
Cisco ACI App Center Developer Guide
First Published: 2017-01-18

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
       800 553-NETS (6387)
Fax: 408 527-0883



THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITEDWARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDINGANYOTHERWARRANTYHEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS"WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSEANDNONINFRINGEMENTORARISING FROMACOURSEOFDEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

© 2017 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks


C O N T E N T S

P r e f a c e      Preface v

Audience v

Document Conventions v

Related Documentation vii

Documentation Feedback vii

Obtaining Documentation and Submitting a Service Request viii

C H A P T E R  1  Overview 1

About Cisco ACI App Center 1

About Stateless Applications 1

Launching a Stateless Application 2

Single Sign On for Stateless Application 2

About Stateful Applications 3

Single Sign On for Stateful Application 5

Understanding Permissions for an Application 6

Understanding Application Communication 7

Requirements for Developing an Application 8

C H A P T E R  2  Developing a Stateless Application 9

Components of Stateless Application 9

Workflow for Developing a Stateless Application 9

Prerequisites 10

Guidelines and Limitations 10

Directory Structure for Stateless Application 11

Creating Directory Structure for a Stateless Application 12

Metadata Required for Developing an Application 14

Cisco ACI App Center Developer Guide    
iii



C H A P T E R  3  Developing a Stateful Application 19

Components of Stateful Application 19

Workflow for Developing a Stateful Application 20

Prerequisites 20

Guidelines and Limitations 21

Directory Structure for Stateful Application 22

Creating Directory Structure for a Stateful Application 23

Creating a Docker Image 26

Metadata Required for Developing an Application 27

Data Types for a Stateful App 31

Signing in to the APIC from the Application Using RBAC 32

C H A P T E R  4  Packaging and Publishing an Application 35

About Packaging and Publishing an Application 35

Prerequisites 35

Packaging an Application 36

Example for Packaging an Application 37

Cisco ACI App Center 39

Generating Keys for an Application 39

Publishing an Application 39

Downloading Application From Cisco ACI App Center 40

Cisco APIC 40

Enabling Signature Validation for an Application 40

Uploading an Application to APIC 40

Installing an Application 41

C H A P T E R  5  Troubleshooting 43

Troubleshooting an Application 43

C H A P T E R  6  Appendix 45

Example of Files Used in a Stateless Application 45

Example of Files Used in a Stateful Application 47

Integrating the App's UI in the APIC UI 52

Permissions 53

   Cisco ACI App Center Developer Guide
iv

Contents



Preface

This preface includes the following sections:

• Audience, page v

• Document Conventions, page v

• Related Documentation, page vii

• Documentation Feedback, page vii

• Obtaining Documentation and Submitting a Service Request, page viii

Audience
This guide is intended primarily for data center administrators with responsibilities and expertise in one or
more of the following:

• Virtual machine installation and administration

• Server administration

• Switch and network administration

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention

Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which the user supplies the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Cisco ACI App Center Developer Guide    
v



DescriptionConvention

Square brackets enclosing keywords or arguments separated by a vertical
bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments separated by a vertical bar
indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string will include the quotation marks.

string

Examples use the following conventions:

DescriptionConvention

Terminal sessions and information the switch displays are in screen font.screen font

Information you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[ ]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

This document uses the following conventions:

Means reader take note. Notes contain helpful suggestions or references to material not covered in the
manual.

Note

Means reader be careful. In this situation, you might do something that could result in equipment damage
or loss of data.

Caution

   Cisco ACI App Center Developer Guide
vi

Preface
Document Conventions



IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you
work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with
standard practices for preventing accidents. Use the statement number provided at the end of each warning
to locate its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

Warning

Related Documentation
Cisco Application Centric Infrastructure (ACI) Documentation

The ACI documentation is available at the following URL: http://www.cisco.com/c/en/us/support/
cloud-systems-management/application-policy-infrastructure-controller-apic/
tsd-products-support-series-home.html.

Cisco Application Centric Infrastructure (ACI) Simulator Documentation

The Cisco ACI Simulator documentation is available at http://www.cisco.com/c/en/us/support/
cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html.

Cisco Nexus 9000 Series Switches Documentation

The Cisco Nexus 9000 Series Switches documentation is available at http://www.cisco.com/c/en/us/support/
switches/nexus-9000-series-switches/tsd-products-support-series-home.html.

Cisco Application Virtual Switch Documentation

The Cisco Application Virtual Switch (AVS) documentation is available at http://www.cisco.com/c/en/us/
support/switches/application-virtual-switch/tsd-products-support-series-home.html.

Cisco Application Centric Infrastructure (ACI) Integration with OpenStack Documentation

Cisco ACI integration with OpenStack documentation is available at http://www.cisco.com/c/en/us/support/
cloud-systems-management/application-policy-infrastructure-controller-apic/
tsd-products-support-series-home.html.

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to apic-docfeedback@cisco.com. We appreciate your feedback.

Cisco ACI App Center Developer Guide    
vii

Preface
Related Documentation

http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/application-virtual-switch/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/application-virtual-switch/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
mailto:apic-docfeedback@cisco.com


Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, seeWhat's New in Cisco Product Documentation at: http://
www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html

Subscribe toWhat’s New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation as an RSS feed and delivers content directly to your desktop using a reader application. The
RSS feeds are a free service.

   Cisco ACI App Center Developer Guide
viii

Preface
Obtaining Documentation and Submitting a Service Request

http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html


C H A P T E R  1
Overview

This chapter contains the following sections:

• About Cisco ACI App Center, page 1

• About Stateless Applications, page 1

• About Stateful Applications, page 3

• Understanding Permissions for an Application, page 6

• Understanding Application Communication, page 7

• Requirements for Developing an Application, page 8

About Cisco ACI App Center
The Cisco ACI App Center allows you to fully enable the capabilities of the APIC by writing applications
running on the controller. Using the Cisco ACI App Center, customers, developers, and partners will be able
to build applications to simplify, enhance, and visualize their use cases. These applications are hosted and
shared at the Cisco ACI App Center and installed in the APIC.

APIC supports two types of applications:

• Stateful

• Stateless

About Stateless Applications
A stateless application (app) is a simple HTML, CSS, or JavaScript based front-end that is run as part of the
APIC UI. These apps are also referred to as front-end only applications. They can be launched from theApps
tab in the APIC UI or can be inserted as a separate tab in any part of the APIC UI.

Cisco ACI App Center Developer Guide    
1



Stateless apps are inserted in the APIC UI as an IFRAME. In this type of applications, app specific state is
stored on the APIC for that app. The app queries APIC using its northbound REST APIs and retrieves
information from the APIC. In stateless app, no state is maintained in the between two invocations of the app.

Figure 1: Stateless Application

Some of the common examples for stateless app include the following:

• Data visualization apps that gather data available from querying the APIC and that can present them in
a visual format.

• L4-L7 vendor specific configuration apps.

Launching a Stateless Application
Depending on how the stateless application is designed, it can be launched in the following ways:

• If the app is inserted as part of the APIC’s UI, the admin or user can navigate to the specific section in
the APIC UI and access the app by clicking on the corresponding tab for the app.

• In the APIC UI, the admin can navigate to Apps > Installed Apps and then double-click the app to
create a tab in the APIC UI that will contain the application.

In both cases, an app stops functioning when admin or user navigates away from the App tab. An admin or
tenant may invoke the app by navigating to the specific section of the APIC UI.

Single Sign On for Stateless Application
An admin or tenant does not require a new log in mechanism to launch a stateless app. Stateless apps use the
same session as the admin or tenant that is currently logged in to the APIC UI.

When an admin installs an app, APIC creates an user and role for the app. This user and role has the privilege
as described by the app's metadata in the app.json file.

Figure 2: SSO Sequence for Stateless Application

   Cisco ACI App Center Developer Guide
2

Overview
Launching a Stateless Application



The SSO sequence for stateless apps consists of the following steps:

When an admin user clicks on the app to launch the app, the APIC UI launches the app in the IFRAME.

1 APIC UI makes a request to APIC server for a token that can be used by the app for SSO.

2 Upon receiving the token, the APIC UI passes the token to the app by using the token passing mechanism
provided in the app-start.html file included in the app.

3 The app uses this token to make REST API calls to APIC.

About Stateful Applications
A stateful application (app) has a backend service that runs continuously on the APIC. Consequently, the app
may store a state in this backend for specific functions. Stateful app’s backend service is run on APIC in a
sandboxed containerized environment; namely a docker container. The service makes queries to the APIC
using the APIC’s REST API interface. A stateful app may also have a front-end component in addition to

Cisco ACI App Center Developer Guide    
3

Overview
About Stateful Applications



backend component. This front-end component is inserted in the APIC UI as an IFRAME, in the same way
as a stateless app. If a stateful app is developed without a front-end, then it is installed using REST APIs.

Figure 3: Stateful Application with a Front-End

Figure 4: Stateful Application without a Front-End

Some of the common examples for stateful app include the following:

   Cisco ACI App Center Developer Guide
4

Overview
About Stateful Applications



• Visualization Apps that can plot graphs for the historical data for a specific time interval.

• Alerts apps that can send alerts based on certain events that are not supported natively in APIC.

• Monitoring apps that can track APIC’s events, faults, and statistics and analyze it for detecting anomalies.

• Apps to sync the data between APIC and a third party vendor.

Single Sign On for Stateful Application
When an admin installs an app, APIC creates an user and role for the app. This user and role has the privilege
as described by the app's metadata in the app.json file.

Figure 5: SSO Sequence for Stateful Application

The SSO sequence for stateful apps consists of the following steps:

When an admin user clicks on the app to launch the app, the APIC UI launches the app in the IFRAME.

SSO between the app UI and the APIC backend

1 APIC UI makes a request to APIC server for a token that can be used by the app for SSO.

2 Upon receiving the token, the APIC UI passes the token to the app by using the token passing mechanism
provided in the app-start.html file included in the app.

3 The app uses this token to make REST API calls to APIC.

SSO between the app container and the APIC backend

1 APIC provides a private key to the app's container. In the container, the key is available in the directory
/home/app/credentials.

Cisco ACI App Center Developer Guide    
5

Overview
Single Sign On for Stateful Application



2 The app uses the key to authenticate.

3 APIC authenticates based on key and replies accordingly.

Understanding Permissions for an Application
The APIC provides access according to a user’s role through role-based access control (RBAC). A Cisco
Application Centric Infrastructure (ACI) app user (aaaAppUser) is associated with the following:

• A set of roles called permissions

• Permission level: read-only or write (read and write)

• One or more security domain tags that identify the portions of the management information tree (MIT)
that a user can access

The permissions and permission level for an application are defined in the app.json file. See Metadata
Required for Developing an Application, on page 14. The security domains for an app are associated when
it is installed. Before you install an app, you can review the permissions, permission level, and security domain
for an app.

When an app is installed in APIC, an app user and role is created for the app using the meta data from the
app.json file. Both the app user and the role have the same name, corresponding to the following format:
vendordomain_appid

All the queries made by the app is restricted to user, role, and the security domain created for this app. You
can limit the managed objects an app can access using RBAC. It is recommended to assign the minimum set
of permissions that is required for the app's functionality. See Permissions, on page 53.

SeeCisco ACI AAA RBACRules and Privileges for more information about user roles, privileges, and security
domains.

   Cisco ACI App Center Developer Guide
6

Overview
Understanding Permissions for an Application



Understanding Application Communication
Figure 6: Application Communication

The front-end of an app communicates with the backend by issuing the following API call to the app backend
running in docker, where api.json or api.xml in an API path provided by the application.
GET/POST https://APIC_IP/appcenter/vendordomain/appid/api.json
Or
GET/POST https://APIC_IP/appcenter/vendordomain/appid/api.xml
The vendordomain and appid are specific to the app and is defined in the app.json file.

The IP address of APIC IP is always 172.17.0.1 in relation to the docker. When the backend makes calls
to the APIC, it uses the IP address 172.17.0.1.

You can retrieve the APIC_IP in JavaScript, using document.location.origin.

Note

The request is then forwarded to the docker instance where the app is running. The app returns a response
which is then forwarded back to the front-end. The API URLs must be declared in the app.json file and
only authenticated users can make the API call.

During the installation of an app, a user and role are created and then a certificate key pair is assigned to the
user. When the app is installed, the private key is added to the docker image. The private key is located in the
docker image in the directory /home/apps/credentials. Using the private key, the app then creates a
session with NGINX for the user. Once the session is created, API calls can be made to retrieve the MIT
information. Since the session was created for a user, the app is limited to access the information only available
to the user and user is limited to the permission as defined in the app.json file.

Docker instances can be located on different APICs. It is not recommended to have communication between
docker instances located on different APICs or the same APIC.

Cisco ACI App Center Developer Guide    
7

Overview
Understanding Application Communication



See Signing in to the APIC from the Application Using RBAC, on page 32.

Requirements for Developing an Application
• Stateless app can be developed using the APIC Simulator. To develop and test a stateless app, download
the APIC Simulator OVA.

• To develop a stateful app, you must have access to the Cisco APIC image, release 2.2(1x) and later. You
will also need access to a docker environment running a docker container.

• Stateless apps are web applications containing HTML, CSS, or JavaScript files.

• A stateful app can be developed using any language inside the docker container. Since APIC supports
python bindings for its API, python may be preferred for developing a stateful app.

   Cisco ACI App Center Developer Guide
8

Overview
Requirements for Developing an Application



C H A P T E R  2
Developing a Stateless Application

This chapter contains the following sections:

• Components of Stateless Application, page 9

• Workflow for Developing a Stateless Application, page 9

• Prerequisites, page 10

• Guidelines and Limitations, page 10

• Directory Structure for Stateless Application, page 11

• Creating Directory Structure for a Stateless Application, page 12

• Metadata Required for Developing an Application, page 14

Components of Stateless Application
A Stateless application includes the following files:

• app.json—A JSON file containing themetadata required for developing an application. Themetadata
also informs the APIC on where to insert the app in the APICUI. SeeMetadata Required for Developing
an Application, on page 14.

• app.html— A HTML file that implements the UI or the front-end of the application.

• app-start.html— It contains information to receive the tokens from the APIC and coverts the
data into a cookie.

Workflow for Developing a Stateless Application
Use this procedure to develop a stateless application.

Step 1 Setting up the directory structure and the files required for the application.
See Creating Directory Structure for a Stateless Application, on page 12.

Cisco ACI App Center Developer Guide    
9



Step 2 Creating the metadata for the application.
See Metadata Required for Developing an Application, on page 14.

Step 3 Packaging the application.
See Packaging an Application, on page 36.

Step 4 (Optional) Enabling signature validation for an application.
This step is applicable only if you are publishing the app to Cisco ACI App Center.See Enabling Signature Validation
for an Application, on page 40

Step 5 Do one of the following:

• Publishing the application to Cisco ACI App Center for external distribution. See Publishing an Application, on
page 39.

• Uploading the application to APIC for internal distribution. See Uploading an Application to APIC, on page 40.

Step 6 Download the app from Cisco ACI App Center.
This step is required only if you are publishing the app to Cisco ACI App Center. See Downloading Application From
Cisco ACI App Center , on page 40.

Step 7 Installing and launching the application.
See Installing an Application, on page 41.

Prerequisites
• You have obtained the app-start.html file from Cisco DevNet to be included in the application.

• You must have a developer account to access the Cisco ACI App Center.

• You have read the Cisco App Center Development Principles and Guidelines.

Guidelines and Limitations
• You must configure NTP policy to keep the time in all APICs in sync. This requirement is necessary
since the X509 certificate could be generated on one APIC and validated on a different APIC.

   Cisco ACI App Center Developer Guide
10

Developing a Stateless Application
Prerequisites

https://developer.cisco.com/site/aci/docs/
https://aciappcenter.cisco.com
https://aciappcenter.cisco.com/developer-guideline/


Directory Structure for Stateless Application
Figure 7: Recommended Directory Structure for a Stateless Application

Cisco ACI App Center Developer Guide    
11

Developing a Stateless Application
Directory Structure for Stateless Application



Creating Directory Structure for a Stateless Application
Use this procedure to create the directory structure and all the files required for developing a stateless application
for the Cisco ACI App Center. See the Appendix for examples of the various files required to develop the
application.

Step 1 Create a directory for the app you are developing in your workspace. All the folders and files required for developing
the application must be added to this folder.

Step 2 Create the metadata for the app in the app.json file.
This file is required and has information required by the Cisco ACI App Center to recognize the app and validate it. See
Metadata Required for Developing an Application, on page 14 for information regarding the metadata required for the
app.json file.

Step 3 Create a Media folder and the files specified in this folder for your app.
This folder contains the following folders and files:

• Readme (Required)— The readme directory contains the readme.txt file and cannot be empty. When you
publish the app to the Cisco ACI App Center, the readme.txt file is used to present the information about the
app to the user on the app description page in the Cisco ACI App Center.

• License (Required)— The license folder contains the required Cisco_App_Center_License.txt file.
It is the Cisco license file for the app and is added automatically when using the Cisco packager. Optionally, the
developer can also add a separate app specific license file for the app in this location.

• Snapshots (Optional)— The snapshot folder contains files which provide a preview of the app before the user
downloads the app from the Cisco ACI App Center. It is optional and provides information regarding the app in
various modes.

• IntroVideo (Optional)— The IntroVideo folder is optional. It contains a video which introduces the app and
give information on how the app works. The supported format for the video is mp4.

Step 4 Create a Legal folder and add the files containing the legal information required for your app.
The directory must include the following two required files. These files are automatically provided when using the Cisco
packager to package an app.

• Cisco_App_Center_Customer_Agreement.docx

• Cisco_App_Center_Export_Compliance_Questionnaire.docx

Step 5 Create a UIAssets folder and the files specified in this folder for your app.
The UIAssets folder is the core folder which contains all the intelligence about the app. This folder contains the HTML,
CSS, and JavaScript files for the app. This folder must at least include the following files:

• app.html (Required)— A required HTML file that implements the UI or the front-end of the application. The
content of this file is specific to the app. This file contains the HTML page that will be embedded in APIC’s UI. It
can import various others files such as CSS or Javascript files provided within the UIAssets folder. This file must
contain the function to use the tokens specified in app-start.html.

   Cisco ACI App Center Developer Guide
12

Developing a Stateless Application
Creating Directory Structure for a Stateless Application



• app-start.html (Required)— A HTML file provided by Cisco and can be downloaded from Cisco DevNet.
Every application must include this file for single-sign on to work. It is recommended that you do not modify this
file.

It contains the cookie information to implement the single sign-on in an application. It contains the cookie data
and the mechanism to retrieve the data from APIC. This file must contain the data for the cookies, token and
challenge. The value of the cookie is sent to APIC as headers as part of each request made from app’s UI to avail
single sign-on. This file also includes the loading sequence for an app. It contains a message which is displayed
when the app is being loaded.

It contains information to receive the tokens from the APIC and coverts the data into a cookie. You must then get
the tokens used in a cookie and use it in further requests.

APIC regularly sends a token to the application. The app must have the mechanism to receive and update its token
accordingly. You can retrieve the token using Ext.util.Cookies.get, each time you make a request.

<script type="text/javascript">
window.addEventListener('message', function (e) {

if (e.source === window.parent) {
var tokenObj = Ext.decode(e.data, true);
if (tokenObj) {

// Setting the cookie with the tokens received by the APIC
Ext.util.Cookies.set('app_' + tokenObj.appID + '_token', tokenO

bj.token);
Ext.util.Cookies.set('app_' + tokenObj.appID + '_urlToken', tokenO

bj.urlToken);
}

}
});

</script>

Another option for implementation, is to store the tokens from the cookie in variables. In this example, the application
HelloAci uses window.APIC_DEV_COOKIE and window.APIC_URL_TOKEN when sending a request.

<script type="text/javascript">
window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_urlToken");

window.addEventListener('message', function (e) {
if (e.source === window.parent) {

var tokenObj = Ext.decode(e.data, true);
if (tokenObj) {

window.APIC_DEV_COOKIE = tokenObj.token;
window.APIC_URL_TOKEN = tokenObj.urlToken;

}
} });
</script>

App requests made to the APIC require a custom DevCookie and APIC-Challenge header to be set for proper
authentication. After accessing the tokens, you must include them in the HTTP requests headers.

window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_urlToken");

Cisco ACI App Center Developer Guide    
13

Developing a Stateless Application
Creating Directory Structure for a Stateless Application



HttpRequest.prototype.query = function (query, success_func)
{

var Http = new XMLHttpRequest();
var url1 = 'https://'+gSystem+'/'+query;

Http.open("GET", url1, false);

Http.setRequestHeader("DevCookie",window.APIC_DEV_COOKIE);
Http.setRequestHeader("APIC-Challenge",window.APIC_URL_TOKEN);
Http.setRequestHeader ("Accept", "application/json");

Http.onreadystatechange = function(){
if (Http.readyState==4){

if (Http.status==200){
success_func(Http.responseText);

}
}

}

Http.send();
};

• Other files and sub directories required for the app's UI.

Metadata Required for Developing an Application
The app.json file contains metadata for the app. The following table lists the metadata required for
developing an app for the Cisco ACI App Center.

Table 1: Metadata to be Specified in the app.json File

RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The ID is a string
and can be up to 32
alpha numeric
characters only.

The unique ID for the
app which is used to
identify the app in the
Cisco ACI App Center
and in the APIC.

NoYesappid

The version is a
stringM.m andM
and m are positive
integers. The values
of M and m are in
the range 0 to 9999.

Version of the
application specifying a
majorM version and a
minor m version.

YesYesversion

   Cisco ACI App Center Developer Guide
14

Developing a Stateless Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The path to the icon
file is a string and
the file name can be
up to 256
characters. The
supported file
formats are jpeg or
png.

The path to the icon file
in the UIAssets folder.
The icon file contains
the thumbnail for the
app. The thumbnail is
used to uniquely identify
the app in the Cisco ACI
App Center.

YesYesiconfile

The name is a string
and can be up to
256 characters.

The name of the
application.

NoYesname

The short
description is a
string and can be up
to 1024 characters.

The description of the
app. This information is
displayed when the app
is listed in the Cisco ACI
App Center.

YesYesshortdescr

The name is a string
and can be up to
256 alpha numeric
characters only.

The name of the
company.

NoYesvendor

The ID is a string
and can be up to 32
alpha numeric
characters only.

The domain ID of the
company.

NoYesvendordomain

Must be unique and
greater than last
approved
application.

The format is
major.minor(mp),
where

• m=maintenance

• p=patch

• major,minor,maintenance
is 0 <= and
<=999

• Patch is
character [a-z]

The minimum APIC
software version
required for the app’s
functionality.

YesYesapicversion

Cisco ACI App Center Developer Guide    
15

Developing a Stateless Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

NoneThe signature required
for the application files.
The signature is issued
by Cisco ACI App
Center after an app is
approved and is allowed
to be distributed.

Only apps with
the signature are
supported by
Cisco. Apps
without the
signature are not
supported.

Note

YesNosignature

The format for the
value is float.

Total cost to download
the app. The default is
$0.

YesNoprice

The format is JSON
dictionary.

The contact information
for the app.

YesNocontact

The phone number
is a string.

The contact phone
number of the company.

YesNocontact-phone

The email is a
string.

The contact email of the
company.

YesNocontact-email

The URL is a string.The contact URL of the
company.

YesNocontact-url

The format is JSON
array.

The permissions
required by the app to
access the various
managed objects and
utilities in the MIT. See
Cisco ACI AAA RBAC
Rules and Privileges for
more information about
user roles, privileges,
and security domains.

It is
recommended to
assign the
minimum set of
permissions that
is required for
the app's
functionality.

Note

YesYespermissions

   Cisco ACI App Center Developer Guide
16

Developing a Stateless Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The permission
level is a string and
can be either read or
write.

The permission level
required for the
application. The
permission level defines
if the user has read or
write access to the app.

NoYespermissionslevel

The format is JSON
dictionary. The key
and value are
strings.

The API supported by
the application. Each
entry in the API list
contains the API URL
and the corresponding
description. The API is
used to query the
backend.

In the API, only
POST andGET
operations are
supported.

Note

YesYesapi

The
metadata is
only
applicable
for a
stateful
app.

Note

The author is a
string and can be up
to 256 characters.

The name of the app
developer.

YesYesauthor

The insertion URL
is a string.

The insertionURL of the
app in the APIC UI. The
URL informs the APIC
on where to insert the
app in the APIC UI. By
default, the user will be
able to run the app from
the Installed Apps tab.
See Integrating the App's
UI in the APIC UI, on
page 52.

YesNoinsertionURL

Cisco ACI App Center Developer Guide    
17

Developing a Stateless Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The format is JSON
array.

The categories of the app
used by Cisco ACI App
Center to filter the apps.

The allowed categories
allowed are:

• Tools and Utilities

• Visibility and
Monitoring

• Optimization

• Security

• Networking

• Cisco Automation
and Orchestration

YesYescategory

   Cisco ACI App Center Developer Guide
18

Developing a Stateless Application
Metadata Required for Developing an Application



C H A P T E R  3
Developing a Stateful Application

This chapter contains the following sections:

• Components of Stateful Application, page 19

• Workflow for Developing a Stateful Application, page 20

• Prerequisites, page 20

• Guidelines and Limitations, page 21

• Directory Structure for Stateful Application, page 22

• Creating Directory Structure for a Stateful Application, page 23

• Metadata Required for Developing an Application, page 27

• Data Types for a Stateful App, page 31

• Signing in to the APIC from the Application Using RBAC, page 32

Components of Stateful Application
A Stateful application includes the following files:

• app.json—A JSON file containing themetadata required for developing an application. Themetadata
also informs the APIC on where to insert the app in the APICUI. SeeMetadata Required for Developing
an Application, on page 14.

• app.html— A HTML file that implements the UI or the front-end of the application.

• app-start.html— It contains information to receive the tokens from the APIC and coverts the
data into a cookie.

• .tgz—A.tgz file such asaci_appcenter_docker_image.tgz containing the docker image.
A docker image contains all the packages required by the app to implement the backend. The image can
contain packages such as web server to open the API, OpenSSL for security, Cisco APIC Python SDK
(cobra) for querying the APIC.

• start.sh— A script containing the initializations required by the application. This script is executed
automatically after the docker image is installed.

Cisco ACI App Center Developer Guide    
19



Workflow for Developing a Stateful Application
Use this procedure to develop a stateful application.

Step 1 Setting up the directory structure and the files required for the application.
See Creating Directory Structure for a Stateless Application, on page 12.

Step 2 Creating the metadata for the application.
See Metadata Required for Developing an Application, on page 14.

Step 3 Signing on to the APIC from the app.
See Signing in to the APIC from the Application Using RBAC, on page 32

Step 4 Packaging the application.
See Packaging an Application, on page 36.

Step 5 (Optional) Enabling signature validation for an application.
This step is applicable only if you are publishing the app to Cisco ACI App Center.See Enabling Signature Validation
for an Application, on page 40

Step 6 Do one of the following:

• Publishing the application to Cisco ACI App Center for external distribution. See Publishing an Application, on
page 39.

• Uploading the application to APIC for internal distribution. See Uploading an Application to APIC, on page 40.

Step 7 Download the app from Cisco ACI App Center.
This step is required only if you are publishing the app to Cisco ACI App Center. See Downloading Application From
Cisco ACI App Center , on page 40.

Step 8 Installing and launching the application.
See Installing an Application, on page 41.

Prerequisites
• You have obtained the app-start.html file from Cisco DevNet to be included in the application.

• You have obtained the reference docker image provided by Cisco from Cisco DevNet for developing a
stateful application.

• You must have a developer account to access the Cisco ACI App Center.

• You have read the Cisco App Center Development Principles and Guidelines.

   Cisco ACI App Center Developer Guide
20

Developing a Stateful Application
Workflow for Developing a Stateful Application

https://developer.cisco.com/site/aci/docs/
https://developer.cisco.com/site/aci/docs/
https://aciappcenter.cisco.com
https://aciappcenter.cisco.com/developer-guideline/


Guidelines and Limitations
• The size of the docker image should not exceed 1 GB.

• Every stateful application must have a separate docker image. Sharing of docker images is currently not
supported.

• You must configure NTP policy to keep the time in all APICs in sync. This requirement is necessary
since the X509 certificate could be generated on one APIC and validated on a different APIC.

Cisco ACI App Center Developer Guide    
21

Developing a Stateful Application
Guidelines and Limitations



Directory Structure for Stateful Application
Figure 8: Recommended Directory Structure for a Stateful Application

   Cisco ACI App Center Developer Guide
22

Developing a Stateful Application
Directory Structure for Stateful Application



Creating Directory Structure for a Stateful Application
Use this procedure to create the directory structure and all the files required for developing a stateful application
for the Cisco ACI App Center. See the Appendix for examples of the various files required to develop the
application.

Step 1 Create a directory for the app you are developing in your workspace. All the folders and files required for developing
the application must be added to this folder.

Step 2 Create the metadata for the app in the app.json file.
This file is required and has information required by the Cisco ACI App Center to recognize the app and validate it. See
Metadata Required for Developing an Application, on page 14 for information regarding the metadata required for the
app.json file.

Step 3 Create a Media folder and the files specified in this folder for your app.
This folder contains the following folders and files:

• Readme (Required)— The readme directory only contains the readme.txt file and cannot be empty. When
you publish the app to the Cisco ACI App Center, the readme.txt file is used to present the information about
the app to the user on the app description page in the Cisco ACI App Center.

• License (Required)— The license folder contains the Cisco_App_Center_License.txt file. It is the
Cisco license file for the app and is added automatically when using the Cisco packager. Optionally, the developer
can also add a separate app specific license file for the app in this location.

• Snapshots (Optional)— The snapshot folder contains files which provide a preview of the app before the user
downloads the app from the Cisco ACI App Center. It is optional and provides information regarding the app in
various modes.

• IntroVideo (Optional)— The IntroVideo folder is optional. It contains a video which introduces the app and
give information on how the app works. The supported format for the video is mp4.

Step 4 Create a Legal folder and add the files containing the legal information required for your app.
The directory must include the following two files. These files are automatically provided when using the Cisco packager
to package an app.

• Cisco_App_Center_Customer_Agreement.docx

• Cisco_App_Center_Export_Compliance_Questionnaire.docx

Step 5 Create a UIAssets folder and the files specified in this folder for your app.
The UIAssets folder is the core folder which contains all the intelligence about the app. This folder contains the HTML,
CSS, and JavaScript files for the app. This folder must at least include the following files:

• app.html (Required)— A HTML file that implements the UI or the front-end of the application. The content
of this file is specific to the app. This file contains the HTML page that will be embedded in APIC’s UI. It can
import various others files such as CSS or Javascript files provided within the UIAssets folder. This file must
contain the function to use the tokens specified in app-start.html.

Cisco ACI App Center Developer Guide    
23

Developing a Stateful Application
Creating Directory Structure for a Stateful Application



• app-start.html (Required)— A HTML file provided by Cisco and can be downloaded from Cisco DevNet.
Every application must include this file for single-sign on to work. It is recommended that you do not modify this
file.

It contains the cookie information to implement the single sign-on in an application. It contains the cookie data
and the mechanism to retrieve the data from APIC. This file must contain the data for the cookies, token and
challenge. The value of the cookie is sent to APIC as headers as part of each request made from app’s UI to avail
single sign-on.

This file also includes the loading sequence for an app. It contains a message which is displayed when the app is
being loaded.

It contains information to receive the tokens from the APIC and coverts the data into a cookie. You must then get
the tokens used in a cookie and use it in further requests.

APIC regularly sends a token to the application. The app must have the mechanism to receive and update its token
accordingly. You can retrieve the token using Ext.util.Cookies.get, each time you make a request.

<script type="text/javascript">
window.addEventListener('message', function (e) {

if (e.source === window.parent) {
var tokenObj = Ext.decode(e.data, true);
if (tokenObj) {

// Setting the cookie with the tokens received by the APIC
Ext.util.Cookies.set('app_' + tokenObj.appID + '_token', tokenO

bj.token);
Ext.util.Cookies.set('app_' + tokenObj.appID + '_urlToken', tokenO

bj.urlToken);
}

}
});

</script>

Another option for implementation, is to store the tokens from the cookie in variables. In this example, the application
HelloAci uses window.APIC_DEV_COOKIE and window.APIC_URL_TOKEN when sending a request.

<script type="text/javascript">
window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_urlToken");

window.addEventListener('message', function (e) {
if (e.source === window.parent) {

var tokenObj = Ext.decode(e.data, true);
if (tokenObj) {

window.APIC_DEV_COOKIE = tokenObj.token;
window.APIC_URL_TOKEN = tokenObj.urlToken;

}
} });
</script>

   Cisco ACI App Center Developer Guide
24

Developing a Stateful Application
Creating Directory Structure for a Stateful Application



App requests made to the APIC require a custom DevCookie and APIC-Challenge header to be set for proper
authentication. After accessing the tokens, you must include them in the HTTP requests headers.

window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_urlToken");

HttpRequest.prototype.query = function (query, success_func)
{

var Http = new XMLHttpRequest();
var url1 = 'https://'+gSystem+'/'+query;

Http.open("GET", url1, false);

Http.setRequestHeader("DevCookie",window.APIC_DEV_COOKIE);
Http.setRequestHeader("APIC-Challenge",window.APIC_URL_TOKEN);
Http.setRequestHeader ("Accept", "application/json");

Http.onreadystatechange = function(){
if (Http.readyState==4){

if (Http.status==200){
success_func(Http.responseText);

}
}

}

Http.send();
};

Step 6 Create a Image folder.
This folder contains the required docker image such as aci_appcenter_docker_image.tgz for the application.
A docker image contains all the packages required by the app to implement the backend. The image can contain packages
such as Web server to open the API, OpenSSL for security, Cisco APIC Python SDK (cobra) for querying the APIC.
The execution environment for the app should be provided in this image. See Creating a Docker Image, on page 26 on
how to create a docker image and add it to the image folder.

Cisco also provides reference docker images and this image can be downloaded from Cisco DevNet. Cisco provides the
following docker images:

• Docker image containing Cobra SDK.

• Docker image containing SQLite database, Cobra SDK, and Acitoolkit.

• Docker image containing MySQL database, Cobra SDK, and Acitoolkit.

The size of the docker image should not exceed 1 GB. Every stateful application must have a separate docker
image. Sharing of docker images is currently not supported.

If you bring your own docker image or update the Cisco's reference image, you must first unzip or untar the
docker.tgz file, then remove the manifest.json file, and finally tar or zip the docker.tgz file.

Note

When the docker image is mounted, it contains the following directories located in /home/app:

• src— Contains all the source files for the app.

Cisco ACI App Center Developer Guide    
25

Developing a Stateful Application
Creating Directory Structure for a Stateful Application

https://developer.cisco.com/site/aci/docs/


• credentials— Contains the private key to query the APIC.

• data— Contains the data for the distributed file system in the APIC cluster.

• logs— Contains the logs for the app that is collected as part of tech support.

Step 7 Create a Service folder and the files specified in this folder for your app.
This folder contains the service files.

• start.sh (Required)— It contains the first script that is executed after the docker container is installed. It
includes all the initializations required for the application. It also allows you to start any script specified in the
docker image.

• Other files (Optional)— This folder could contain a server.py file that runs a Web server providing an API
for the application. In this case, start.sh file must contain the line starting server.py. In this release, only
python is supported as an execution environment.

Creating a Docker Image
Use this procedure to create the docker image for a stateful app and add it to the image directory. Creating a
docker image is necessary, only if you want to deviate from the reference docker image provided by Cisco
for the ACI App Center. The docker image must be created on a local machine or on a VM that has a docker
engine installed.

Before You Begin

• You have obtained the reference docker image provided by Cisco.

Step 1 Log in to your local workspace.
Step 2 Enter the command docker load -i path to base docker image to upload the reference docker image.
Step 3 (Optional) To remove the Cobra SDK and Acitoolkit package from the reference image perform the following steps.

Removing the packages, will decrease the size of the container.
a) Remove the Cobra SDK and Acitoolkit packages from the reference image.
b) Enter the commands pip uninstall acicobra and pip uninstall acimodel to remove the Cobra SDK package provided

in the reference image.

   Cisco ACI App Center Developer Guide
26

Developing a Stateful Application
Creating a Docker Image



c) Enter the command pip uninstall acitoolkit to remove the Acitoolkit package provided in the reference image.

Step 4 Enter the command docker images to retrieve the image ID.
Step 5 Enter the command docker run -d Image_ID tail -f /dev/null to run the docker container and mount the packages.
Step 6 Enter the command docker ps to retrieve the docker container ID.
Step 7 Enter the command docker exec -it Container_ID /bin/bash to connect to the docker container.
Step 8 Install the packages in the container.
Step 9 Enter the command docker commit Container_ID Image_Name: Tag to commit the updates.
Step 10 Enter the command docker save Image_Name: Tag | gzip -c > path to the output directory to save the image as a tgz

file.
In the docker save command, use Image_Name : Tag and do not use Image_ID.Note

Step 11 Add the tgz file to the image folder of the app.

Metadata Required for Developing an Application
The app.json file contains metadata for the app. The following table lists the metadata required for
developing an app for the Cisco ACI App Center.

Table 2: Metadata to be Specified in the app.json File

RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The ID is a string
and can be up to 32
alpha numeric
characters only.

The unique ID for the
app which is used to
identify the app in the
Cisco ACI App Center
and in the APIC.

NoYesappid

The version is a
stringM.m andM
and m are positive
integers. The values
of M and m are in
the range 0 to 9999.

Version of the
application specifying a
majorM version and a
minor m version.

YesYesversion

The path to the icon
file is a string and
the file name can be
up to 256
characters. The
supported file
formats are jpeg or
png.

The path to the icon file
in the UIAssets folder.
The icon file contains
the thumbnail for the
app. The thumbnail is
used to uniquely identify
the app in the Cisco ACI
App Center.

YesYesiconfile

Cisco ACI App Center Developer Guide    
27

Developing a Stateful Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The name is a string
and can be up to
256 characters.

The name of the
application.

NoYesname

The short
description is a
string and can be up
to 1024 characters.

The description of the
app. This information is
displayed when the app
is listed in the Cisco ACI
App Center.

YesYesshortdescr

The name is a string
and can be up to
256 alpha numeric
characters only.

The name of the
company.

NoYesvendor

The ID is a string
and can be up to 32
alpha numeric
characters only.

The domain ID of the
company.

NoYesvendordomain

Must be unique and
greater than last
approved
application.

The format is
major.minor(mp),
where

• m=maintenance

• p=patch

• major,minor,maintenance
is 0 <= and
<=999

• Patch is
character [a-z]

The minimum APIC
software version
required for the app’s
functionality.

YesYesapicversion

   Cisco ACI App Center Developer Guide
28

Developing a Stateful Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

NoneThe signature required
for the application files.
The signature is issued
by Cisco ACI App
Center after an app is
approved and is allowed
to be distributed.

Only apps with
the signature are
supported by
Cisco. Apps
without the
signature are not
supported.

Note

YesNosignature

The format for the
value is float.

Total cost to download
the app. The default is
$0.

YesNoprice

The format is JSON
dictionary.

The contact information
for the app.

YesNocontact

The phone number
is a string.

The contact phone
number of the company.

YesNocontact-phone

The email is a
string.

The contact email of the
company.

YesNocontact-email

The URL is a string.The contact URL of the
company.

YesNocontact-url

The format is JSON
array.

The permissions
required by the app to
access the various
managed objects and
utilities in the MIT. See
Cisco ACI AAA RBAC
Rules and Privileges for
more information about
user roles, privileges,
and security domains.

It is
recommended to
assign the
minimum set of
permissions that
is required for
the app's
functionality.

Note

YesYespermissions

Cisco ACI App Center Developer Guide    
29

Developing a Stateful Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The permission
level is a string and
can be either read or
write.

The permission level
required for the
application. The
permission level defines
if the user has read or
write access to the app.

NoYespermissionslevel

The format is JSON
dictionary. The key
and value are
strings.

The API supported by
the application. Each
entry in the API list
contains the API URL
and the corresponding
description. The API is
used to query the
backend.

In the API, only
POST andGET
operations are
supported.

Note

YesYesapi

The
metadata is
only
applicable
for a
stateful
app.

Note

The author is a
string and can be up
to 256 characters.

The name of the app
developer.

YesYesauthor

The insertion URL
is a string.

The insertionURL of the
app in the APIC UI. The
URL informs the APIC
on where to insert the
app in the APIC UI. By
default, the user will be
able to run the app from
the Installed Apps tab.
See Integrating the App's
UI in the APIC UI, on
page 52.

YesNoinsertionURL

   Cisco ACI App Center Developer Guide
30

Developing a Stateful Application
Metadata Required for Developing an Application



RestrictionsDescriptionCan Be UpdatedMandatoryParameter

The format is JSON
array.

The categories of the app
used by Cisco ACI App
Center to filter the apps.

The allowed categories
allowed are:

• Tools and Utilities

• Visibility and
Monitoring

• Optimization

• Security

• Networking

• Cisco Automation
and Orchestration

YesYescategory

Data Types for a Stateful App
Important Notes for Persisting, Encrypting, Storing, and Logging Data

• An app can create, write, or read directories or files into the /home/app/data directory. The app’s
/home/app/data directory is persisted and available between two invocations of the app. This
directory is persisted even during APIC switch over due to APIC failure or during upgrades.

• An app must write its data into the /home/app/data directory and tech support logs must be written
into the /home/app/log directory.

• The app data is already protected in the APIC, but App can implement its own encryption mechanism
to store the data and decryption mechanism to read the data.

• If an App needs faster queries to the stored data, it can store the data in a database as opposed to a file.
Cisco provides the following two docker images that have database support. See Cisco DevNet.

◦Docker image providing SQLite database support

◦Docker image providing MySQL database support

• An app can log errors, debugs, and warnings into the /home/app/log directory. These logs are local
to an APIC, unlike the App data directory. Logs can be collected using tech support. See Collecting
Tech Support Logs for a Stateful App, on page 43.

Cisco ACI App Center Developer Guide    
31

Developing a Stateful Application
Data Types for a Stateful App

https://developer.cisco.com/site/aci/docs/


Signing in to the APIC from the Application Using RBAC
Use the procedure to sign in to the APIC from the app using RBAC.

Step 1 Perform the following steps on the front-end files.
a) Link app.js to your app.html front-end form.
b) From the app.js, obtain the APIC_DEV_COOKIE and APIC_URL_Token based on the app vendor and app name.

Example:
window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Infoblox_InfobloxAci_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Infoblox_InfobloxAci_urlToken");

c) Target the API of the backend server. Ensure the API is defined in the app.json metadata file.

Example:
var infobloxUrl = document.location.origin + "/appcenter/Infoblox/InfobloxAci/run_infoblox.json";

d) Make an AJAX call to send the front-end form data to the server on the backend.

Example:
$(document).ready(function(){
$('#submit_button').click(function(e){
// e.preventDefault();
console.log('sending form data...');
$.ajax({
type: 'post',
url: infobloxUrl,
headers: {
"DevCookie": window.APIC_DEV_COOKIE,
"APIC-challenge": window.APIC_URL_TOKEN
},
// data: $(this).serialize(),
data: JSON.stringify({
'ip_address': document.getElementById('inputIPAddress').value,
'username': document.getElementById('inputUsername').value,
'password': document.getElementById('inputPassword').value

}),
contentType: 'application/json;charset=UTF-8',
dataType: 'json',
success: function(){
alert('success');

}
});

});
});

Step 2 Perform the following steps on the backend files.
a) Use COBRA to convert App-Username (Vendor_AppID) to a Cert-User.

Example:
from cobra.model.pol import Uni as PolUni
from cobra.model.aaa import UserEp as AaaUserEp
from cobra.model.aaa import AppUser as AaaAppUser
from cobra.model.aaa import UserCert as AaaUserCert

certUser = 'Infoblox_InfobloxAci'
polUni = PolUni('')

   Cisco ACI App Center Developer Guide
32

Developing a Stateful Application
Signing in to the APIC from the Application Using RBAC



aaaUserEp = AaaUserEp(polUni)
aaaAppUser = AaaAppUser(aaaUserEp, certUser)
aaaUserCert = AaaUserCert(aaaAppUser, certUser)

b) Unpack pKey from the plugin.key file on app. This file is automatically generated when the app is installed.

Example:
pKeyFile = '/home/app/credentials/plugin.key'
with open(pKeyFile, "r") as file:

pKey = file.read()

c) On the server, receive the IP address, username, and password of the app from the front-end input form through the
AJAX call. Forward this data along with the aaaUserCert and pKey to the service's starting script of the app.

Example:
@app.route('/run_infoblox.json', methods=['GET', 'POST'])
def run_infoblox():

infoblox_url = request.json["ip_address"]
infoblox_user = request.json["username"]
infoblox_pw = request.json["password"]

infoblox.StartScript(infoblox_url, infoblox_user, infoblox_pw, aaaUserCert, pKey)

Step 3 Perform the following steps on the service’s starting script file.
a) Sign a POST request to /api/requestAppToken.json including the pKey.

Example:
from OpenSSL.crypto import FILETYPE_PEM, load_privatekey, sign

uri = "/api/requestAppToken.json"

app_token_payload={"aaaAppToken":{"attributes":{"appName": "Infoblox_InfobloxAci"}}}
data = json.dumps(app_token_payload)
payLoad= "POST" + uri + data

p_key = load_privatekey(FILETYPE_PEM, self.p_key_str)

signedDigest = sign(p_key, payLoad.encode(), 'sha256')
signature = base64.b64encode(signedDigest).decode()

b) Create a custom-signed token specific to the /api/requestAppToken.json request.

Example:
user_cert_str= str(self.user_cert.dn)
token = "APIC-Request-Signature=" + signature + ";"
token += "APIC-Certificate-Algorithm=v1.0;"
token += "APIC-Certificate-Fingerprint=fingerprint;"
token += "APIC-Certificate-DN=" + user_cert_str

c) Make a request to /api/requestAppToken.json using the payload specified before and validate with the
token created. The IP address of APIC in relation to the app is 172.17.0.1.

Example:
session= requests.session()
r= session.post("http://172.17.0.1/api/requestAppToken.json", data=data, headers={'Cookie' : token
})
auth = json.loads(r.text)
auth_token = auth['imdata'][0]['aaaLogin']['attributes']['token']

Cisco ACI App Center Developer Guide    
33

Developing a Stateful Application
Signing in to the APIC from the Application Using RBAC



d) Use this auth_token to create more requests and to create a WebSocket connection. Refresh the auth_token every
five minutes using the /api/aaaRefresh.json method. See Cisco APIC REST API Configuration Guide for
more information.

   Cisco ACI App Center Developer Guide
34

Developing a Stateful Application
Signing in to the APIC from the Application Using RBAC



C H A P T E R  4
Packaging and Publishing an Application

This chapter contains the following sections:

• About Packaging and Publishing an Application, page 35

• Prerequisites, page 35

• Packaging an Application, page 36

• Cisco ACI App Center, page 39

• Cisco APIC, page 40

About Packaging and Publishing an Application
After developing your application, you must validate and package the application. You can package an
application and upload the packaged application directly to APIC or distribute the app through Cisco ACI
App Center.

Prerequisites
• You have packager cisco_aci_app_packager-1.0.tar.gz file from Cisco DevNet. The
packager file contains the packageraci-app-packager.py, validatoraci_app_validator.py,
and licenseCisco_App_Center_License.txt files, required for packaging the app. The packager
and validator files must be in the same directory. If the Cisco_App_Center_License.txt is not
present, the app cannot be validated and will not be packaged.

• You have the Python version 2.7.x with the following modules:

◦Pycrypto, version 2.6.1

◦Python-magic, version 0.4.12

◦Validators, version 0.10.3

• For publishing the app to Cisco ACI App Center, you must have a developer account to access the Cisco
ACI App Center.

Cisco ACI App Center Developer Guide    
35

https://developer.cisco.com/site/aci/docs/
https://aciappcenter.cisco.com
https://aciappcenter.cisco.com


You have generated the keys for the application, to publish the app to Cisco ACI App Center. See
Generating Keys for an Application, on page 39.

Packaging an Application
Use this procedure to validate and package an application. You can package an application and upload the
packaged application directly to APIC or distribute the app through Cisco ACI App Center.

Step 1 Log in to your workspace.
Step 2 To install the packager file, enter the command pip install cisco_aci_app_packager-1.0.tar.gz.
Step 3 To extract the package, enter the command tar xvfz cisco_aci_app_packager-1.0.tar.gz
Step 4 Do one of the following:

• To upload the package directly to APIC, enter the command python aci-app-packager.py -f path to the folder
location of the app to be packaged to invoke the script.

• To distribute the app through Cisco ACI App Center, enter the command python aci-app-packager.py -f path to
the folder location of the app to be packaged -p path to the folder location of the private key downloaded from the
Cisco ACI App Center to invoke the script.

The packager uses the validator to validate the directory structure of the app and the app metadata. If the validation is
successful, the app is packaged. If the app cannot be validated, an error message is displayed. Ensure that the packager
and validator files are present in the same directory.

The output of the packaged app is located in the app directory. The package name for the app is created using the meta
data from the app.json file. This ensures that every package name is unique. The following format is used to create
the package name:

vendordomain-appid-version.aci

Example:
Packing an app for uploading the package to APIC
python aci-app-packager.py -f /local/varbahara/danube/mgmt.git/appstore/apps/ContractViewer

Validation of mandatory files and directories successful
Retrieving app meta data successful
Validation of app meta data successful
App successfully packaged /local/varbahara/danube/mgmt.git/appstore/apps/Cisco-ContractViewer-1.0.aci

Packaging an app for distributing an app through the Cisco ACI App Center
python aci_app_packager.py -f /local/sunverma/ContractViewer -p /local/sunverma/my_private_key.pem
Validation of mandatory files and directories successful
Retrieving app meta data successful
Validation of app meta data successful
App successfully packaged - /local/sunverma/Cisco-ContractViewer-1.0.aci

   Cisco ACI App Center Developer Guide
36

Packaging and Publishing an Application
Packaging an Application



Example for Packaging an Application
Example workflow for packaging an application
Install cisco_aci_app_packager
==============================

user@osboxes:~/app$ pip install cisco_aci_app_packager-1.0.tar.gz
Processing ./cisco_aci_app_packager-1.0.tar.gz
Collecting flask (from cisco-aci-app-packager===1.0)
Downloading Flask-0.11.1-py2.py3-none-any.whl (80kB)
100% |████████████████████████████████| 81kB 1.9MB/s

Collecting pycrypto (from cisco-aci-app-packager===1.0)
Downloading pycrypto-2.6.1.tar.gz (446kB)
100% |████████████████████████████████| 450kB 1.0MB/s

Collecting validators (from cisco-aci-app-packager===1.0)
Downloading validators-0.11.1.tar.gz

Collecting python-magic (from cisco-aci-app-packager===1.0)
Downloading python-magic-0.4.12.tar.gz

Collecting click>=2.0 (from flask->cisco-aci-app-packager===1.0)
Downloading click-6.6-py2.py3-none-any.whl (71kB)
100% |████████████████████████████████| 71kB 4.3MB/s

Collecting Werkzeug>=0.7 (from flask->cisco-aci-app-packager===1.0)
Downloading Werkzeug-0.11.11-py2.py3-none-any.whl (306kB)
100% |████████████████████████████████| 307kB 1.7MB/s

Collecting Jinja2>=2.4 (from flask->cisco-aci-app-packager===1.0)
Downloading Jinja2-2.8-py2.py3-none-any.whl (263kB)
100% |████████████████████████████████| 266kB 2.3MB/s

Collecting itsdangerous>=0.21 (from flask->cisco-aci-app-packager===1.0)
Downloading itsdangerous-0.24.tar.gz (46kB)
100% |████████████████████████████████| 51kB 4.4MB/s

Collecting six>=1.4.0 (from validators->cisco-aci-app-packager===1.0)
Downloading six-1.10.0-py2.py3-none-any.whl

Collecting decorator>=3.4.0 (from validators->cisco-aci-app-packager===1.0)
Downloading decorator-4.0.10-py2.py3-none-any.whl

Collecting MarkupSafe (from Jinja2>=2.4->flask->cisco-aci-app-packager===1.0)
Downloading MarkupSafe-0.23.tar.gz

Building wheels for collected packages: cisco-aci-app-packager, pycrypto, validators,
python-magic, itsdangerous, MarkupSafe
Running setup.py bdist_wheel for cisco-aci-app-packager ... done
Stored in directory:

/home/user/.cache/pip/wheels/56/ed/5d/4be7c57b82475f9c99e96c3dddbe45796456cee0a2d4280b8b
Running setup.py bdist_wheel for pycrypto ... done
Stored in directory:

/home/user/.cache/pip/wheels/80/1f/94/f76e9746864f198eb0e304aeec319159fa41b082f61281ffce
Running setup.py bdist_wheel for validators ... done
Stored in directory:

/home/user/.cache/pip/wheels/9a/ca/46/13ef93cd6d834fc0c2a144060ea0964fc0558932ae82b7241c
Running setup.py bdist_wheel for python-magic ... done
Stored in directory:

/home/user/.cache/pip/wheels/f8/61/e5/dd1029e23a94a40b995eab1a9e06a1cf874c7745a383af5034
Running setup.py bdist_wheel for itsdangerous ... done
Stored in directory:

/home/user/.cache/pip/wheels/fc/a8/66/24d655233c757e178d45dea2de22a04c6d92766abfb741129a
Running setup.py bdist_wheel for MarkupSafe ... done
Stored in directory:

/home/user/.cache/pip/wheels/a3/fa/dc/0198eed9ad95489b8a4f45d14dd5d2aee3f8984e46862c5748
Successfully built cisco-aci-app-packager pycrypto validators python-magic itsdangerous
MarkupSafe
Installing collected packages: click, Werkzeug, MarkupSafe, Jinja2, itsdangerous, flask,
pycrypto, six, decorator, validators, python-magic, cisco-aci-app-packager
Successfully installed Jinja2 MarkupSafe Werkzeug cisco-aci-app-packager click decorator
flask itsdangerous pycrypto python-magic six validators
You are using pip version 8.1.2, however version 9.0.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.

Validate installation
=====================

Cisco ACI App Center Developer Guide    
37

Packaging and Publishing an Application
Example for Packaging an Application



user@osboxes:~/app$ python
Python 2.7.12+ (default, Sep 17 2016, 12:08:02)
[GCC 6.2.0 20160914] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import Crypto
>>> import magic
>>> import validators
>>> import flask
>>>

Extract the package
===================

user@osboxes:~/app$ tar xvfz cisco_aci_app_packager-1.0.tar.gz
cisco_aci_app_packager-1.0/
cisco_aci_app_packager-1.0/setup.py
cisco_aci_app_packager-1.0/packager/
cisco_aci_app_packager-1.0/packager/__init__.py
cisco_aci_app_packager-1.0/packager/aci_app_packager.py
cisco_aci_app_packager-1.0/packager/aci_app_validator.py
cisco_aci_app_packager-1.0/packager/Cisco_App_Center_Customer_Agreement.docx
cisco_aci_app_packager-1.0/packager/Cisco_App_Center_License.txt
cisco_aci_app_packager-1.0/packager/Cisco_App_Center_Export_Compliance_Questionnaire.docx
cisco_aci_app_packager-1.0/setup.cfg
cisco_aci_app_packager-1.0/PKG-INFO
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/top_level.txt
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/requires.txt
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/PKG-INFO
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/dependency_links.txt
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/not-zip-safe
cisco_aci_app_packager-1.0/cisco_aci_app_packager.egg-info/SOURCES.txt
cisco_aci_app_packager-1.0/README.rst

Go to packager directory
=======================

user@osboxes:~/app$ cd cisco_aci_app_packager-1.0/packager/

Use package command to package your app
=======================================

Without developer signature:

user@osboxes:~/app/cisco_aci_app_packager-1.0/packager$ python aci_app_packager.py -f
/home/user/app/VisuDash
Validation of mandatory files and directories successful
Retrieving app meta data successful
Validation of app meta data successful
App successfully packaged - /home/user/app/Cisco-VisuDash-1.0.aci

With developer signature:

user@osboxes:~/app/cisco_aci_app_packager-1.0/packager$ python aci_app_packager.py -f
/home/user/app/VisuDash -p /home/user/app/aci_app_qa_private_key.pem
Validation of mandatory files and directories successful
Retrieving app meta data successful
Validation of app meta data successful
App successfully packaged - /home/user/app/Cisco-VisuDash-1.0.aci

   Cisco ACI App Center Developer Guide
38

Packaging and Publishing an Application
Example for Packaging an Application



Cisco ACI App Center

Generating Keys for an Application
Use this procedure to generate developer signature or private keys for the application. The signature is required
for packaging the app before publishing the app to the Cisco ACI App Center.

Before You Begin

• You have a developer account to access the Cisco ACI App Center.

Step 1 Log in to Cisco ACI App Center.
Step 2 ChooseMy Account > Developer Signature.
Step 3 Click Request New Key to generate the keys.

Once you generate the keys you can use the keys to package the app and then publish the app to Cisco ACI App Center.

Publishing an Application
Use this procedure to upload and publish the application to Cisco ACI App Center. After you publish the app
to the Cisco ACI App Center, the app is validated, approved, and certified by Cisco ACI App Center. Once
the app is certified, users can download and install the app to APIC.

Before You Begin

• You have a developer account to access the Cisco ACI App Center.

• You have signed and packaged the application. See Packaging an Application, on page 36.

Step 1 Log in to Cisco ACI App Center.
Step 2 Choose Developer Dashboard.

The Developer Dashboard is displayed

Step 3 Click Publish a new app.
Step 4 Click Upload to upload the app signed and packaged by the developer to the Cisco ACI App Center.

The uploaded app is then displayed in the Dashboard. The app is then validated and sent for approval. Once the app is
approved, it is certified by Cisco ACI App Center and available for downloading.

Cisco ACI App Center Developer Guide    
39

Packaging and Publishing an Application
Cisco ACI App Center

https://aciappcenter.cisco.com
https://aciappcenter.cisco.com


Downloading Application From Cisco ACI App Center
Use this procedure to download an approved application from the Cisco ACI App Center.

Step 1 Log in to Cisco ACI App Center as an end user.
Step 2 Click Browse Apps.

The list of apps available for download are displayed. You can click the list icon to display the available apps in the list
view or you can click the grid icon to display the available apps in a grid view.

Step 3 Select an app to view the details.
Step 4 Click Download. Review the license agreement and click Agree and Download.

The app is downloaded to your local machine.

Cisco APIC

Enabling Signature Validation for an Application
All apps published to Cisco ACI App Center are signed by Cisco. An admin user can choose to enable signature
validation for all the apps on the APIC. Once you enable signature validation, only the apps signed by Cisco
can be installed on the APIC. By default, signature validation for an app is disabled.

Enable signature validation for an app, using the following REST API POST:

Example:
https://<APIC IP>/api/plgnhandler/mo/.xml:
<apPluginPolContr>

<apPluginPol verifySignature="enable"/>
</apPluginPolContr>

Uploading an Application to APIC
Use this procedure to upload your packaged application to APIC. Only an APIC admin user can upload and
install an application.

Before You Begin

• You have developed your application.

   Cisco ACI App Center Developer Guide
40

Packaging and Publishing an Application
Downloading Application From Cisco ACI App Center

https://aciappcenter.cisco.com


• You have packaged your application.

Step 1 Log in to the Cisco APIC.
Step 2 On the menu bar, choose Apps > All Apps.
Step 3 Click the + icon to add an app.
Step 4 Click Browse to upload the app.
Step 5 Click Submit to upload the app.

After the app is uploaded, the thumbnail of the uploaded app is displayed under the All Apps tab.

Installing an Application
Use this procedure to install your application to APIC. Only an APIC admin user can upload and install an
application.

Before You Begin

• You have developed the application.

• You have packaged the application.

• You have uploaded the application to APIC.

Step 1 Log in to Cisco APIC.
Step 2 On the menu bar, choose Apps > All Apps.
Step 3 Select the app and verify the User Name, User Role, Permissions for the app. Specify the Security Domain for the app.

See Understanding Permissions for an Application, on page 6 for more information.

Step 4 Click Install to install the app. You can also select Install from the Actions drop-down list to install an app.
Once the app is installed, it is displayed on the Installed Apps tab.

Step 5 To launch an app, select the app from the Installed Apps tab. In the app.json file, if an Insertion URL is specified,
then the app is also inserted in the APIC UI in the location as specified in the insertion URL. You can then launch the
app from location where the app is inserted in the APIC UI.

Cisco ACI App Center Developer Guide    
41

Packaging and Publishing an Application
Installing an Application



   Cisco ACI App Center Developer Guide
42

Packaging and Publishing an Application
Installing an Application



C H A P T E R  5
Troubleshooting

This chapter contains the following sections:

• Troubleshooting an Application, page 43

Troubleshooting an Application
Troubleshooting the Front-End of the App

• Open the JavaScript console of the app in any browser, to troubleshoot the front-end of an app.

• Monitor the API requests called when using the application.

Collecting Tech Support Logs for a Stateful App

1 Log in to the tech support UI.

2 Create an On Demand tech support policy.

3 For an On Demand tech support policy, select For Apps option.

4 Select the name of the app from the App drop-down list.

5 The logs will be located in the /data2/logs/app-name directory. The app data will be located in
the /gluster/gv0/app-name directory.

Troubleshooting the Backend of a Stateful App

You can modify the source files running in the backend on the service directory on the APIC. You must then
uninstall and reinstall the app on the APIC for the changes to take effect.

Troubleshooting an Installed Application

To report any issues, regarding an installed application you can send an email to the app developer. Select
the app to view the details such as contact information.

Cisco ACI App Center Developer Guide    
43



Troubleshooting RBAC

After installing an app, ensure that the Managed Objects (MO) for the app user, user role, and security domain
are created.

1 Log in to Visore to access the MIT for the app. See the Cisco APIC REST API Configuration Guide for
information about using Visore.

2 Run a query to verify that the aaaRole, appAppUser MOs are created for the app.

3 Run a query to verify that the MO apPlugin is created. Verify that the fields configInfo is empty and
configSt is populated as none.

Verifying Creation of Managed Objects for an Application

After you upload an app to APIC, ensure that theManaged Objects (MOs) firmwareFirmware and apPlugin
are created.

1 Log into Visore. See the Cisco APIC REST API Configuration Guide for information about using Visore.

2 Run a query to verify that the MOs firmwareFirmware and apPlugin are created.

3 For the apPluginMO, verify that the fields permissions, permissionsLevel, pluginState, pluginType,
and securityDomain are defined.

4 For a stateful app, verify that the apPluginApplianceMO is created for all the APICs in a cluster. The
leader APIC will have the fields cntrInstID, and cntrInstIP populated with the container ID and IP
address.

Troubleshooting Scenarios

The following table summarizes common troubleshooting scenarios for developing an app for the Cisco ACI
App Center.

SolutionProblem

Access the app.log located at
/data2/logs/<Vendor>_<AppID>/logs in
the APIC to troubleshoot the issue.

The status of the docker is displayed as Restarting
and you are unable to ssh to the docker container.
This issue is encountered if there is an issue with the
starting script or start.sh.

   Cisco ACI App Center Developer Guide
44

Troubleshooting
Troubleshooting an Application



C H A P T E R  6
Appendix

This chapter contains the following sections:

• Example of Files Used in a Stateless Application, page 45

• Example of Files Used in a Stateful Application, page 47

• Integrating the App's UI in the APIC UI, page 52

• Permissions, page 53

Example of Files Used in a Stateless Application
This section contains examples of files used in Contract Viewer application.

• See the Cisco APIC REST API Configuration Guide for information about APIC REST APIs.

• To view source code of Contract Viewer application, see Cisco DevNet.

The Contract Viewer app provides information regarding the flow of traffic between endpoint groups on a
contract basis. It allows the user to visualize traffic flow in the Consumer, Provider, Filter and Contract mode.
A DVR is also provided to enable playback of traffic. The app provides a visual and effective way to
troubleshoot and detect unexpected traffic behavior.

Example of app.json file for Contract Viewer application
{

"apicversion":"2.2(1a)",
"appid":"ContractViewer",
"author":"UVX",
"category":[

"Visibility and Monitoring"
],
"contact":{

"contact-email":"aciappcenter-support@cisco.com",
"contact-url":"http://www.cisco.com/go/aci"

},
"iconfile":"TrafficMap.jpg",
"insertionURL":"fv:infoTenant:center",
"name":"Contract Viewer",
"permissions":[

"tenant-epg",
"tenant-network-profile",

Cisco ACI App Center Developer Guide    
45

https://developer.cisco.com/site/aci/docs/


"tenant-security"
],
"permissionslevel":"read",
"shortdescr":"Contract Viewer for the stats data between EPGs",
"vendor":"Cisco",
"vendordomain":"Cisco",
"version":"1.0"

}

Example of app.html file for Contract Viewer application
<!DOCTYPE html>
<html>
<meta charset="utf-8">
<body>
<link rel="stylesheet" type="text/css" href="bipartitelayout.css">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">
<script src="scripts/d3/d3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/async/1.5.2/async.js"></script>
<script type="text/javascript" src="/extjs/ext-all-debug.js"></script>
<script src="scripts/jquery/jquery.2.1.4.js"></script>
<script src="scripts/jquery/jquery.cookie.js"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.8.3/underscore.js"></script>
<script src="scripts/jquery/jquery.leanModal.min.js"></script>
<script src="scripts/biPartite.js"></script>
<script src="scripts/CreateHttpRequest.js"></script>
<script src="scripts/drawFuncAndUtils.js"></script>
<script src="scripts/zeroTrafficCase.js"></script>
<script src="scripts/helpers.js"></script>
<script src="scripts/FilterQueries.js"></script>
<script src="scripts/handleTenantRequest.js"></script>
<script src="scripts/appDeploySlider.js"></script>
<link rel="stylesheet" href="font-awesome.min.css" />
<link href="https://gitcdn.github.io/bootstrap-toggle/2.2.0/css/bootstrap-toggle.min.css"
rel="stylesheet">
<script
src="https://gitcdn.github.io/bootstrap-toggle/2.2.0/js/bootstrap-toggle.min.js"></script>
<link rel="stylesheet" type="text/css" href="d3.slider.css" media="screen" />
<script>

$(function(){
if (httpLoginRequest()) {

console.log("SUCCESS!");
} else {

console.log("FAIL!");
}

});

</script>
<div id="graph-container"></div>
<div class="container">

<div id="player" class="hidden">
<button title="Rewind" type="button" id="button_rev" class="btn"

onclick='buttonRevPress()'>
<i class="fa fa-backward"></i>

</button>

<button title="Pause" type="button" id="button_pause" class="btn"
onclick='buttonPausePress()'>

<i class="fa fa-pause"></i>
</button>

<button title="Play" type="button" id="button_play" class="btn"
onclick='buttonPlayPress()'>

<i class="fa fa-play"></i>
</button>

<button title="Switch to Compact View" type="button" id="overallView" class="btn"
onclick='showOverallView()'>

<i class="glyphicon glyphicon-eye-open"></i>

   Cisco ACI App Center Developer Guide
46

Appendix
Example of Files Used in a Stateless Application



</button>
<button title="Refresh" type="button" id="refreshView" class="btn"

onclick='refreshView()'>
<i class="glyphicon glyphicon-refresh"></i>

</button>
<input type="checkbox" id="isFilterSelected" checked data-toggle="toggle"

data-on="Contract View" data-off="Filter View" data-onstyle="success" data-offstyle="info"
data-width="120">

</div>
<div id="filterToggleOnly" class="hidden">

<input type="checkbox" id="isFilterSelectedZeroTrafficCase" checked
data-toggle="toggle" data-on="Contract View" data-off="Filter View" data-onstyle="success"
data-offstyle="info" data-width="120">

</div>
</div>
<div id="slider-container">

<div id="slider"></div>
</div>
<div id="traffic-slider"></div>
<div id="traffic-container"></div>
</body>
</html>

Example of Files Used in a Stateful Application
This section contains examples of files used in Hello ACI application.

• See the Cisco APIC REST API Configuration Guide for information about APIC REST APIs.

• To view source code of Hello ACI application, see Cisco DevNet.

The Hello ACI application is a stateful application that displays a list of tenants.

Example of app.json file for Hello ACI application
{

"api":{
"getTenant.json":"Get tenant information"

},
"apicversion":"2.2(1a)",
"appid":"HelloAciStateful",
"author":"ABC EFG",
"category":[

"Visibility and Monitoring"
],
"contact":{

"contact-email":"aciappcenter-support@cisco.com",
"contact-url":"http://www.cisco.com/go/aci"

},
"iconfile":"HelloAci.png",
"name":"HelloAciStateful",
"permissions":[

"tenant-qos",
"tenant-security",
"tenant-epg",
"tenant-connectivity-l3"

],
"permissionslevel":"write",
"shortdescr":"This app demonstrates an example of an stateful app.",
"vendor":"Cisco",
"vendordomain":"Cisco",
"version":"1.0"

}

Cisco ACI App Center Developer Guide    
47

Appendix
Example of Files Used in a Stateful Application

https://developer.cisco.com/site/aci/docs/


Example of readme.txt file for Hello ACI application
HELLO ACI
=====================

# Introduction

This application aims at providing a toy example as a stateful app.

# Components

This application shows the different tenants in the fabric. It is composed of:
- a frontend: web UI, see the UIAssets/ directory,
- a backend: docker container, see the Service/ directory.

# Workflow

The workflow for this application is the following:

1. The user opens the application. This triggers a request from the frontend towards the
backend:

APIC IP/appcenter/Cisco/HelloAciStateful/getTenant.json

2. At the backend side, upon reception of this request, the web server queries the APIC for
the tenants ('fvTenant').

3. Upon reception of the reply from the APIC, the web server forges a response containing
those tenants.

4. The frontend receives this response, reads it and generates a graph showing the different
tenants.

Example of app.html file for Hello ACI application
<!DOCTYPE html>
<meta charset="utf-8">

<!-- Style -->
<link rel="stylesheet" type="text/css" href="style.css">

<!-- Import of Javascript files -->
<!-- ext framework is available from the APIC -->
<script type="text/javascript" src="/extjs/ext-all-debug.js"></script>

<script type="text/javascript" src="jquery/jquery.2.1.4.js"></script>
<script type="text/javascript" src="misc.js"></script>
<script type="text/javascript" src="d3/d3.min.js"></script>

<!-- Token management-->

<!--
Get the tokens at first launch.

When the app is first launched, the tokens are contained is a cookies, named
app_VENDORDOMAIN_APPID_token and app_VENDORDOMAIN_APPID_urlToken.
In this case, we're using Ext to retrieve those tokens and put them into
window.APIC_DEV_COOKIE and window.APIC_URL_TOKEN.

-->
<script type="text/javascript">
window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_urlToken");

</script>

<!--
Handle the refresh of the tokens.

This will automatically update window.APIC_DEV_COOKIE and window.APIC_URL_TOKEN

   Cisco ACI App Center Developer Guide
48

Appendix
Example of Files Used in a Stateful Application



when the APIC sends new tokens to the application.
-->
<script type="text/javascript">
window.addEventListener('message', function (e) {
if (e.source === window.parent) {

var tokenObj = Ext.decode(e.data, true);
if (tokenObj) {

window.APIC_DEV_COOKIE = tokenObj.token;
window.APIC_URL_TOKEN = tokenObj.urlToken;

}
}

});
</script>

<!-- Main logic / visualization -->
<script type="text/javascript" src="app.js"></script>

<body>
<div id="tree-container"></div>

</body>
</html>

Example of app-start.html file for Hello ACI application
<html>
<head>

<title>Loading</title>
<meta content="text/html"/>

<link rel="stylesheet" type="text/css"
href="/insieme/stromboli/resources/css/insieme-ext-theme.css" />
<script type="text/javascript" src="/extjs/ext-all-debug.js"></script>

<script type="text/javascript">
function onBodyLoad() {
var arr, url, newUrl = "app.html", myMask = new Ext.LoadMask(Ext.getBody(), {msg:"Please

wait..."});
myMask.show();
window.addEventListener('message', function (e) {
myMask.hide();
myMask.destroy();
if (e.source === window.parent) {
var tokenObj = Ext.decode(e.data, true);
if (tokenObj) {
Ext.util.Cookies.set('app_' + tokenObj.appId + '_token', tokenObj.token);
Ext.util.Cookies.set('app_' + tokenObj.appId + '_urlToken', tokenObj.urlToken);
url = window.location.href;
arr = url.split("?");
if (arr.length >= 2 && !Ext.isEmpty(arr[1])) {
newUrl += "?" + arr[1];
}
window.location.href = newUrl;
} else {
Ext.Msg.alert("Error", "Can not load token from backend.");
}
}
});
}
</script>

</head>
<body onLoad="onBodyLoad()"></body>
</html>

Example of app.js file for Hello ACI application

function formatAPICResp(response) {
var config = {

name: "",

Cisco ACI App Center Developer Guide    
49

Appendix
Example of Files Used in a Stateful Application



children: []
};
config["name"] = "APIC Tenant Config";
for (var i = 0; i < response.imdata.length; i++) {

config.children.push({
"name" : response.imdata[i].fvTenant.attributes.dn,
"children" : [],

});
}
return config;

}

// Send a request to the backend (docker container) to retrieve the tenants.
var queryUrl = document.location.origin + "/appcenter/Cisco/HelloAciStateful/getTenant.json";
d3.json(queryUrl)
.header("DevCookie", window.APIC_DEV_COOKIE)
.header("APIC-challenge", window.APIC_URL_TOKEN)
.get(function(error, flare) {

// Callback to build the graph after the reply of the backend

treeData = formatAPICResp(flare);

Example of start.sh file for Hello ACI application
#!/bin/sh
/usr/sbin/sshd

# Run the server
python /home/app/src/Service/plugin_server.py

Example of server.py file for Hello ACI application
from flask import Flask
from cobra.mit.access import MoDirectory
from cobra.mit.session import CertSession
from cobra.mit.session import LoginSession
from cobra.model.pol import Uni as PolUni
from cobra.model.aaa import UserEp as AaaUserEp
from cobra.model.aaa import AppUser as AaaAppUser
from cobra.model.aaa import UserCert as AaaUserCert
from cobra.internal.codec.jsoncodec import toJSONStr, fromJSONStr
from cobra.internal.codec.xmlcodec import _toXMLStr, fromXMLStr

import json
import logging

app = Flask(__name__)

def createCertSession():
''' Creates a session with the APIC.
Returns a CertSession (Cobra SDK) that can be used to query the APIC.
'''

certUser = 'Cisco_HelloAciStateful' # Format: <Vendordomain>_<AppId>
pKeyFile = '/home/app/credentials/plugin.key' # Fixed for every app

polUni = PolUni('')
aaaUserEp = AaaUserEp(polUni)
aaaAppUser = AaaAppUser(aaaUserEp, certUser)

aaaUserCert = AaaUserCert(aaaAppUser, certUser)

with open(pKeyFile, "r") as file:
pKey = file.read()

apicUrl = 'https://172.17.0.1/' # Fixed, APIC's gateway for the app

session = CertSession(apicUrl, aaaUserCert.dn, pKey, secure=False)
return session

   Cisco ACI App Center Developer Guide
50

Appendix
Example of Files Used in a Stateful Application



def respFormatJsonMos(mos, totalCount):
''' Format a JSON reply from MOs.
Inputs:

- mos: array of MOs
- totalCount: number of MOs

Output:
- JSON dictionary, following this format
{

"imdata":[{<MO>}, {<MO>},...],
"totalCount": ...

}

Example:
{

"imdata":[
{

"fvTenant":{
"attributes":{

"dn":"uni/tn-common",
...

}
}

},
{

"fvTenant":{
"attributes":{

"dn":"uni/tn-infra",
...

}
}

}
],
"totalCount":"3"

}
'''
jsonStr = '{"totalCount": "%s", "imdata": [' % totalCount
first = True
for mo in mos:

if not first:
jsonStr += ','

else:
first = False

jsonStr += toJSONStr(mo, includeAllProps=True)
jsonStr += ']}'
jsonDict = json.loads(jsonStr)

return json.dumps(jsonDict)

@app.route('/')
def hello_world():

''' Test the connectivity.
'''
logging.info('Received API Request from Client - /')
return 'Cisco HelloACI PlugIn Version 1.0.'

@app.route('/getTenant.json')
def get_tenant():

''' Queries the APIC for tenants and replies with those tenants,
in a JSON format.
'''
logging.info('Received API request from client, api: /getTenant.json')

# Create session
loginSession = createCertSession()

# Create object to go through the MIT
moDir = MoDirectory(loginSession)

moDir.login()
# Query for the tenants
tenantMo = moDir.lookupByClass('fvTenant');

Cisco ACI App Center Developer Guide    
51

Appendix
Example of Files Used in a Stateful Application



moDir.logout()

logging.info('Sending response')
return respFormatJsonMos(tenantMo, tenantMo.totalCount)

if __name__ == '__main__':
# Setup logging
fStr='%(asctime)s %(levelname)5s %(message)s'
logging.basicConfig(filename='/home/app/log/helloaci.log', format=fStr,

level=logging.DEBUG)

# Run app flask server
app.run(host='0.0.0.0', port=80)

Example of app.js file for Hello ACI application
function getUrlVars() {

var vars = {};
var parts = window.location.href.replace(/[?&]+([^=&]+)=([^&]*)/gi,
function(m,key,value) {
vars[key] = value;

});
return vars;

}

window.APIC_DEV_COOKIE = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_token");
window.APIC_URL_TOKEN = Ext.util.Cookies.get("app_Cisco_HelloAciStateful_urlToken");

Integrating the App's UI in the APIC UI
Use this procedure to integrate your app’s UI into the APIC’s UI using the insertionURL field in the
app.json.

Step 1 Log in to APIC.
Step 2 Choose admin > Show Debug Info > .
Step 3 Navigate to the page where the app will be inserted in the APIC. The following information will be listed in the bottom

of the page.

“Current Screen:x.y.z [INSERTION_URL ] | …“

For example, if the app is to be integrated in the tenant’s UI, the INSERTION_URL is "[fv:infoTenant:center:a]".
Where “:a” part corresponds to the Dashboard tab in the tenant’s UI.

To integrate the app's UI as one of the tabs of the tenants, you must add the line “insertionURL”:”fv:infoTenant:center”
in the app.json file.

   Cisco ACI App Center Developer Guide
52

Appendix
Integrating the App's UI in the APIC UI



Note • Use the following function to retrieve the URL variables.

function getUrlVars() {
var vars = {};
var parts = window.location.href.replace(/[?&]+([^=&]+)=([^&]*)/gi,

function(m,key,value) {
vars[key] = value;

});
return vars;

• The function returns a dictionary where the keys corresponds to the names of the variables and the value
correspond to the value of the variable.

Object
dn: "uni/tn-common"
_proto_:Object

Permissions
The following table provides information on some of the Cisco ACI permissions required for developing an
ACI app.

DescriptionPermission

Complete access to everything (combine ALL roles)admin

Used for configuring authentication, authorization,
accounting, and import or export policies.

aaa

Used to read all the objects in APIC's VMM inventory
required for VM connectivity.

vmm-connectivity

Used for contract related configurations for a tenant.vmm-security

Used for managing policies for VM networking.vmm-policy

Used to read VM and Hypervisor endpoints in the
APIC's VMM inventory.

vmm-ep

Not used by VMM policies.vmm-protocol-ops

Only used as Write access for firmware policies.tenant-qos

Used for contract related configurations for a tenant.tenant-security

Cisco ACI App Center Developer Guide    
53

Appendix
Permissions



DescriptionPermission

Used for managing tenant configurations, such as
deleting and creating network profiles, and deleting
and creating endpoint groups.

tenant-network-profile

Used for managing tenant configurations such as
deleting or creating endpoint groups, VRFs, and
bridge domains.

tenant-epg

Used for Layer 1 connectivity changes, including
bridge domains and subnets.

tenant-connectivity-l1

Used for Layer 2 connectivity changes, including
bridge domains and subnets.

tenant-connectivity-l2

Used for Layer 3 connectivity changes, including
VRFs.

tenant-connectivity-l3

Used for tenant in-band and out-of-bandmanagement
connectivity configurations and for debugging or
monitoring policies such as atomic counters and
health score.

tenant-connectivity-mgmt

Used for atomic counter, diagnostic, and image
management policies on leaf switches and spine
switches.

tenant-connectivity-util

Used for managing configurations for Layer 1
protocols under a tenant.

tenant-protocol-l1

Used for managing configurations for Layer 2
protocols under a tenant.

tenant-protocol-l2

Used for managing configurations for Layer 3
protocols under a tenant.

tenant-protocol-l3

Only used as write access for firmware policies.tenant-protocol-mgmt

Used for debugging, monitoring, observer policies
such as traceroute, ping, oam, and eptrk.

tenant-protocol-util

Used for tenant traceroute policies.tenant-protocol-ops

Used for write access firmware policies.tenant-ex-connectivity-l1

Used for managing tenant L2Out configurations.tenant-ex-connectivity-l2

Used for managing tenant L3Out configurations.tenant-ex-connectivity-l3

   Cisco ACI App Center Developer Guide
54

Appendix
Permissions



DescriptionPermission

Used as write access for firmware policies.tenant-ex-connectivity-mgmt

Used for debugging, monitoring, observer policies
such as traceroute, ping, oam, and eptrk.

tenant-ex-connectivity-util

Used for managing tenant external Layer 1 protocols.
Generally only used for write access for firmware
policies.

tenant-ext-protocol-l1

Used for managing tenant external Layer 2 protocols.
Generally only used for write access for firmware
policies.

tenant-ext-protocol-l2

Used for managing tenant external Layer 3 protocols
such as BGP, OSPF, PIM, and IGMP.

tenant-ext-protocol-l3

Used as write access for firmware policies.tenant-ext-protocol-mgmt

Used for debugging, monitoring, observer policies
such as traceroute, ping, oam, and eptrk.

tenant-ext-protocol-util

Used for Layer 1 configuration under the fabric.
Example: selectors and port Layer 1 policy and vPC
protection.

fabric-connectivity-l1

Used in firmware and deployment policies for raising
warnings for estimating policy deployment impact.

fabric-connectivity-l2

Used for Layer 3 configuration under the fabric.
Example: Fabric IPv4, IPv6, and MAC protection
groups.

fabric-connectivity-l3

Used for atomic counter and diagnostic policies on
leaf switches and spine switches.

fabric-connectivity-mgmt

Used for atomic counter, diagnostic, and image
management policies on leaf switches and spine
switches.

fabric-connectivity-util

Used for Layer 1 protocol configurations under the
fabric.

fabric-protocol-l1

Used for Layer 2 protocol configurations under the
fabric.

fabric-protocol-l2

Used for Layer 3 protocol configurations under the
fabric.

fabric-protocol-l3

Cisco ACI App Center Developer Guide    
55

Appendix
Permissions



DescriptionPermission

Used for fabric-wide policies for NTP, SNMP, DNS,
and image management.

fabric-protocol-mgmt

Used for firmware management traceroute and
endpoint tracking policies.

fabric-protocol-util

Used for ERSPAN and health score policies.fabric-protocol-ops

Used for atomic counter, diagnostic, and image
management policies on leaf switches and spine
switches.

fabric-equipment

Used for Layer 1 configuration under infra. Example:
selectors and port Layer 1 policy configurations.

access-connectivity-l1

Used for Layer 2 configuration under infra. Example:
Encap configurations on selectors, and attachable
entity.

access-connectivity-l2

Used for Layer 3 configuration under infra and static
route configurations under a tenant's L3Out.

access-connectivity-l3

Used for management infra policies.access-connectivity-mgmt

Used for tenant ERSPAN policies.access-connectivity-util

Used for Layer 1 protocol configurations under infra.access-protocol-l1

Used for Layer 2 protocol configurations under infra.access-protocol-l2

Used for Layer 3 protocol configurations under infra.access-protocol-l3

Used for fabric-wide policies for NTP, SNMP, DNS,
and image management.

access-protocol-mgmt

Used for tenant ERSPAN policies.access-protocol-util

Used for operations-related access policies such as
cluster policy and firmware policies.

access-protocol-ops

Used for access port configuration.access-equipment

Used for changing CoPP and QoS-related policies.access-qos

Used for managing Layer 4 to Layer 7 service
policies.

nw-svc-params

   Cisco ACI App Center Developer Guide
56

Appendix
Permissions



DescriptionPermission

Used for operational policies including monitoring
and troubleshooting policies such as atomic counter,
SPAN, TSW, tech support, traceroute, analytics, and
core policies.

ops

Used for managing shared Layer 4 to Layer 7 service
devices.

nw-svc-devshare

Used for managing Layer 4 to Layer 7 network
service orchestration.

nw-svc-policy

Used for managing Layer 4 to Layer 7 service
devices.

nw-svc-device

Cisco ACI App Center Developer Guide    
57

Appendix
Permissions



   Cisco ACI App Center Developer Guide
58

Appendix
Permissions


	Cisco ACI App Center Developer Guide
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation
	Documentation Feedback
	Obtaining Documentation and Submitting a Service Request

	Overview
	About Cisco ACI App Center
	About Stateless Applications
	Launching a Stateless Application
	Single Sign On for Stateless Application

	About Stateful Applications
	Single Sign On for Stateful Application

	Understanding Permissions for an Application
	Understanding Application Communication
	Requirements for Developing an Application

	Developing a Stateless Application
	Components of Stateless Application
	Workflow for Developing a Stateless Application
	Prerequisites
	Guidelines and Limitations
	Directory Structure for Stateless Application
	Creating Directory Structure for a Stateless Application
	Metadata Required for Developing an Application

	Developing a Stateful Application
	Components of Stateful Application
	Workflow for Developing a Stateful Application
	Prerequisites
	Guidelines and Limitations
	Directory Structure for Stateful Application
	Creating Directory Structure for a Stateful Application
	Creating a Docker Image

	Metadata Required for Developing an Application
	Data Types for a Stateful App
	Signing in to the APIC from the Application Using RBAC

	Packaging and Publishing an Application
	About Packaging and Publishing an Application
	Prerequisites
	Packaging an Application
	Example for Packaging an Application

	Cisco ACI App Center
	Generating Keys for an Application
	Publishing an Application
	Downloading Application From Cisco ACI App Center

	Cisco APIC
	Enabling Signature Validation for an Application
	Uploading an Application to APIC
	Installing an Application


	Troubleshooting
	Troubleshooting an Application

	Appendix
	Example of Files Used in a Stateless Application
	Example of Files Used in a Stateful Application
	Integrating the App's UI in the APIC UI
	Permissions


