The SetMaxDaysBeforeExpire method changes the current log file age threshold beyond which the active log
file is rolled over into a new file regardless of file size.

Syntax

Java
void SetMaxDaysBeforeExpire (int iExpires)

.NET
void SetMaxDaysBeforeExpire (int maxDaysUntilExpiration)

Parameters

maxDaysUntilExpiration

New age threshold. If value is not greater than zero, the default value of 1 is used.

Return Values

None.

ProcessConfigFile
The ProcessConfigFile method opens the default config file (TraceConfig.cfg) in the parent directory and
updates LogWrapper trace settings with data from the config file.

Syntax

boolean ProcessConfigFile()

Parameters

None.

Return Values

Returns true if operation succeeded and false if unable to open theTraceConfig.cfg file.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
482

Helper Classes
SetMaxDaysBeforeExpire

C H A P T E R 13
SilentMonitorManager Object

• SilentMonitorManager Object, on page 483
• Properties, on page 484
• Methods, on page 485

SilentMonitorManager Object
The SilentMonitorManager object provides developers with an interface to silently monitor behavior. The
SilentMonitorManager object performs all silent monitor tasks, such as starting, stopping, and managing silent
monitor sessions. The SilentMonitorManager object stores specific silent monitor session information as
properties.

You can use the SilentMonitorManager object in two different modes:

• In Monitoring Mode, an application that wants to silently monitor conversation without being noticed
by the calling parties must create a SilentMonitorManager object and set themode to eSMMonitoringMode
using the StartSMMonitoringMode method.

• In Monitored Mode, an application accepts requests to initiate silent monitor sessions to forward the
voice conversations to the remotemonitoring application. The application creates a SilentMonitorManager
object and sets the mode to eSMMonitoredMode using the StartSMMonitoredMode method.

For more information about these modes see Silent Monitor Session, on page 89 in Building Your Custom
CTI Application, on page 33

SilentMonitorManager Object methods and properties are not available in the Java or .NET CILs.Note

SilentMonitorManager Object methods and properties are supported for use with Unified CCE only.Note

SilentMonitorManager Object methods and properties are only supported for CTI OS based silent monitoring.Note

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
483

Properties
The following table lists the SilentMonitorManager object properties.

Table 168: SilentMonitorManager Object Properties

DescriptionTypeKeyword

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

This property is only accessible via
the GetIPPhoneInfo method. It
contains all the information related
to the IP Phone used by the
application.

ARGUMENTSIPPhoneInformation

TCP/IP port where monitored
conversation is sent for playback
on system sound card.

INTMediaTerminationPort

This property is only accessible via
the GetSessionInfo method. It
contains all the information related
to the current active silent monitor
session.

ARGUMENTSSessionInformation

Mode in which the manager object
operates (for more information, see
the table below).

If SetIPPhoneInfo is used,
SMManagerMode attempts to use
the information provided.

Only applies to CTI OS
based Silent Monitor.

Note

SHORTSMManagerMode

Table 169: SMManagerMode Values

Numeric ValueDescriptionenum Value

-1Mode not set.eSMModeNotSet

0The manager accepts request for
silent monitor sessions and
forwards voice to the monitoring
application.

eSMMonitoredMode

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
484

SilentMonitorManager Object
Properties

Numeric ValueDescriptionenum Value

1The manager can make requests to
remote client to start a silent
monitor session and send voice.

eSMMonitoringMode

Methods
The following table lists the SilentMonitorManager object methods.

.

Table 170: SilentMonitorManager Object Methods

DescriptionMethod

Establishes a silent monitor session and immediately
starts sending audio.

AcceptSilentMonitoring

Retrieves the information of the IP Phone used by the
client application.

Gets its information from the RTP events that occur
when RTP streams are created and modified.

GetIPPhoneInfo1

Retrieves the information related to the current silent
monitor session.

GetSessionInfo

Retrieves a list of all active silent monitor sessions.GetSMSessionList

Determines if the device/agent is a target being
monitored.

IsMonitoredTarget

Saves the information of the IP Phone used by the
client application.

SetIPPhoneInfo4

Sends a silent monitor session start request to a
targeted client.

StartSilentMonitorRequest

Puts the SilentMonitorManager in Monitored mode.StartSMMonitoredMode

Puts the SilentMonitorManager in Monitoring mode.StartSMMonitoringMode

Sets the SilentMonitorManager mode to
eSMModeNotSet. If a silent monitor session is active
at this time, the session is terminated.

StopSilentMonitorMode

The StartSilentMonitorRequest () method is used to
initiate a CTI OS based silent monitor session. When
this method is called and Cisco Unified
Communications Manager based silent monitor is
configured, it returns
E_CTIOS_INVALID_SILENT_MONITOR_MODE.

StartSilentMonitorRequest

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
485

SilentMonitorManager Object
Methods

DescriptionMethod

Stops the active silent monitor session.StopSilentMonitorRequest

4

5

Argument Parameter Rules
The following rules apply to the optional_args and reserved_args parameters in SilentMonitorManager object
methods:

• In VB, you can ignore these parameters. For example, you can treat the line:

StartSMMonitoringMode([reserved_args As IArguments]) As Long

as follows:

StartSMMonitoringMode()

To ignore these parameters in COM you must send a NULL, as shown:

StartSMMonitoringMode(NULL)

AcceptSilentMonitoring
The AcceptSilentMonitoring method establishes the silent monitor session requested by the
OnSilentMonitorRequestedEvent and immediately starts sending audio to the monitoring client. You should
only use this method if the parameter DoDefaultMessageHandlingwas set to False when the subscriber handled
the OnSilentMonitorRequestedEvent event.

Syntax

C++
int AcceptSilentMonitoring(Arguments & args);

COM
HRESULT AcceptSilentMonitoring (/*[in]*/ IArguments * args, /*[out,retval]*/ int *

errorcode);

VB
AcceptSilentMonitoring (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

args

5 GetIPPhoneInfo and SetIPPhone Info are used by SilentMonitorManager in the following manner. The RTPStartedEvent arrives and SilentMonitorManager
uses SetIPPhoneInfo to store the IP address and port carried in the RTPStartedEvent. The SilentMonitorStartRequestedEvent arrives and SilentMonitorManager
uses GetIPPhoneInfo to retrieve the stored IP address and port to build the packet filter. The SilentMonitorManager uses SetIPPhoneInfo internally to populate
IP phone information carried in RTPStartedEvents.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
486

SilentMonitorManager Object
Argument Parameter Rules

Arguments array that contains the parameters listed in the following table:

Table 171: AcceptSilentMonitoring arguments array parameters

DescriptionTypeKeyword

Unique Object ID of the object
being monitored.

STRINGMonitoredUniqueObjectID

TCP/IP address of the monitoring
application.

STRINGMonitoringIPAddress

TCP/IP port of the monitoring
application.

INTMonitoringIPPort

Unique identifier for the Silent
Monitor Session.

UNSIGNED SHORTSMSessionKey

Heartbeat interval for the silent
monitor session.

INTHeartbeatInterval

Timeout for no activity.INTHeartbeatTimeout

TCP/IPAddress:Port of the CTIOS
server from which the request
originated.

STRINGOriginatingServerID

Client Identification of the
monitoring application.

STRINGOriginatingClientID

When this parameter is set to True,
it instructs the
SilentMonitorManager to
immediately start sending audio and
establish the silent monitor session.
If this value is set to False, it
instructs the SilentMonitorManager
not to send voice and not to
establish the silent monitor session.
It is then the responsibility of the
subscriber to report this status
accordingly.

BOOLEANDoDefaultMessage Handling

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
487

SilentMonitorManager Object
AcceptSilentMonitoring

GetIPPhoneInfo
The GetIPPhoneInfo method gets the information about the client application IP Phone.

You do not have to use this method. You can use the defaults to figure out the information to sniff packets
from.

Note

Syntax

C++
C++: Arguments * GetIPPhoneInfo(void);

COM
HRESULT GetIPPhoneInfo (/*[out,retval]*/ IArguments ** IPPhoneInfo);

VB
GetIPPhoneInfo () as CTIOSCLIENTLIB.IArguments

Parameters

None.

Return Value

This method returns an Arguments array that contain the parameters listed in the following table.

Table 172: GetIPPhoneInfo Return Arguments Array

DescriptionTypeKeyword

IP Address of the IP Phone to be
used by the client application.

STRINGClientAddress

Audio transmission bit rate.INTBitRate

Number of milliseconds of audio
stored in a packet.

INTPacketSize

One of the following values that
indicates the direction of voice flow
between the calling party and the
called party:

0: Input

1: Output

2: Bidirectional

SHORTDirection

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
488

SilentMonitorManager Object
GetIPPhoneInfo

DescriptionTypeKeyword

One of the following values that
indicates the type of RTPmessages
between the calling party and the
called party:

0: audio

1: video

2: data

SHORTRTPTypea

One of the following values that
indicates whether the echo
cancellation feature is enabled on
this IP Phone:

0: Off

1: On

SHORTEchoCancelation

Audio codec type.SHORTPayLoadType

GetSessionInfo
The GetSessionInfo method retrieves the information related to the current silent monitor session.

Syntax

C++
Arguments * GetSessionInfo(Arguments & args) ;

COM
HRESULT GetSessionInfo (/*[in]*/ IArguments * args, /*[out,retval]*/ IArguments *

SMSessionInfo);

VB
GetSessionInfo (ByVal args as CTIOSCLIENTLIB.IArguments) As CTIOSCLIENTLIB.IArguments

Parameters

args

Arguments array that contains one of the parameters listed in the following table:

Table 173: GetSessionInfo Arguments Array Parameters

DescriptionTypeKeyword

Unique silent monitor session
Object ID of the target object that
is being monitored.

UNSIGNED SHORTSMSessionKey

Unique Object ID of the target
object that is being monitored.

STRINGMonitoredUniqueObjectID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
489

SilentMonitorManager Object
GetSessionInfo

Return Values

This method returns an Arguments array containing the key/value pairs listed in the following table:

Table 174: GetSessionInfo Return Arguments Array Parameters

DescriptionTypeKeyword

Unique silent monitor session
Object ID of the target object that
is being monitored.

UNSIGNED SHORTSMSessionKey

One of the ISilentMonitorEvent
status codes in Table 120:
ISilentMonitorEvent Status Codes,
on page 276.

SHORTSMSessionStatus

Reserved. Specifies the audiomode
bitmask.

INTAudioMode

Agent ID or DeviceID of the target
being monitored.

STRINGAgentID/DeviceID

Unique Object ID of the target
object being monitored.

STRINGMonitoredUniqueObjectID

TCP/IP Address of the monitored
IP Phone.

STRINGMonitoredDeviceIPAddress

ID of the peripheral associated with
the agent and IP phone.

INTPeripheralID

TCP/IP Address of the system
receiving audio.

STRINGMonitoringIPAddress

TCP/IP port on which receiving
system is listening for audio.

INTMonitoringIPPort

GetSMSessionList
The GetSMSessionList method returns an Arguments array that contains the parameters listed in Table 177:
StartSilentMonitorRequest Arguments Array Parameters, on page 493. All parameters are required.

Syntax

C++
Arguments * CIL_API GetSMSessionList(void)

COM
HRESULT GetSMSessionList([out,retval] IArguments **pIArguments);

VB
GetSMSessionList () as CTIOSCLIENTLIB.IArguments

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
490

SilentMonitorManager Object
GetSMSessionList

Parameters

None.

Return Values

Arguments array that contains a list of all Silent Monitor sessions. The current version only allows one active
session, so the main use for this function is to use the NumElements method on the returned Arguments array
to determine if the current SilentMonitorManager is in an active Silent Monitor session.

IsMonitoredTarget
The IsMonitoredTarget method determines if the specified device or agent is a target that is being monitored.

Syntax

C++
bool IsMonitoredTarget (Arguments & args);

COM
HRESULT IsMonitoredTarget (/*[in]*/ IArguments * args, /*[out,retval]*/ VARIANT_BOOL

* bMonitored);

VB
IsMonitoredTarget () As Boolean

Parameters

args

Arguments array that contains the parameter listed in the following table:

Table 175: IsMonitoredTarget arguments array parameter

DescriptionTypeKeyword

Unique Object ID of the target
object being monitored.

STRINGMonitoredUniqueObjectID

Return Value

True if the specifiedMonitoredUniqueObjectID corresponds to the monitored agent or device; False otherwise.

SetIPPhoneInfo
The SetIPPhoneInfo method saves the information of the IP Phone used by the client application.

You use the SetIPPhoneInfo() function to set the specific IP address/port to sniff on for RTP packets on the
agent system. If you call StartSMMonitoredMode() and have not called SetIPPhoneInfo(), then the silent
monitor library sniffs on all IP interfaces on the agent system and figures out the correct interface. If you set
a specific ip address/port to sniff with SetIPPhoneInfo(), then the silent monitor library sniffs for RTP packets
on the agent system only on that specific address and specific port. SetIPPhoneInfo() is used externally by
the Agent control to set a specific address for silent monitor sniffing.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
491

SilentMonitorManager Object
IsMonitoredTarget

Syntax

C++
int SetIPPhoneInfo (Arguments & args);

COM
HRESULT SetIPPhoneInfo (/*[in]*/ IArguments * args, /*[out,retval]*/ int * errorcode

);

VB
SetIPPhoneInfo (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

args

Arguments array that can contain the parameters listed in the following table:

Table 176: SetIPPhoneInfo arguments array parameters

DescriptionTypeKeyword

IP Address of the IP Phone to be
used by the client application.

STRINGClientAddress (required)

Audio transmission bit rate.INTBitRate (optional)

Number of milliseconds of audio
stored in a packet.

INTPacketSize (optional)

One of the following values that
indicates the direction of voice flow
between the calling party and the
called party:

0: Input

1: Output

2: Bidirectional

SHORTDirection (optional)

One of the following values that
indicates the type of RTPmessages
between the calling party and the
called party:

0: audio

1: video

2: data

SHORTRTPType (optional)

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
492

SilentMonitorManager Object
SetIPPhoneInfo

DescriptionTypeKeyword

One of the following values that
indicates whether the echo
cancellation feature is enabled on
this IP Phone:

0: Off

1: On

SHORTEchoCancelation (optional)

Audio codec type.SHORTPayLoadType (optional)

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

StartSilentMonitorRequest
The StartSilentMonitorRequest method sends a silent monitor session start request to a targeted client.

Syntax

C++
int StartSilentMonitorRequest (Arguments & args, unsigned short * SMSessionKey);

COM
HRESULT StartSilentMonitorRequest (/*[in]*/ IArguments * args, /*/[out]*/ unsigned

short * SMSessionKey, /*[out,retval]*/ int * errorcode);

VB
StartSilentMonitorRequestInt (ByVal args as CTIOSCLIENTLIB.IArguments, ByRef SMSessionKey

AsLong) As Long

Parameters

args

Arguments array that contains the parameters listed in the following table. All parameters are required.

Table 177: StartSilentMonitorRequest Arguments Array Parameters

DescriptionTypeKeyword

AgentID or DeviceID of the target
to monitor. Specify either an
AgentID or a DeviceID, not both,

STRINGAgentID or DeviceID

ID of the peripheral associated with
the agent or device.

INTPeripheralID

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
493

SilentMonitorManager Object
StartSilentMonitorRequest

DescriptionTypeKeyword

TCP/IP address of the system
receiving audio.

STRINGMonitoringIPAddress

TCP/IP port where the monitoring
application is listening for audio.

INTMonitoringIPPort (Optional)

Interval in seconds between
heartbeats.

INTHeartbeatInterval

Seconds elapsing before a Silent
Monitor session is aborted because
of no heartbeats received from the
monitored peer.

INTHeartbeatTimeout

SMSessionKey

An output parameter that contains the unique key to the started silent monitor session. You must use this key
to perform any action on the currently active silent monitor session.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

Remarks

If you use the DeviceID, there must be an agent associated with the device. The session timeouts if there is
no agent logged into the device. An established silent monitor session ends if the associated agent logs out of
the device.

E_CTIOS_INVALID_SILENT_MONITOR_MODE is returned when SilentMonitorManager.Start

SilentMonitorRequest() is called when Cisco Unified Communications Manager based silent monitor is
configured.

If an application using a version of the CIL that is older than 7.2(1) connects to a 7.2(1) CTI OS Server
configured for Cisco Unified Communications Manager Based Silent Monitor and calls
SilentMonitorManager.StartSilentMonitor

Request(), the application receives an OnSilentMonitorStatusReportEvent carrying a status code of
eSMStatusCCMSilentMonitor.

StartSMMonitoredMode
The StartSMMonitoredMode method puts the SilentMonitorManager in Monitored mode.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
494

SilentMonitorManager Object
StartSMMonitoredMode

Syntax

C++
int StartSMMonitoredMode (Arguments & args);

COM
HRESULT StartSMMonitoredMode (/*[in]*/ IArguments * args, /*[out,retval]*/ int *

errorcode);

VB
StartSMMonitoredMode (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

args

Arguments array that contains the following parameters listed in the following table:

Table 178: StartSMMonitoredMode Arguments Array Parameters

DescriptionTypeKeyword

An array of IP addresses and/or
hostnames for silent monitor
services. These silent monitor
service should all be members of
the same cluster to ensure that the
agent's calls can be silently
monitored. The CIL randomly
chooses one silent monitor service
to which to connect. For more
information about silent monitor
service cluster configuration, see
CTI OS System Manager's Guide
for Cisco Unified ICM/Contact
Center Enterprise & Hosted.

ARRAYCluster

If Cluster is not present, you can
use this parameter to specify the
address of a silent monitor service
to which to connect.

STRINGSMSAddr

The port on which the silent
monitor services listen for
connections.

INTSMSListenport

The QoS setting for the connection.INTSMSTOS

The interval in milliseconds
between heartbeat packets.

INTSMSHeartbeats

The number of heartbeats that can
be missed before the connection is
aborted.

INTSMSRetries

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
495

SilentMonitorManager Object
StartSMMonitoredMode

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

StartSMMonitoringMode
The StartSMMonitoringMode method puts the SilentMonitorManager in Monitoring mode.

Syntax

C++
int StartSMMonitoringMode (Arguments & args);

COM
HRESULT StartSMMonitoringMode (/*[in]*/ IArguments * args, /*[out,retval]*/ int *

errorcode);

VB
StartSMMonitoringMode (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

Table 179: StartSMMonitoringMode Arguments Array Parameters

DescriptionTypeKeyword

A string that contains the address
of the silent monitor service used
to decode and play back the agent's
phone call.

STRINGSMSAddr

The port on which the silent
monitor services listen for
connections.

INTSMSListenport

The QoS setting for the connection.INTSMSTOS

The interval in milliseconds
between heartbeat packets.

INTSMSHeartbeats

The number of heartbeats that can
be missed before the connection is
aborted.

INTSMSRetries

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
496

SilentMonitorManager Object
StartSMMonitoringMode

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

StopSilentMonitorMode
The StopSilentMonitorMode method sets the SilentMonitorManager mode to eSMModeNotSet. If a silent
monitor session is active at the time, the session is terminated.

Syntax

C++
int StopSilentMonitorMode (Arguments & reserved_args);

COM
HRESULT StopSilentMonitorMode (/*[in]*/ IArguments * reserved_args, /*[out,retval]*/

int * errorcode);

VB
StopSilentMonitorMode (ByVal reserved_args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

StopSilentMonitorRequest
The StopSilentMonitorRequest method stops the Active silent monitor session.

Syntax

C++
int StopSilentMonitorRequest (Arguments & args);

COM
HRESULT StartSilentMonitorRequest (/*[in]*/ IArguments * args, /*[out,retval]*/ int *

errorcode);

VB
StopSilentMonitorRequest (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

args

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
497

SilentMonitorManager Object
StopSilentMonitorMode

Arguments array that contains the parameter listed in the following table:

DescriptionTypeKeyword

Unique key of the current active
silent monitor session

UNSIGNED SHORTSMSessionKey

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 6: CIL Error Codes, on
page 21.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions, on page 19.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
498

SilentMonitorManager Object
StopSilentMonitorRequest

C H A P T E R 14
CTI OS Keywords and Enumerated Types

• Keywords, on page 499
• Enumerated Types, on page 500

Keywords
The CTI OS Client Interface Library uses the Arguments structure to pass key-value pairs between the client
and the server (for more information about Arguments, see Helper Classes, on page 441). Throughout this
document all event and method parameter lists, as well as object properties, are listed with the keywords and
the types associated with those keywords.

The expected (required and optional) keywords are referred to in this document by string name. For example,
the Agent's property for agent identifier is referred to as AgentID.

In addition to using the string name for a keyword, programmers can take advantage of an enumeration of
keywords as well.

The enumeration of keywords is presently only available in the C++ CIL.Note

For each string keyword, a corresponding enumerated keyword exists. The enumerated keyword is the same
name, preceded by the prefix “ekw”. For example, the AgentID string keyword is mapped to the enumerated
keyword ekwAgentID.

Usage Example in C++:

Arguments& args = Arguments::CreateInstance();
args.AddItem(ekwAgentID, "22866");
args.AddItem(ekwAgentInstrument, "23901");

pAgent->Login(args);

args.Release();

The complete set of standard keywords used in CTI OS is available in the C++ header file “ctioskeywords.h”,
located in the \Distribution\cpp\Include directory on the CTI OS toolkit media.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
499

Java CIL Keywords
For Java CIL, the CtiOs_IKeywordIDs interface contains a list of known Java CIL CTI OS keywords. For
more information, see the Java CIL Javadoc file.

.NET CIL Keywords
The Cisco.CtiOs.Util.Keywords.Enum_CtiOs enum contains the list of CTI OS keyword IDs.

Enumerated Types
CTI OS employs enumerated types to provide symbolic names for commonly recurring values:

• In C++, Visual Basic, and COM, these are presented as enumerated types.

• In Java, special interfaces are used to simulate enumerated types. For more information, see Java Interfaces,
on page 500.

The complete set of enumerated types and their values are available in the following locations:

• For C++ CIL using static libraries: the complete set of enumerated types is located in the C++ header
file “cilmessages.h”, located in the C:\Program Files\Cisco Systems\CTIOSClient\CTIOS Toolkit\Win32
CIL\Include directory on the CTI OS toolkit media.

• For COM (Visual Basic and Visual C++): the complete set of enumerated types is located in the
CTIOSClient Type Library, which is compiled into the “CTIOSClient.dll” file, located in the C:\Program
Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\Win32 CIL\COM Servers and Activex Controls
directory on the CTI OS toolkit media.

In the Java CIL, the CTIOS_Enums interface contains the Java CIL enumerated types. For more information,
see the Java CIL Javadoc file.

In the .NET CIL, the CtiOs_Enums class contains the .NET CIL enumerated types:

• For Java: To be supplied with Java package release.

Java Interfaces
The Java CIL handles the C++ CIL enums through the use of interfaces. The custom application can then
either implement those interfaces and use the static data members without referencing them with the interface
name first, or it can access those members through referencing. By convention, the name of the Java interface
is the same as the enum tag but with the “enumCTIOS_” prefix substituted with “CtiOs_I”. So for example,
the following C++ CIL enum:

enum enumCTIOS_AgentState{
eLogin = 0,
eLogout = 1,
eNotReady = 2,
eAvailable = 3,
eTalking = 4,
eWorkNotReady = 5,
eWorkReady = 6,

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
500

CTI OS Keywords and Enumerated Types
Java CIL Keywords

eBusyOther = 7,
eReserved = 8,
eUnknown = 9,
eHold=10

};

is implemented in the Java CIL as follows:

public interface CtiOs_IAgentState{
public static final inteLogin = 0,
eLogout = 1,
eNotReady = 2,
eAvailable = 3,
eTalking = 4,
eWorkNotReady = 5,
eWorkReady = 6,
eBusyOther = 7,
eReserved = 8,
eUnknown = 9,
eHold=10;
}

A Java CIL application can access those defined values in one of two ways; either by implementing the
interface, as shown:

public class MyAgent extends CtiOsObject implements CtiOs_IAgentState
{

...

public int MyLogin(Arguments rArguments)
{

..................................
//Access eLogin directly

rArguments.AddItemInt("agentstate", eLogin);
..................................

}
}

or by referencing as follows:

public class MyAgent extends CtiOsObject{

...
public int MyLogin(Arguments rArguments)
{

..................................
rArguments.AddItemInt("agentstate", CtiOs_IAgentState.eLogin);
..................................

}
}

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
501

CTI OS Keywords and Enumerated Types
Java Interfaces

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
502

CTI OS Keywords and Enumerated Types
Java Interfaces

A P P E N D I X A
CTI OS Logging

• CTI OS Client Logs (COM and C++), on page 503
• Set Trace Levels (COM and C++), on page 504
• Trace Configuration (COM and C++), on page 504
• Java CIL Logging Utilities, on page 505
• Logging and tracing (Java), on page 507
• Logging and tracing (.NET), on page 508

CTI OS Client Logs (COM and C++)
If you install the tracing mechanism, the COM and C++ CILs automatically create a log file and trace to it.
The trace log file name and location for client processes is found under the following Windows registry key:

HKEY_LOCAL_MACHINE\Software\Cisco Systems, Inc.\CTIOS Tracing

The default filename is CtiosClientLog. Log files are created using the convention <TraceFileName>.<Windows
user name>.mmdd.hhmmss.log. The files are created in the current directory of the executing program, such
as the directory into which you install the Agent Desktop. You can provide a fully qualified path for the
TraceFileName if you wish to store the files in a different location. For example, setting the following value
stores the log files in the directory C:\Temp, using the naming convention CtiosClientLog.<Windows user
name>.mmdd.hhmmss.log.

C:\Temp\CtiosClientLog

Client trace files are formatted in ASCII text that you can open them with a conventional text editor such as
Notepad.

Install Tracing Mechanism (COM and C++)
To install the tracing mechanism:

Procedure

Step 1 Copy the tracing executable, ctiostracetext.exe, from the distribution media to the folder in which your
application is located.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
503

Step 2 Open a command window and register the tracing mechanism:
Step 3 ctiostracetext.exe /regserver

Set Trace Levels (COM and C++)
You must set the trace level in the registry by creating a TraceMask registry value within the
HKEY_LOCAL_MACHINE\Software\Cisco Systems, Inc.\CTIOS Tracing key and setting its value to
0x40000307.

[HKEY_CURRENT_USER\Software\Cisco Systems, Inc.\CTIOS Tracing]"TraceMask"=dword:40000307

Trace levels for client processes, such as the Agent Desktop phone, are stored under the following registry
key:

[HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems, Inc.\CTIOS Tracing]

"TraceFileName"="%HOMEPATH%\\CtiOsClientLog" "TraceMask"=dword:00000000

"MaxDaysBeforeExpire"=dword:00000007 "MaxFiles"=dword:00000005 "MaxFileSizeKb"=dword:00000800

"FlushIntervalSeconds"=dword:0000001e "TraceServer"="C:\\Program Files\\Cisco Systems\\CTIOS

Client\\CTIOS Toolkit\\Win32 CIL\\Trace\\CTIOSTraceText.exe"

For CTIOS server versions 7.5(10), 8.0(3) and later the default trace level will not print the call variable in
CTIOS sever logs. This has been done as an enhancement to reduce the log size in these two versions and
above. To get the call variable in CTIOS logs you need to set the trace level to 0x400000.

You can configure CTI OS Tracing globally for the entire machine (using the TraceMask setting on HKLM)
and per user (using the TraceMask setting on HKCU).

Note

If the TraceMask is not set or if it is set incorrectly, the application's performance can be negatively affected.
The preferred setting for normal operation is 0x40000307.

Warning

Trace Configuration (COM and C++)
You can set C++ and COM client trace configuration parameters in the Windows registry at the following
key. For more information about configuring tracing for the Java CIL, see Java CIL Logging Utilities, on
page 505. For more information about configuring tracing for the .NET CIL, see Logging and tracing (.NET),
on page 508.
HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems\CTIOS Tracing

These settings are defined as follows:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
504

CTI OS Logging
Set Trace Levels (COM and C++)

Table 180: Configuring Tracing Settings

Optimal ValueDescriptionParameter

30Maximum number of seconds
before the trace mechanism
transfers data to the log file.

FlushIntervalSeconds

7Maximum number of days before
a log file is rolled over into a new
log file regardless of the size of the
file.

MaxDaysBeforeExpire

5Maximum number of log files that
can exist in the log file directory
before the logging mechanism
starts overwriting old files.

MaxFiles

2048Maximum size of a log file in
kilobytes. When a log file reaches
the maximum size, a new log file
is created.

MaxFileSizeKb

0x40000307Bit mask that determines the
categories of events that are traced.

TraceMask

Java CIL Logging Utilities
The Java CIL provides a different logging facility than the C++ CIL. This gives the customer application
more flexibility in how trace messages are handled. It also limits the number of special privileges the browser
would need to give the applet using the CIL; the Java CIL only needs to access the network and not the file
system. For that reason, the Java CIL does its tracing through the firing of special events called “LogEvents”
that the custom application can trap and handle in however way it sees fit.

The Java CIL provides the following objects for logging as part of the utilities package.

ILogEvents
This interface must be implemented by a class interested in receiving Java CIL LogEvents. It has only one
method.

void processLogEvent(LogEvent event)

LogEvent
A custom application that is interested in receiving LogEvents receives an object of this type whenever a log
message is generated. This class extends the Java “EventObject”, and has one public method.

DescriptionMethod

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
505

CTI OS Logging
Java CIL Logging Utilities

Returns the text description to write somewhere.getDescription

Syntax

String getDescription()

Logger
A custom application that is interested in firing or handling its own LogEvents can create an instance of this
class.

DescriptionMethod

Public constructor of the Logger object.Logger

Lets the custom app fire a LogEvent.Trace

Gets the trace mask.GetTraceMask

Determines if a certain trace mask is set.IsTraceMaskEnabled

Subscribes to receive LogEvents.addLogListener

Unsubscribes from receiving LogEvents.removeLogListener

Syntax

Logger()
int Trace(long nMsgTraceMask, String message)
long GetTraceMask()
boolean IsTraceMaskEnabled(long nMsgTraceMask)
void addLogListener(ILogEvents logEvents

where logEvents implements the ILogEvents interface.
void removeLogListener(ILogEvents logEvents)

where logEvents implements the ILogEvents interface.

LogEventsAdapter
This is a wrapper class around the Logger facility. A custom application that is interested in tracing but does
not want to implement its own ILogEvents interface can create an instance of this class. The adapter class
provides two constructors, a default one that automatically logs to the Java console and one that takes in an
output filename.

DescriptionMethod

Public constructor.LogEventsAdapter

Starts receiving LogEvents.startLogging

Stops receiving LogEvents.stopLogging

Handles a LogEvent.processLogEvent

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
506

CTI OS Logging
Logger

Does some cleanup.finalize

Syntax

LogEventsAdapter()LogEventsAdapter(String fileName)
void startLogging()
void stopLogging()
void processLogEvent(LogEvent e)
void finalize()

Logging and tracing (Java)
The Java CIL tracing mechanism behaves differently from that of the COM and C++ CILs. The Java CIL
does not automatically create a log file and trace to it. You must develop the custom application to create and
maintain the log file.

The Java CIL provides classes that allow you to write tracing messages from CTI applications. You can create
a class that implements ILogListener, register it with the LogManager, and write the trace events to a log file.

The Java CIL also includes the LogWrapper class, which implements the ILogListener interface and provides
a default logging mechanism.

The LogWrapper class has three constructors:

• LogWrapper() - Creates a new LogWrapper object that writes tracing messages to System.out.

• LogWrapper(string sFileName) - Creates a new LogWrapper object that writes trace messages to the file
specified in sFileName.

• LogWrapper(string sFileName, long iMaxSize, int iArchives, int iExpires, int iFlushIntervalMs) - Creates
a new LogWrapper object that traces to the file specified in sFileName and sets all the tracing properties
provided:

• The maximum size of a single trace file (the default is 2048 Kb).

• The maximum number of trace files before LoggerManager deletes the oldest file (the default is 4).

If a developer deploys an application and then wants to debug it in the field, they need a way to change the
trace mask from the default level if necessary to provide more information for debugging.

You also need to provide a way to adjust the trace mask at runtime. If you encounter problems, Cisco personnel
need to see this log file to assist you with your problem.

Note

For more information about the LogWrapper class and its associated methods, see the Java CIL Javadoc file.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
507

CTI OS Logging
Logging and tracing (Java)

Logging and tracing (.NET)
The .NET CIL tracing mechanism behaves differently from that of the COM and C++ CILs. The .NET CIL
does not automatically create a log file and trace to it. You must develop the custom application to create and
maintain the log file.

The .NET CIL provides classes that allow you to write tracing messages from CTI applications. Custom
applications can either create their own logging mechanism or use the default logging mechanism provided
in the .NET CIL.

Default Logging Mechanism
You can use the .NET CIL LogWrapper class to implement logging to the system console or to a file. The
LogWrapper class registers itself as an event listener and creates a log file.

Log Trace Events with LogWrapper Class
To log trace events using the LogWrapper class:

Procedure

Step 1 Create an instance of the LogWrapper class, passing the following arguments:

• logFileName - Name of file in which to write trace events.

• fileMaxSize - The maximum size of the log file.

• numberArchivesFiles - Maximum number of log files that can exist in the log file directory before the
logging mechanism starts overwriting old files.

• numberDaysBeforeFileExpired - Maximum number of days before a log file is rolled over into a new
log file regardless of the size of the file.

The following code snippet creates an instance of the LogWrapper class that writes trace events to
MyLogFile.txt.WhenMyLogFile.txt reaches 2048KB, a new log file is created. The Logger creates amaximum
of 20 log files in the log file directory before overwriting existing files. After 10 days, the log file is rolled
over into a new log file regardless of its size.

// Create a LogWrapper. This will create a file and start // listening for log
events to write to the file.
String logFileName = "MyLogFile.txt";
int fileMaxSize = 2048;
int numberArchivesFiles = 20;
int numberDaysBeforeFileExpired = 10;
m_logWrapper = new LogWrapper(logFileName, fileMaxSize, numberArchivesFiles,
numberDaysBeforeFileExpired);

Step 2 In your application, write trace events. The following example traces a message at the given trace level for
the given method. Set the trace level to the desired trace mask. Trace masks are defined in the Logger class.
For more information about available trace mask values, see the following table.

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
508

CTI OS Logging
Logging and tracing (.NET)

protected internal static void MyTrace (int traceLevel,
string methodName,
string msg)
{
if (m_logger.IsTraceMaskEnabled(traceLevel))
{
string tracsMsg = string.Format("{0}: {1}", methodName,
msg) ;
m_logger.Trace(traceLevel, msg) ;
}
}

The CTI Toolkit Combo Desktop .NET sample application included with the CTI OS toolkit shows how to
use the CIL's LogWrapper class in the context of a complex softphone application.

The following table lists the trace masks available in the .NET CIL.

Table 181: Trace Masks in .NET CIL

PurposeValueTraceMask Bit

Mask for major events.0x000000ffTRACE_LEVEL_MAJOR

Mask for general events and
requests.

0x0000ff00TRACE_LEVEL_EVENT_REQ

Mask for method entry and exit.0x00ff0000TRACE_LEVEL_METHOD

Mask for very low level operations.0xff000000TRACE_LEVEL_MEMORY

Individual Trace Mask

Lowest Order Byte Mask: Events

Always print.0x00TRACE_MASK_ALWAYS

Critical error.0x01TRACE_MASK_CRITICAL

Warning.0x02TRACE_MASK_WARNING

High important events/requests.0x04TRACE_MASK_EVT_REQ_HIGH

High important events/requests.0x08TRACE_MASK_EVT_REQ_HIGH_PARM

Average important events/requests.0x10TRACE_MASK_EVT_REQ_AVG

Average important events/requests.0x20TRACE_MASK_EVT_REQ_AVG_PARM

Low important events/requests.0x40TRACE_MASK_EVT_REQ_LOW

Low important events/requests.0x80TRACE_MASK_EVT_REQ_LOW_PARM

Second Lowest Order Byte: Method Tracing

High visibility method entry/exit
trace.

0x0100TRACE_MASK_METHOD_HIGH

High visibility method logic trace.0x0200TRACE_MASK_METHOD_HIGH_LOGIC

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
509

CTI OS Logging
CTI OS Logging

PurposeValueTraceMask Bit

Internal visibility method entry/exit
trace.

0x0400TRACE_MASK_METHOD_HIGH_LOGIC

Internal visibility method logic
trace.

0x0800TRACE_MASK_METHOD_AVG_LOGIC

Helper object visibility method
entry/exit trace.

0x1000TRACE_MASK_METHOD_LOW

Helper object visibility method
logic trace.

0x2000TRACE_MASK_METHOD_LOW_LOGIC

Map access.0x4000TRACE_MASK_METHOD_MAP

Highest Order Byte: Communications and Processing

Method entry/exit for Arguments
objects.

0x01000000TRACE_MASK_ARGS_METHODS

Logic trace for Arguments objects.0x02000000TRACE_MASK_ARGS_LOGIC

Method entry/exit for packets
objects.

0x04000000TRACE_MASK_PACKETS_METHODS

Logic trace for packets objects.0x08000000TRACE_MASK_PACKETS_LOGIC

Memory dump of serialize buffer.0x10000000TRACE_MASK_SERIALIZE_DUMP

Memory dump of sockets buffer.0x20000000TRACE_MASK_SOCKETS_DUMP

Threading tracing on or off.0x40000000TRACE_MASK_THREADING

Connection tracing on or off.0x80000000TRACE_MASK_CONNECTION

Custom Logging Mechanism
The LogManager class within the .NET CIL implements all CIL logging functions. This singleton class has
only one instance of LogManager, which provides a global point of access. The LogManager object defines
a LogEventHandler delegate that custom applications must implement:

public delegate void LogEventHandler(object eventSender, LogEventArgs args);

Log Trace Events with Logger Class
To log trace events from a custom application to a file, perform the following steps:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
510

CTI OS Logging
Custom Logging Mechanism

Procedure

Step 1 Create a Logger object. For example:

m_log = new Logger();

Step 2 Write a method to handle log events. This method can trace the log events to a file, if desired. For example:

public virtual void ProcessLogEvent(Object eventSender, LogEventArgs Evt){
// Output the trace
String traceLine = Evt.Description;
// Check that tracing is enabled for this tracelevel
if (m_logger.IsTraceMaskEnabled(traceLevel))
{
WriteTraceLineToFile(traceLine);
}
}

Step 3 Create a log listener to handle trace events. In the following example, the AddLogListener method registers
the LogEventHandler delegate as a listener for trace events. The LogManager sends trace events to the method
that you pass to the LogEventHandler.

In the following example, the LogManager sends trace events to the ProcessLogEvent method created in Step
2.

m_log.AddLogListener(new LogManager.LogEventHandler(ProcessLogEvent));

The LogManager only calls themethod passed as a parameter to the LogEventHandler for a particular
trace if the trace level for that trace is enabled. You can use the IsTraceMaskEnabled method in the
Logger class to determine whether or not a trace level is enabled.

Note

Trace Configuration (Java and .NET)
For the Java and .NET CILs, you can configure tracing either programmatically by using the LogWrapper
class or by editing the TraceConfig.cfg file. Settings in TraceConfig.cfg do not take effect until
LogWrapper.ProcessConfigFile is called. Your application must call ProcessConfigFile if you have edited
the configuration settings in the TraceConfig.cfg file.

The All Agents Sample .NET code in the .NET CIL includes a sample TraceConfig.cfg file and shows you
how to process that file.

Log file configuration settings are defined as follows:

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
511

CTI OS Logging
Trace Configuration (Java and .NET)

Table 182: Configuration Settings

Optimal ValueDescriptionParameter

1Maximum number of days before
a log file is rolled over into a new
log file regardless of the size of the
file.

NumberDaysBeforeFileExpired

5Maximum number of log files that
may exist in the log file directory
before the logging mechanism
starts overwriting old files.

NumberArchivesFiles

2048Maximum size of a log file in
kilobytes. When a log file reaches
the maximum size, a new log file
is created.

FileMaxSize

0x40000307Bit mask that determines the
categories of events that are traced.

TraceMask

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
512

CTI OS Logging
CTI OS Logging

I N D E X

A

AcceptSilentMonitoring SilentMonitorManager object method 486
Accessing properties and parameters 27
ActiveX Softphone Controls 119
AddItem 452

Arguments class method 452
Agent mode 10
agent object methods 352, 357, 358, 359, 360, 362, 363, 366, 367, 373,

374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386
GetAgentState 357
GetMonitoredAgent 358
GetMonitoredCall 359
GetSkillGroups 360
IsAgent 362
Login 363
Logout 366
MakeCall 367
QueryAgentState 373
ReportBadCallLine 374
RequestAgentTeamList 375
RequestSupervisorAssist 376
SendChatMessage 377
SetAgentGreetingAction 378
SetAgentState 379
StartMonitoringAgent 380
StartMonitoringAgentTeam 381
StartMonitoringAllAgentTeams 382
StartMonitoringCall 383
StopMonitoringAgent 384
StopMonitoringAgentTeam 385
StopMonitoringAllAgentTeam 385
SuperviseCall 386

agent state 2
CTI application control 2

AgentStateCtl softphone control 127
AgentStatisticsCtl softphone control 138
Alternate call object method 397
AlternateCtl softphone control 142
Answer call object method 398
AnswerCtl softphone control 143
Architecture 7
Arg class 442
Arg class methods 443, 444, 446, 447, 449

Clone 443

Arg class methods (continued)
CreateInstance 444
DumpArg 444
GetType 446
GetValueType 447
SetValue 449

Arguments class methods 452, 454, 456, 458, 460, 461, 462, 463, 464
AddItem 452
Clear 454
Clone 454
DumpArgs 456
GetElement 456
GetValue 458
IsValid 460
NumElements 461
RemoveItem 462
SetElement 463
SetValue 464

Arguments structure 26
asynchronous events 2

B

BadLineCtl softphone control 143
Button controls 121
Button enablement masks 30
ButtonCtl softphone control 143

C

call object methods 395, 397, 398, 399, 401, 402, 404, 405, 406, 411, 412,
413, 414, 415, 418, 419, 420, 421

Alternate 397
Answer 398
Clear 399
Conference 401
GetCallContext 402
GetCallData 404
Hold 405
MakeConsultCall 406
Reconnect 411
Retrieve 412
SendDTMFSignal 413
SetCallData 414
SingleStepConference 415

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
IN-1

call object methods (continued)
SingleStepTransfer 418
Snapshot 418
StartRecord 419
StopRecord 420
Transfer 421

CallAppearanceCtl softphone control 143
CCtiosException class 468
ChatCtl softphone control 148
CIL error codes 21
CIL object model 9
CILRefArg class methods 466, 467

GetType 466
GetValue 467
SetValue 467

Clear 454
Arguments class method 454

Clear call object method 399
Client Interface Library (CIL) 7
Clone 443, 454

Arg class method 443
Arguments class method 454

Coding conventions 19
COM CIL (C++) 43
Conference call object method 401
ConferenceCtl softphone control 151
Connect session object method 313
CreateInstance 444, 455

Arg class method 444
Arguments class method 455

CreateSilentMonitorManager session object method 315
CreateWaitObject session object method 316
CTI OS 4, 5, 7

advantages 4
application architecture 4
architecture 7
benefits 5

CTI OS ActiveX controls 39
CTI OS Toolkit Agent Desktop 39
CTI-enabled applications 1
CWaitObject class methods 471, 472, 473

DumpEventMask 471
GetMask 472
GetTriggerEvent 472
SetMask 473
WaitOnMultipleEvents 473

CWaitObject methods 473
InMask 473

D

DestroySilentMonitorManager session object method 317
DestroyWaitObject session object method 318
DisableSkillGroupStatistics Session object method 318
DisableSkillGroupStatistics SkillGroup object method 437
Disconnect session object method 319

Disconnecting from CTI OS Server 63
DumpArg Arg class method 444
DumpArgs 456

Arguments class method 456
DumpEventMask CWaitObject class method 471

E

EmergencyAssistCtl softphone control 153
EnableSkillGroupStatistics Session object method 320
EnableSkillGroupStatistics SkillGroup object method 438
Event flow 2

G

GetAgentState agent object method 357
GetArgType 445
GetCallContext call object method 402
GetCallData call object method 404
GetCurrentSilentMonitor session object method 327
GetElement Arguments class method 456
GetIPPhoneInfo SilentMonitorManager object method 488
GetMask CWaitObject class method 472
GetMonitoredAgent agent object method 358
GetMonitoredCall agent object method 359
GetObjectFromObjectID session object method 328
GetSessionInfo SilentMonitorManager object method 489
GetSkillGroups agent object method 360
GetSMSessionList SilentMonitorManager object method 490
GetTriggerEvent CWaitObject class method 472
GetType 446, 466

Arg class method 446
CILRefArg class method 466

GetValue 458, 467
Arguments class method 458
CILRefArg class method 467

GetValueType 447
Arg class method 447

Grid controls 126
GridControl softphone control 153

H

Hold call object method 405
HoldCtl softphone control 153

I

IAgentEvents interface 228
ICallEvents interface 187
InMask CWaitObject method 473
Integrating an application 35
IsAgent agent object method 362
IsAgent session object method 329
ISessionEvents interface 168

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
IN-2

INDEX

ISkillGroupEvents interface. 256
IsMonitoredTarget SilentMonitorManager object method 491
IsSupervisor session object method 331
IsValid 460

Arguments class method 460

L

Login agent object method 363
Login button 127
Logout agent object method 366
Logout button 127

M

MakeCall agent object method 367
MakeCallCtl softphone control 154
MakeConsultCall call object method 406
messages 264, 265

RTP_STARTED_EVENT 264
RTP_STOPPED_EVENT 265

Monitor mode 10

N

Not Ready button 127
NumElements 461

Arguments class method 461

O

Object Interface Framework 9
Object properties 27

setting 27
OnAgentPrecallAbortEvent event 189
OnAgentPrecallEvent event 187
OnAgentStatistics event 235
OnAlternateCallConf event 190
OnAnswerCallConf event 191
OnCallBegin event 192
OnCallCleared event 194
OnCallConferenced event 196
OnCallConnectionCleared event 195
OnCallDataUpdate event 199
OnCallDelivered event 201
OnCallDequeuedEvent event 203
OnCallDiverted event 204
OnCallEnd event 205
OnCallEstablished event 206
OnCallFailed event 208
OnCallHeld event 209
OnCallOriginated event 209
OnCallQueuedEvent event 211
OnCallReachedNetworkEvent event 212
OnCallRetrieved event 213

OnCallRTPStopped event 265
OnCallServiceInitiatedEvent event 214
OnCallStartRecordingConf event 215
OnCallStopRecordingConf event 216
OnCallTransferred event 217
OnClearCallConf event 219
OnClearConnectionConf event 220
OnConferenceCallConf event 220
OnConnection event 169
OnConnectionClosed message 169
OnConnectionFailure event 169
OnConnectionRejected event 170
OnConsultationCallConf event 221
OnControlFailureConf event 221
OnCTIOSFailure event 170
OnCurrentAgentReset message 172
OnCurrentCallChanged message 172
OnGlobalSettingsDownloadConf event 173
OnHeartbeat event 182
OnHoldCallConf event 222
OnMakeCallConf event 243
OnMissingHeartbeat event 183
OnMonitorModeEstablished event 183
OnReconnectCallConf event 223
OnRetrieveCallConf event 224
OnRTPStarted event 264
OnRTPStreamTimedoutEvent event 279
OnSendDTMFConf event 224
OnSetAgentModeEvent event 253
OnSetAgentStateConf event 254
OnSetCallDataConf event 225
OnSilentMonitorSessionDisconnected event 272
OnSilentMonitorStartedEvent event 268
OnSilentMonitorStartRequestedEvent event 270
OnSilentMonitorStatusReportEvent event 275
OnSilentMonitorStopRequestedEvent event 273
OnSkillGroupStatisticsUpdated event 257
OnSnapshotCallConf event 225
OnSnapshotDeviceConf event 184
OnStartSilentMonitorConf event 267
OnStopSilentMonitorConf event 277
OnTransferCallConf event 228

Q

QueryAgentState agent object method 373

R

Ready button 127
Reconnect call object method 411
ReconnectCtl softphone control 155
RecordCtl softphone control 161
Reference counting 11

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
IN-3

INDEX

RemoveItem 462
Arguments class method 462

ReportBadCallLine agent object method 374
Request-response mechanism 3
RequestAgentTeamList agent object method 375
RequestDesktopSettings session object method 332
RequestSupervisorAssist agent object method 376
Retrieve call object method 412

S

screen pop 1
SendChatMessage agent object method 377
SendDTMFSignal call object method 413
session object methods 310, 313, 315, 316, 317, 318, 319, 328, 329, 330,

331, 332, 333, 335, 336
Connect 313
CreateSilentMonitorManager 315
CreateWaitObject 316
DestroySilentMonitorManager 317
DestroyWaitObject 318
Disconnect 319
GetObjectFromObjectID 328
IsAgent 329
IsCCMSilentMonitor 330
IsSupervisor 331
RequestDesktopSettings 332
SetAgent 333
SetCurrentCall 335
SetCurrentSilentMonitor 336
SetMessageFilter 336

Session object methods 318, 320, 337
DisableSkillGroupStatistics 318
EnableSkillGroupStatistics 320
SetSupervisorSilentMonitorMode 337

session object methods GetCurrentSilentMonitor 327
SetAgent session object method 333
SetAgentState agent object method 378, 379
SetCallData call object method 414
SetCurrentCall session object method 335
SetCurrentSilentMonitor session object method 336
SetElement 463

Arguments class method 463
SetIPPhoneInfo SilentMonitorManager object method 491
SetMask CWaitObject class method 473
SetMessageFilter session object method 336
SetSupervisorSilentMonitorMode session object method 337
Setting object properties 27
Setting request parameters 27
SetValue 449, 464

Arg class method 449
Arguments class method 464

SilentMonitorManager object methods 486, 488, 489, 490, 491, 493,
494, 496, 497

AcceptSilentMonitoring 486

SilentMonitorManager object methods (continued)
GetIPPhoneInfo 488
GetSessionInfo 489
GetSMSessionList 490
IsMonitoredTarget 491
SetIPPhoneInfo 491
StartSilentMonitorRequest 493
StartSMMonitoredMode 494
StartSMMonitoringMode 496
StopSilentMonitorMode 497
StopSilentMonitorRequest 497

SingleStepConference call object method 415
SingleStepTransfer call object method 418
SkillGroup object methods 436, 437, 438

DisableSkillGroupStatistics 437
EnableSkillGroupStatistics 438

SkillgroupStatisticsCtl softphone control 155
Snapshot call object method 418
softphone controls 127, 138, 142, 143, 148, 151, 153, 154, 155, 159, 160,

161
AgentStateCtl 127
AgentStatisticsCtl 138
AlternateCtl 142
AnswerCtl 143
BadLineCtl 143
ButtonCtl 143
CallAppearanceCtl 143
ChatCtl 148
ConferenceCtl 151
EmergencyAssistCtl 153
GridControl 153
HoldCtl 153
MakeCallCtl 154
RecordCtl 161
SkillgroupStatisticsCtl 155
StatusBarCtl 159
SupervisorOnlyCtl 160
TransferCtl 161

StartMonitoringAgent agent object method 380
StartMonitoringAgentTeam agent object method 381
StartMonitoringAllAgentTeams agent object method 382
StartMonitoringCall agent object method 383
StartRecord call object method 419
StartSilentMonitorRequest SilentMonitorManager object method 493
StartSMMonitoredMode SilentMonitorManager object method 494
StartSMMonitoringMode SilentMonitorManager object method 496
StatusBarCtl softphone control 159
StopMonitoringAgent agent object method 384
StopMonitoringAgentTeam agent object method 385
StopMonitoringAllAgentTeams agent object method 385
StopRecord call object method 420
StopSilentMonitorMode SilentMonitorManager object method 497
StopSilentMonitorRequest SilentMonitorManager object method 497
SuperviseCall agent object method 386
SupervisorOnlyCtl softphone control 160

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
IN-4

INDEX

T

Third-party call control 2
Transfer call object method 421
TransferCtl softphone control 161

U

UniqueObjectID 28

W

WaitOnMultipleEvents CWaitObject class method 473
Work Not Ready button 127
Work Ready button 127

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
IN-5

INDEX

CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
IN-6

INDEX

	CTI OS Developer Guide for Cisco Unified ICM, Release 12.5(1)
	Contents
	Preface
	Change History
	About This Guide
	Audience
	Related Documents
	Communications, Services, and Additional Information
	Field Notice
	Documentation Feedback
	Conventions

	Introduction
	Introduction to CTI
	CTI-Enabled Applications
	Screen Pop
	Agent State Control
	Third-Party Call Control

	Events and Requests Within CTI Environment
	Asynchronous Events
	Request-Response Paradigm

	Overview of CTI OS
	Advantages of CTI OS as a CTI Development Interface
	Key Benefits of CTI OS for CTI Application Developers
	Illustrative Code Fragments

	CTI OS Client Interface Library Architecture
	Object Server Architecture
	Client Interface Library Architecture
	Connection Layer
	Service Layer
	Object Interface Layer
	Custom Application

	CIL Object Model Object Interfaces
	Session Object
	Session Modes
	Agent Mode
	Monitor Mode

	Agent Object
	Call Object
	SkillGroup Object
	Object Creation
	Reference Counting
	Call Object Lifetime
	Agent Object Lifetime
	SkillGroup Object Lifetime
	Methods That Call AddRef()

	Where to Go from Here

	CIL Coding Conventions
	CTI OS CIL Data Types
	Asynchronous Program Execution
	CIL Error Codes
	COM Error Codes
	Generic Interfaces
	Arguments
	GetValue Method to Access Properties and Parameters
	SetValue Method to Set Object Properties and Request Parameters

	UniqueObjectID Variable-Length String
	UniqueObjectID to Obtain Pointer or Reference
	Button Enablement Masks
	Visual Basic.NET Example

	Building Your Custom CTI Application
	System Requirements for Building Custom Applications
	Environment Set Up for .NET
	Microsoft Visual Studio
	Add CTI OS Toolkit Components to Add Reference Dialog Box
	Add Cisco CTI OS ActiveX Controls to Toolbox

	Integration Between Your Application and CTI OS via CIL
	Integration Planning and Design
	Language and Interface

	CTI Application Testing
	Test Plan Development
	Test Environment

	Developer Sample Applications
	CTI OS ActiveX Controls
	Build Simple Softphone with ActiveX Controls
	Hook for Screenpops
	CTI OS SessionResolver
	VB .NET Code Sample to Retrieve Common Session

	COM CIL. in Visual Studio
	COM CIL.
	Add COM Support to Your Application
	Important Note About COM Method Syntax

	Use CIL Dynamic Link Libraries
	Create COM Object at Run Time
	COM Events in C++
	Additional Information

	C++ CIL and Static Libraries
	Header Files and Libraries
	Configure Project Settings for Compiling and Linking
	Event Subscription in C++
	Removal of STLPort Requirement
	Additional Information

	Java CIL Libraries
	Additional Information

	.NET CIL Libraries
	Additional Information

	CTI OS Server Connection
	Connect to CTI OS Server
	Session Object Lifetime (C++ Only)

	Set Event Listener and Subscribe to Events
	Set Connection Parameters for Session
	Connect Session to CTI OS Server
	Connection Failures
	Connection Failure Events
	Connection Attempt Error Codes in Java and .NET CIL
	Configure Agent to Automatically Log In After Failover
	Stop Failover Procedure

	Connection Mode
	Set Connection Mode in OnConnection() Event Handler
	Agent Mode
	Select Agent Mode
	Monitor Mode
	Monitor Mode Filters
	Overview Monitor Mode Filters
	Filter String Syntax
	Filter Keys
	Filters for Events for Monitored Calls

	Select Monitor Mode
	Deal with Failover in Monitor Mode

	Settings Download
	Disconnect from CTI OS Server Before Shutdown

	Agent Login and Logout
	Log In an Agent
	Duplicate Login Attempts
	Overview of Duplicate Login Attempts
	Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts
	Agent Login with Incorrect Credentials
	Get Registry Configuration Values to Desktop Application
	Detect Duplicate Login Attempt in Desktop Application
	Handle Duplicate Login Attempts in Desktop Application

	Log Out an Agent
	Typical Logout Procedure

	Calls
	Multiple Call Handling
	Current Call
	Get Call Object from Session
	Set Current Call for Session
	Call Wrapup
	Logout and NotReady Reason Codes
	Applications and OnButtonEnablementChange() Event
	In the OnButtonEnablementChange() Event
	Not Ready Bitmasks in OnButtonEnablementChange() Event
	OnButtonEnablementChange() Event in Supervisor Desktop Applications

	Making Requests
	Multiple Duplicate Requests

	Events
	Event Order
	Coding Considerations for CIL Event Handling
	OnCallEnd() Event Monitoring

	Agent Statistics
	Overview of Agent Statistics
	Set Up Agent Application to Receive Agent Statistics
	Set Up Monitor Mode Application to Receive Agent Statistics
	Agent Statistics Access
	Overview of Agent Statistics Access
	eOnNewAgentStatisticsEvent() in Message Filter (JAVA)
	OnAgentStatistics() Event in Message Filter (C++ COM and VB)
	Get Agent Statistics Through Agent Instance

	Agent Statistics Configuration
	Agent Statistics Computed by Sample CTI OS Desktop

	Skill Group Statistics
	Overview of Skill Group Statistics
	Set Up Monitor Mode Application to Receive Skill Group Statistics
	Skill Group Statistics Access
	Overview of Skill Groups Statistics Access
	eOnNewSkillGroupStatisticsEvent() in Message Filter (JAVA)
	eOnNewSkillGroupStatisticsEvent() in Message Filter (C++ COM and VB)

	Skill Group Statistics Sent to Desktop Application
	Skill Group Statistics Computed by Sample CTI OS Desktop

	Silent Monitoring
	CTI OS Based Silent Monitoring
	Create a Silent Monitor Object
	Session Mode
	Monitoring Mode
	Monitored Mode

	Silent Monitor Session
	Monitoring Client Code Sample
	Monitored Client Code Sample

	Silent Monitor Manager Shutdown
	CTI OS Silent Monitor Management in Monitor Mode

	Unified CM-Based Silent Monitoring in Your Application
	CCM-Based Silent Monitor Overview
	CTI OS Monitor Mode Applications
	CCM-Based Silent Monitor Request
	C# Code Sample for Initiating Silent Monitor Session

	Current Agent Being Silently Monitored
	Code Sample for Determining if Current Agent Is Target of Silent Monitor Call

	CCM-Based Silent Monitor Request End
	Code Sample for Ending Silent Monitor Session

	Determine if CCM-Based Silent Monitoring Is Enabled

	Agent Greeting
	Deployment of Custom CTI OS Applications
	Application Deployment Using ActiveX Controls
	Application Deployment Using COM (but Not ActiveX Controls)
	Application Deployment Using C++ CIL
	Application Deployment Using .NET CIL
	Custom Application and CTI OS Security

	Supervisor Applications
	General Flow
	Monitored and Unmonitored Events
	Supervisor Application Flow to Request and Monitor Team
	OnNewAgentTeamMember Events
	OnNewAgentTeamMember Events and Supervisors
	OnMonitoredAgentStateChange Events
	OnMonitoredAgentInfo Event
	Time in State
	OnSkillInfo Event
	Agent Team Information Displayed in Grid Format

	Supervisor Application Flow to Monitor an Agent
	OnSupervisorButtonChange
	Monitored Call Events
	Supervisor Application Makes Agent Ready or Logs Agent Out

	Supervisor Application Flow to Monitor a Call
	MonitoredCallEvents
	Barging into Calls
	Intercepting Calls
	Monitored Call Data

	Sample Code in CTI OS Toolkit
	.NET Samples
	CTI Toolkit Combo Desktop.NET
	CTI Toolkit Combo Desktop Configuration

	CtiOs Data Grid.NET
	All Agents Sample.NET
	All Calls Sample.NET

	Java CIL Samples
	Win32 Samples

	CTI OS ActiveX Controls
	CTI OS ActiveX Controls
	Property Pages
	Button Controls and Grid Controls
	Button Controls
	Grid Controls
	Supervisor Status Bar

	CTI OS ActiveX Control Descriptions
	AgentGreetingCtl
	RecordGreetingCtl

	AgentStateCtl
	Related Methods
	ReasonCodeState
	ReasonCodeState

	Related Events
	OnAgentStateChanged
	OnCtlEnabledChanged
	OnEnableControlReceived

	AgentSelectCtl
	Methods
	get_UserDefinedCell
	GetCellText
	GetColumnInfo
	GetSelectedRow
	SelectRow
	set_ColumnHeader
	set_ColumnType
	set_ColumnWidth
	set_ UserDefinedCell
	SetColumnInfo

	AgentStatisticsCtl
	Methods
	get_UserDefinedCell
	GetCellText
	GetColumnInfo
	set_ColumnHeader
	set_ColumnType
	set_ColumnWidth
	set_ UserDefinedCell
	SetColumnInfo

	AlternateCtl
	AnswerCtl
	BadLineCtl
	CallAppearanceCtl
	Related Methods
	Answer
	GetValueInt
	GetValueString

	Related Events
	OnSetCurrentCallAppearance

	Methods
	GetCellText
	GetSelectedRow
	SelectRow
	set_ColumnECCName
	set_ColumnECCOffset
	set_ColumnHeader
	set_ColumnWidth
	SetCellText

	ChatCtl
	Methods
	GetAddressee
	GetAllChatMessages
	GetChatMessageText
	OnMsgReceived
	SendChatMessage
	SetAddressee
	SetChatMessageText

	ConferenceCtl
	EmergencyAssistCtl
	HoldCtl
	MakeCallCtl
	ReconnectCtl
	SkillgroupStatisticsCtl
	Methods
	get_UserDefinedCell
	GetCellText
	GetColumnInfo
	set_ColumnHeader
	set_ColumnType
	set_ColumnWidth
	set_ UserDefinedCell
	SetColumnInfo

	StatusBarCtl
	SupervisorOnlyCtl
	RecordCtl
	TransferCtl

	The Silent Monitor StandAlone ActiveX Control
	Connect
	Disconnect
	StartMonitoring
	StopMonitoring
	SilentMonitor Com Object Events
	Deployment
	Sample Usage in Visual Basic 6.0

	Event Interfaces and Events
	Event Interfaces and Events
	Event Publication Model
	ISessionEvents Interface
	OnConnection
	OnConnectionClosed
	OnConnectionFailure
	OnConnectionRejected
	OnCTIOSFailure
	OnCurrentAgentReset
	OnCurrentCallChanged
	OnFailure Event
	OnGlobalSettingsDownloadConf
	OnHeartbeat
	OnMissingHeartbeat
	OnMonitorModeEstablished
	OnSnapshotDeviceConf
	OnSnapshotSkillGroupList
	OnTranslationRoute

	ICallEvents Interface
	OnAgentPrecallEvent
	OnAgentPrecallAbortEvent
	OnAlternateCallConf
	OnAnswerCallConf
	OnCallBegin
	OnCallCleared
	OnCallConnectionCleared
	OnCallConferenced
	OnCallDataUpdate
	OnCallDelivered
	OnCallDequeuedEvent
	OnCallDiverted
	OnCallEnd
	OnCallEstablished
	OnCallFailed
	OnCallHeld
	OnCallOriginated
	OnCallQueuedEvent
	OnCallReachedNetworkEvent
	OnCallRetrieved
	OnCallServiceInitiatedEvent
	OnCallStartRecordingConf
	OnCallStopRecordingConf
	OnCallTransferred
	OnClearCallConf
	OnClearConnectionConf
	OnConferenceCallConf
	OnConsultationCallConf
	OnControlFailureConf
	OnHoldCallConf
	OnMakePredictiveCallConf
	OnReconnectCallConf
	OnReleaseCallConf
	OnRetrieveCallConf
	OnSendDTMFConf
	OnSetCallDataConf
	OnSnapshotCallConf
	OnTransferCallConf

	IAgentEvents Interface
	OnAgentDeskSettingsConf
	OnAgentGreetingControlConf
	OnAgentInfoEvent
	OnAgentStateChange
	OnAgentStatistics
	OnChatMessage
	OnControlFailureConf
	OnEmergencyCall
	OnLogoutFailed
	OnMakeCallConf
	OnNewAgentTeamMember
	OnPostLogout
	OnPreLogout
	OnQueryAgentStateConf
	OnSetAgentModeEvent
	OnSetAgentStateConf
	OnStartMonitoringAgent
	OnStopMonitoringAgent
	OnUserMessageConf

	ISkillGroupEvents Interface
	OnSkillGroupStatisticsUpdated
	OnSkillInfoEvent

	IButtonEnablementEvents
	OnButtonEnablementChange
	OnSupervisorButtonChange

	IMonitoredAgentEvents Interface
	IMonitoredCallEvents Interface
	ISilentMonitorEvents
	OnCallRTPStarted
	OnCallRTPStopped
	OnStartSilentMonitorConf
	OnSilentMonitorStartedEvent
	For CTI OS Based Silent Monitor
	For CCM-Based Silent Monitor

	OnSilentMonitorStartRequestedEvent
	OnSilentMonitorSessionDisconnected
	OnSilentMonitorStopRequestedEvent
	For CTI OS Based Silent Monitor
	For CCM-Based Silent Monitor

	OnSilentMonitorStatusReportEvent
	OnStopSilentMonitorConf
	OnRTPStreamTimedoutEvent

	IGenericEvents Interface
	OnEvent

	Java Adapter Classes
	IAllInOne
	IAgentEvents
	IButtonEnablementEvents
	ICallEvents
	ISkillGroupEvents

	Events in Java CIL
	Events in .NET CIL
	Event Parameters
	Amount of Nonessential Call Object Parameters

	CtiOs Object
	CtiOs Object
	Methods
	DumpProperties
	GetAllProperties
	GetElement
	GetLastError (Java and .NET Only)
	GetNumProperties
	GetPropertyName
	GetPropertyType
	GetValue
	GetValueArray
	GetValueBoolObj (Java and .NET Only)
	GetValueInt
	GetValueIntObj (Java Only)
	GetValueShortObj (Java Only)
	GetValueString
	GetValueUIntObj (Java Only)
	GetValueUShortObj (Java Only)
	IsValid
	ReportError (Java and .NET only)
	SetValue (Java and .NET)
	SetValue (C++ COM and VB)

	Session Object
	Session Object
	Session Object Properties
	Methods
	AddEventListener (Java and .NET Only)
	AddListener Methods (C++ Only)
	Connect
	CreateSilentMonitorManager
	CreateWaitObject (C++ Java and .NET)
	DestroySilentMonitorManager
	DestroyWaitObject (C++ Java and .NET)
	DisableSkillGroupStatistics (C++ Java and .NET)
	Disconnect
	DumpProperties
	EnableSkillGroupStatistics (C++ Java and .NET)
	GetAllAgents
	GetAllCalls
	GetAllProperties
	GetAllSkillGroups
	GetCurrentAgent
	GetCurrentCall
	GetCurrentSilentMonitor
	GetElement
	GetNumProperties
	GetObjectFromObjectID
	GetPropertyName
	GetPropertyType
	GetSystemStatus (Java .NET and C++ Only)
	GetValue Methods
	IsAgent
	IsCCMSilentMonitor
	IsSupervisor
	IsValid
	RemoveEventListener (Java and .NET)
	RemoveListener Methods (C++ Only)
	RequestDesktopSettings
	SetAgent
	SetCurrentCall
	SetCurrentSilentMonitor
	SetMessageFilter
	SetSupervisorMonitorMode

	Notes on Message Filters
	Message Filter Syntax
	Simple Example
	General Form of Filter Syntax
	Multiple Filters
	Filters for Specific Events
	Events Not Allowed in Filter Expressions

	Skill Group Statistics
	CCM-Based Silent Monitor Calls

	Agent Object
	Agent Object
	Agent Object Properties
	Agent Statistics
	Methods
	Arguments Parameters
	DisableAgentStatistics
	DisableSkillGroupStatistics
	EnableAgentStatistics
	EnableSkillGroupStatistics
	GetAgentState
	GetAllProperties
	GetElement
	GetMonitoredAgent
	GetMonitoredCall
	GetNumProperties
	GetPropertyName
	GetPropertyType
	GetSkillGroups
	GetValue Methods
	IsAgent
	IsSupervisor
	Login
	Logout
	MakeCall
	MakeEmergencyCall
	QueryAgentState
	ReportBadCallLine
	RequestAgentTeamList
	RequestSupervisorAssist
	SendChatMessage
	SetAgentGreetingAction
	SetAgentState
	StartMonitoringAgent
	StartMonitoringAgentTeam
	StartMonitoringAllAgentTeams
	StartMonitoringCall
	StopMonitoringAgent
	StopMonitoringAgentTeam
	StopMonitoringAllAgentTeams
	SuperviseCall

	Call Object
	Call Object
	Current Call
	ECC Variables
	Passing Call Variables
	ECC Variable Value Retrieval
	ECC Values
	Properties
	Methods
	Argument Parameters
	Alternate
	Answer
	Clear
	ClearConnection
	Conference
	GetCallContext
	GetCallData
	Hold
	MakeConsultCall
	Reconnect
	Retrieve
	SendDTMFSignal
	SetCallData
	SingleStepConference
	SingleStepTransfer
	Snapshot
	StartRecord
	StopRecord
	Transfer

	SkillGroup Object
	SkillGroup Object
	Properties
	Statistics
	Methods
	DisableSkillGroupStatistics
	DumpProperties
	EnableSkillGroupStatistics
	GetElement
	GetValue Methods
	IsValid
	SetValue

	Helper Classes
	Helper Classes
	Arg Class
	AddRef
	Clone
	CreateInstance
	DumpArg
	GetArgType (.NET Only)
	GetType
	GetValue Methods
	Release
	SetValue

	Arguments Class
	Usage Notes
	AddItem (C++ COM VB Only)
	AddRef (C++ and COM Only)
	Clear
	Clone
	CreateInstance (C++ and COM Only)
	DumpArgs
	GetElement Methods
	GetValue Methods
	IsValid
	NumElements
	Release (C++ and COM Only)
	RemoveItem
	SetElement (C++ COM and VB Only)
	SetValue

	CILRefArg Class (C++ Java and .NET Only)
	GetType
	GetUniqueObjectID (Java and .NET Only)
	GetValue
	SetValue

	CCtiOsException Class (C++ Java and .NET Only)
	CCtiosException Constructor
	GetCode
	GetStatus
	GetString
	What

	CWaitObject Class
	Methods
	CreateWaitObject
	DestroyWaitObject
	DumpEventMask
	GetMask
	GetTriggerEvent
	InMask
	SetMask
	WaitOnMultipleEvents

	Logger Class (.NET and Java Only)
	Methods
	Logger() Constructor
	GetTraceMask
	SetTraceMask
	AddLogListener
	RemoveLogListener
	Trace

	LogWrapper Class (.NET and Java Only)
	Methods
	LogWrapper() Constructor
	LogWrapper(string filename) Constructor
	Return Values
	LogWrapper(string int int int) Constructor
	Dispose (.NET Only)
	GetMaxDaysBeforeExpire (.NET Only)
	SetMaxNumberFiles
	GetMaxNumberFiles (.NET Only)
	SetMaxDaysBeforeExpire
	ProcessConfigFile

	SilentMonitorManager Object
	SilentMonitorManager Object
	Properties
	Methods
	Argument Parameter Rules
	AcceptSilentMonitoring
	GetIPPhoneInfo
	GetSessionInfo
	GetSMSessionList
	IsMonitoredTarget
	SetIPPhoneInfo
	StartSilentMonitorRequest
	StartSMMonitoredMode
	StartSMMonitoringMode
	StopSilentMonitorMode
	StopSilentMonitorRequest

	CTI OS Keywords and Enumerated Types
	Keywords
	Java CIL Keywords
	.NET CIL Keywords

	Enumerated Types
	Java Interfaces

	CTI OS Logging
	CTI OS Client Logs (COM and C++)
	Install Tracing Mechanism (COM and C++)

	Set Trace Levels (COM and C++)
	Trace Configuration (COM and C++)
	Java CIL Logging Utilities
	ILogEvents
	LogEvent
	Logger
	LogEventsAdapter

	Logging and tracing (Java)
	Logging and tracing (.NET)
	Default Logging Mechanism
	Log Trace Events with LogWrapper Class

	Custom Logging Mechanism
	Log Trace Events with Logger Class

	Trace Configuration (Java and .NET)

	INDEX
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	N
	O
	Q
	R
	S
	T
	U
	W

