
Cisco Unified TAPI Developers Guide for Cisco Unified Communications
Manager Release 12.5(1)
First Published: 2019-01-23

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

© 2019 Cisco Systems, Inc. All rights reserved.

C O N T E N T S

Overview 1C H A P T E R 1

Cisco Unified Communications Manager Interfaces 1

Provisioning Interfaces 1

Administrative XML 1

Cisco Extension Mobility 2

Device Monitoring and Call Control Interfaces 2

Cisco TAPI and Media Driver 2

Cisco JTAPI 2

Cisco Web Dialer 2

Serviceability Interfaces 3

Serviceability XML 3

SNMP/MIBs 3

Routing Rules Interface 4

Cisco Unified TSP Overview 4

Cisco Unified TSP Concepts 5

Basic TAPI Applications 5

Cisco TSP Components 6

Cisco Media Drivers 6

TAPI Debugging 6

CTI Manager (Cluster Support) 6

Cisco Unified Communications Manager Failure 7

Call Survivability 7

CTI Manager Failure 8

Cisco Unified TAPI Application Failure 8

LINE_CALLDEVSPECIFIC Event Support for RTP Events 8

QoS 8

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
iii

Presentation Indication (PI) 9

Call Control 9

CTI Port 10

Dynamic Port Registration 10

CTI Route Point 10

Media Termination at Route Point 10

Monitoring Call Park Directory Numbers 11

Multiple Cisco Unified TSPs 11

CTI Device/Line Restriction 12

Development Guidelines 12

New and Changed Information 15C H A P T E R 2

Cisco Unified Communications Manager, Release 12.5(1) 15

Features Supported in Previous Releases 15

Cisco Unified Communications Manager, Release 11.5(1) 16

Cisco Unified Communications Manager, Release 11.0(1) 16

Cisco Unified Communications Manager Release 10.5(2) 16

Cisco Unified Communications Manager Release 10.0(1) 17

Cisco Unified Communications Manager Release 9.1(1) 17

Cisco Unified Communications Manager Release 9.0(1) 17

Cisco Unified Communications Manager Release 8.6(1) 17

Cisco Unified Communications Manager Release 8.5(1) 18

Cisco Unified Communications Manager Release 8.0(1) 18

Cisco Unified Communications Manager Release 7.1(3) 19

Cisco Unified Communications Manager Release 7.1(2) 19

Cisco Unified Communications Manager Release 7.0(1) 19

Cisco Unified Communications Manager Release 6.1(x) 20

Cisco Unified Communications Manager Release 6.0(1) 20

Cisco Unified Communications Manager Release 5.1 20

Cisco Unified Communications Manager Release 5.0 21

Cisco Unified Communications Manager Release 4.x 21

Cisco Unified Communications Manager Releases Prior to 4.x 21

Features Supported by TSP 23C H A P T E R 3

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
iv

Contents

3XX 25

Additional Features Supported on SIP Phones 25

AES 256 Algorithm IDs 26

Agent Greeting 26

Agent Zip Tone 27

Alternate Script 28

Arabic and Hebrew Language 28

Barge and cBarge 29

Call Control Discovery 29

Calling Party IP Address 29

Calling Party Normalization 30

Call PickUp 30

Call Queuing Feature Support 31

Call Recording and Call Recording Enhancement 32

Call Recording for SIP or TLS Authenticated calls 34

CallFwdAll Notification 35

Cisco Unified TSP Auto Update 35

CIUS Session Persistency 36

Click to Conference 37

CCMEncryption Enhancements 37

Conference Enhancements 38

CTI Port Third-Party Monitoring Port 39

CTI Remote Device 40

Application Dial Rule Support 42

DTMF Support 42

Extend Mode Support for CSF Is Removed 43

Remote Destination Reachability Verification 43

Persistent Connection 43

Announcement Call 45

NuRD (Number Matching for Remote Destination) Support 47

Mobility Interaction Support 47

Call Forwarding 48

CTI Video Support 49

Default CTI IP Addressing for Devices 51

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
v

Contents

Device State Server 52

Direct Transfer 53

Direct Transfer Across Lines 53

Directory Change Notification 54

Do Not Disturb 54

Do Not Disturb-Reject 55

Drop-Any-Party 56

Early Offer 56

Media Driver Support for Early Offer 57

TAPI Application Message Flow for Early Offer Call 58

End-to-End Call Trace 61

EnergyWise DeepSleep Mode Support 62

Extension Mobility 63

Extension Mobility Cross Cluster 63

Extension Mobility Memory Optimization Option 64

External Call Control 65

FIPS Compliance 66

Conference Changes 67

Forced Authorization Code and Client Matter Code 67

Forwarding 67

Gateway Recording 67

Hold Reversion 69

Hunt List 69

Hunt Pilot Connected Number 70

Hunt Group Login Status 70

Intercom 71

IPv6 73

Transfer Changes 74

Join 74

Join Across Lines (SCCP) 74

Join Across Lines (SIP) 75

Line-Side Phones That Run SIP 75

Localization Infrastructure Changes 76

Logical Partitioning 77

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
vi

Contents

Message Waiting Indicator Enhancement 77

Microsoft Windows Vista 78

Monitoring Call Park Directory Numbers 78

Multiple Calls Per Line Appearance 78

New Cisco Media Driver 79

Other-Device State Notification 79

Park Monitoring 80

Partition 82

Password Expiry Notification 82

Password Expired 83

Account Lock 83

Privacy Release 84

Redirect to Device 84

Redirect and Blind Transfer 85

lineRedirect 85

lineDevSpecific -redirect reset Original Called ID 85

lineDevSpecific -redirect set Original Called ID 85

lineDevSpecific -redirect FAC CMC 85

lineBlindTransfer 86

lineDevSpecific -blind transfer FAC CMC 86

Refer and Replaces for Phones That Are Running SIP 86

Ringback on SIP 183 for Transfers 87

Secure Conference 87

Secure RTP 88

Presentation Indication 90

Secure TLS 90

Support for RSHA12 Algorithm 91

Secured Monitoring and Recording 92

Select Calls 93

Conference Changes 93

Transfer Changes 93

Set the Original Called Party Upon Redirect 93

Shared Line Appearance 93

Silent Install 94

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
vii

Contents

Silent Monitoring 94

SIP URL Address 95

Presentation Indication 96

Change Notification of SuperProvider and CallPark DN Monitoring Flags 96

Super Provider 96

SuperProvider 96

Support for Cisco Unified IP Phone 6900 and 9900 Series 97

Support for 100 + Directory Numbers 100

Swap and Cancel Softkeys 100

Translation Pattern 102

Presentation Indication 102

Change Notification of SuperProvider and CallPark DN Monitoring Flags 102

Unicode 102

Unrestricted Unified CM 102

URI Dialing 103

Video On Hold Support 104

Whisper Coaching 104

XSI Object Pass Through 107

Cisco Unified TAPI Installation 109C H A P T E R 4

Required Software 109

Supported Windows Platforms 109

Installing the Cisco Unified CM TSP Client 110

Cisco TSP Client Interaction with Windows Services 110

Installation Setup Screen 111

Configure TSP Instance 111

Configure Secure TSP Instance 112

Cisco Media Driver Selection 113

Cisco Wave Driver for Windows XP, Vista, 2003, 2008 114

Cisco Wave Driver for Windows 7 115

Verifying the Cisco Wave Driver 115

AutoUpgrade 116

Update Credentials 116

Cisco TSP Notifier 116

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
viii

Contents

Multi-Language Settings 117

Installation Completed 117

Reinstall or Add a New Instance 118

Upgrading CiscoTSP 119

Downgrade or Uninstall of Cisco TSP 120

Silent Installation of Cisco Unified CM TSP 121

Upgrading Unified CM TSP Client to Release 8.5(1) Using Silent Installation 122

Using Cisco TSP 122

Program Group and Program Elements 123

Modifying Cisco TSP Configuration 124

Cisco Unified CM TSP Configuration Settings 124

General 124

User 125

CTI Manager 126

Security 128

Configuring Cisco Media Driver and Cisco Wave Driver 130

Trace 133

Advanced 134

Language 136

Verify the Cisco Unified CM TSP Installation 137

Managing the Cisco Unified CM TSP 137

Reinstall the Cisco Unified TSP 138

Upgrade the Cisco Unified TSP 138

Remove Cisco Unified TSP From the Provider List 139

Uninstall the Cisco TSP Client 139

Uninstall the Cisco Wave Driver 139

Uninstall the Cisco Wave Driver for Windows 2003 139

Uninstall the Cisco Wave Driver for Windows 2008 140

Auto Update for Cisco Unified TSP Upgrades 140

Auto Update Behavior 140

Cisco TSP Behavior on Windows Upgrade 141

Basic TAPI Implementation 143C H A P T E R 5

Overview 143

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
ix

Contents

TAPI Line Functions 143

lineAccept 146

lineAddProvider 146

lineAddToConference 147

lineAnswer 148

lineBlindTransfer 148

lineCallbackFunc 149

lineClose 150

lineCompleteTransfer 150

lineConfigProvider 151

lineDeallocateCall 152

lineDevSpecific 152

lineDevSpecificFeature 154

lineDial 155

lineDrop 156

lineForward 157

lineGenerateDigits 159

lineGenerateTone 160

lineGetAddressCaps 161

lineGetAddressID 162

lineGetAddressStatus 163

lineGetCallInfo 163

lineGetCallStatus 164

lineGetConfRelatedCalls 164

lineGetDevCaps 165

lineGetID 166

lineGetLineDevStatus 167

lineGetMessage 167

lineGetNewCalls 168

lineGetNumRings 169

lineGetProviderList 170

lineGetRequest 171

lineGetStatusMessages 172

lineGetTranslateCaps 172

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
x

Contents

lineHandoff 173

lineHold 174

lineInitialize 175

lineInitializeEx 176

lineMakeCall 177

lineMonitorDigits 178

lineMonitorTones 178

lineNegotiateAPIVersion 179

lineNegotiateExtVersion 180

lineOpen 181

linePark 182

linePrepareAddToConference 183

lineRedirect 185

lineRegisterRequestRecipient 185

lineRemoveFromConference 186

lineRemoveProvider 187

lineSetAppPriority 188

lineSetCallPrivilege 189

lineSetNumRings 190

lineSetStatusMessages 191

lineSetTollList 192

lineSetupConference 193

lineSetupTransfer 194

lineShutdown 194

lineTranslateAddress 195

lineTranslateDialog 196

lineUnhold 198

lineUnpark 198

TAPI Line Messages 199

LINE_ADDRESSSTATE 200

LINE_APPNEWCALL 201

LINE_CALLDEVSPECIFIC 202

LINE_CALLINFO 202

LINE_CALLSTATE 203

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xi

Contents

LINE_CLOSE 207

LINE_CREATE 207

LINE_DEVSPECIFIC 208

LINE_DEVSPECIFICFEATURE 209

LINE_GATHERDIGITS 210

LINE_GENERATE 211

LINE_LINEDEVSTATE 212

LINE_MONITORDIGITS 213

LINE_MONITORTONE 213

LINE_REMOVE 214

LINE_REPLY 215

LINE_REQUEST 216

TAPI Line Device Structures 216

LINEADDRESSCAPS 217

LINEADDRESSSTATUS 228

LINEAPPINFO 229

LINECALLINFO 231

LINECALLLIST 239

LINECALLPARAMS 240

LINECALLSTATUS 242

LINECARDENTRY 248

LINECOUNTRYENTRY 250

LINECOUNTRYLIST 251

LINEDEVCAPS 252

LINEDEVSTATUS 257

LINEEXTENSIONID 259

LINEFORWARD 259

LINEFORWARDLIST 263

LINEGENERATETONE 263

LINEINITIALIZEEXPARAMS 264

LINELOCATIONENTRY 265

LINEMESSAGE 267

LINEMONITORTONE 268

LINEPROVIDERENTRY 269

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xii

Contents

LINEPROVIDERLIST 269

LINEREQMAKECALL 270

LINETRANSLATECAPS 271

LINETRANSLATEOUTPUT 272

TAPI Phone Functions 274

phoneCallbackFunc 275

phoneClose 276

phoneDevSpecific 276

phoneGetDevCaps 276

phoneGetDisplay 277

phoneGetLamp 278

phoneGetMessage 278

phoneGetRing 279

phoneGetStatus 280

phoneGetStatusMessages 281

phoneInitialize 282

phoneInitializeEx 283

phoneNegotiateAPIVersion 285

phoneOpen 286

phoneSetDisplay 287

phoneSetStatusMessages 288

phoneShutdown 290

TAPI Phone Messages 290

PHONE_BUTTON 291

PHONE_CLOSE 294

PHONE_CREATE 294

PHONE_REMOVE 295

PHONE_REPLY 296

PHONE_STATE 296

TAPI Phone Structures 298

PHONECAPS Structure 298

PHONEINITIALIZEEXPARAMS 300

PHONEMESSAGE 301

PHONESTATUS 302

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xiii

Contents

VARSTRING 304

Wave Functions 305

waveInAddBuffer 306

waveInClose 306

waveInGetID 307

waveInGetPosition 307

waveInOpen 308

waveInPrepareHeader 309

waveInReset 310

waveInStart 310

waveInUnprepareHeader 310

waveOutClose 311

waveOutGetDevCaps 311

waveOutGetID 312

waveOutGetPosition 312

waveOutOpen 313

waveOutPrepareHeader 314

waveOutReset 314

waveOutUnprepareHeader 315

waveOutWrite 315

Cisco Device-Specific Extensions 317C H A P T E R 6

Cisco Line Device Specific Extensions 317

LINEDEVCAPS 321

LINECALLINFO 324

Details 332

Parameters 338

LINECALLPARAMS 343

LINEDEVSTATUS 344

Detail 344

Parameters 345

CCiscoLineDevSpecific 346

Header File 347

Class Detail 347

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xiv

Contents

Functions 348

Parameter 348

Subclasses 348

Enumeration 348

Message Waiting 349

Class Detail 349

Parameters 349

Message Waiting Dirn 350

Class Detail 350

Parameters 350

Message Summary 350

Class Detail 351

Parameters 351

Message Summary Dirn 352

Class Detail 352

Parameters 352

Audio Stream Control 353

Class Detail 354

Parameters 354

Set Status Messages 355

Description 356

Class Detail 357

Parameters 357

Swap-Hold/SetupTransfer 358

Class Details 358

Parameters 358

Redirect Reset Original Called ID 359

Description 359

Class Details 359

Parameters 359

Port Registration per Call 360

Class Details 360

Parameters 361

Setting RTP Parameters for Call 362

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xv

Contents

Class Details 362

Parameters 362

Redirect Set Original Called ID 363

Class Details 363

Parameters 363

Join 363

Class Details 364

Parameters 364

Set User SRTP Algorithm IDs 364

Class Detail 365

Supported Algorithm Constants 365

Parameters 366

Explicit Acquire 366

Class Details 366

Parameters 367

Explicit De-Acquire 367

Class Details 367

Parameters 367

Redirect FAC CMC 367

Class Detail 368

Parameters 368

Blind Transfer FAC CMC 368

Class Detail 369

Parameters 369

CTI Port Third Party Monitor 369

Class Detail 370

Parameters 370

Send Line Open 370

Class Detail 371

Set Intercom SpeedDial 371

Class Detail 371

Parameters 372

Intercom Talk Back 372

Class Detail 372

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xvi

Contents

Redirect with Feature Priority 373

Detail 373

Parameters 373

Start Call Monitoring 373

Class Detail 374

Parameters 374

Return Values 375

Start Call Recording 375

Class Detail 375

Parameters 375

Return Values 376

StopCall Recording 376

Class Detail 376

Parameters 377

Return Values 377

Set IPv6 Address and Mode 377

Class Detail 378

Parameters 378

Set RTP Parameters for IPv6 Calls 378

Class Detail 379

Parameters 379

Direct Transfer 379

Class Detail 379

Parameters 380

RegisterCallPickUpGroupForNotification 380

Class Detail 380

Parameters 380

UnRegisterCallPickUpGroupForNotification 381

Class Details 381

Parameters 381

CallPickUpRequest 381

Class Details 382

Parameters 382

Start Send Media to BIB 382

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xvii

Contents

Description 382

Class Detail 383

Parameters 383

Stop Send Media to BIB 383

Description 383

Class Detail 383

Parameters 384

Agent Zip Tone 384

Description 384

Class Detail 384

Parameters 384

Early Offer 385

Enable Feature 385

Description 385

Class Detail 385

Parameters 385

UpdateMonitorMode 387

Description 387

Class Detail 387

Parameters 387

Add Remote Destination 388

Remove Remote Destination 389

Update Remote Destination 390

lineHold Enhancement 391

Message Details 391

Parameters 391

Cisco Line Device Feature Extensions 391

CCiscoLineDevSpecificFeature 391

Header File 392

Class Detail 392

Functions 392

Parameter 392

Subclasses 392

Do-Not-Disturb 393

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xviii

Contents

Class Detail 393

Parameters 393

Do-Not-Disturb Change Notification Event 393

Message Details 394

Parameters 394

Cisco Phone Device-Specific Extensions 395

CCiscoPhoneDevSpecific 395

Header File 396

Class Detail 396

Functions 396

Parameter 396

Subclasses 396

Enumeration 396

Device Data PassThrough 397

Class Detail 397

Parameters 397

Set Status Msgs 398

Class Detail 398

Parameters 398

Set Unicode Display 399

Class Detail 399

Parameters 399

Explicit Acquire 399

Class Details 400

Parameters 400

Explicit Deacquire 400

Class Details 401

Parameters 401

Request Call RTP Snapshot 401

Class Details 401

Parameters 401

Hunt Group Login Status 402

Class Detail 402

Parameter 402

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xix

Contents

Enumeration 402

Redirect Enhancement 403

Class Details 403

Parameters 403

Constants 405

Phone State Event 405

Parameters 405

Messages 405

Announcement Events 406

Start Transmission Events 407

Start Reception Events 408

Stop Transmission Events 409

Stop Reception Events 409

Existing Call Events 410

Open Logical Channel Events 410

LINECALLINFO_DEVSPECIFICDATA Events 411

Call Tone Changed Events 412

Line Property Changed Events 413

Phone Property Changed Events 414

Monitoring Started Event 415

Monitoring Ended Event 415

Recording Started Event 415

Recording Ended Event 416

Recording Failure Event 416

Silent Monitoring Session Terminated Event 417

Media to BIB Started Event 417

Media to BIB Ended Event 417

Get IP and Port Event 418

MultiMedia Streams Data Notification Event 418

Monitor Mode Update Event 419

Cisco TSP Media Driver 421C H A P T E R 7

Cisco Rtp Library Components 421

TAPI Application Support 423

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xx

Contents

CiscoTSP and Cisco Rtp Library Interaction 423

Codec Advertisement 423

Typical TAPI Application Message Flow 424

EpAPI Functions 426

EpApiInit 426

EpApiInitByDefault 427

EpApiClose 428

EpLocalAddressGetAll 429

EpLocalAddressPortGet 429

EpLocalAddressPortGetByFamily 430

EpLocalAddressPortGetByIdx 430

EpLocalAddrPortFree 431

EpOpenById 432

EpClose 433

EpGetStreamHandle 433

EpStreamStart 434

EpStreamStop 435

EpStreamRead 435

EpStreamWrite 436

EpStreamCodecInGet 437

EpStreamCodecInSet 438

EpStreamCodecOutGet 439

EpStreamCodecOutSet 439

EpApiTraceLevelSet 440

EpApiGetLastError 441

EpApi Error Codes 441

Callback Function 442

Data Structures 443

RTPADDR 443

RTPSIL 444

RTPCODEC 445

Trace Options 445

Trace Level 445

Trace Callback Function 446

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxi

Contents

Known Problems or Limitations 446

Cisco Unified TAPI Examples 447C H A P T E R 8

MakeCall 447

OpenLine 448

CloseLine 451

Message Sequence Charts 453A P P E N D I X A

Abbreviations 454

3XX 455

Agent Greeting 455

Configuration 455

Procedure 455

Agent Zip Tone 472

Configuration 472

Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote
474

Application Issues the Play Tone Request When the Call Is Established Between Customer and
Agent (Shared Line). PlayToneDirection -Local 475

Conference Scenario: PlayToneDirection -local. 478

Application Issues the Play Tone Request When the Call Is Established Between Customer and
Agent Agent Puts the Call on Hold. PlayToneDirection -Remote 479

Announcement Call 480

Blind Transfer 483

Call Control Discovery 485

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 485

Configuration 485

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN
Failover Rule Not Set 487

Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to
Phone C(1000) on Cluster2 with PSTN Failover Rule Set 489

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000)
on Cluster 2 with PSTN Failover Rule 491

Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone
C(1000) on Cluster 2 with PSTN Failover Rule 495

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxii

Contents

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF
Trunk 496

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000)
on Cluster 2 Over SAF Trunk 498

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000)
on Cluster 2 Over SAF Trunk 501

CallFwdAll Notification 503

Application Pressed CFwdAll on TAPI Monitored Device 503

TAPI Monitored Device Goes Off Hook 504

Application Monitors Off Hook Device 504

Application Monitors Device After User Presses CFwdAll 504

User Presses CFwdAll Softkey After Device Is Off Hook 505

User Presses CFwdAll Softkey on a Multiline Device 505

User Presses CFwdAll on a Multiline Device by Selecting a Line 505

Shared Line Scenario on Pressing CFwdAll Softkey 506

Cancellation of CFwdAll 506

Calling Party IP Address 507

Basic Call 507

Consultation Transfer 507

Consultation Conference 507

Redirect 508

Calling Party Normalization 508

Incoming Call From PSTN to End Point 508

Incoming Call From National PSTN to CTI-Observed End Point 509

Incoming Call From International PSTN to CTI-Observed End Point 509

Outgoing Call From CTI-Observed End Point to PSTN Number 510

Outgoing Call From CTI-Observed End Point to National PSTN Number 510

Outgoing Call From CTI-Observed End Point to International PSTN Number 511

Call PickUp 511

Registering CallPickUpGroup for Notification 511

Configuration 511

UnRegistering CallPickUpGroup for Notification 512

Re-Registering CallPickUpGroup for Notification 512

Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information 513

CallPickUp After Enabling Auto Call Pickup Enabled 513

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxiii

Contents

CallPickUp with Auto Call Pickup Enabled Disabled 514

CallPickUp with Multiple Calls Available 516

CallPickupGroup Changed for a Device on AdminPage 517

CallPickUpGroup Partition or DN Information Updated 517

CallPickUpGroup Is Deleted 518

Call Queuing 518

FailOver or FailBack Scenario 547

GroupCallPickup 548

OtherCallPickup 549

DirectCallPickup 550

CallPickup (Negative Use Case) 551

GroupCallPickup with SuperSet Call PickupDN 552

Group or Direct CallPickup with Invalid DN 553

Call Recording for SIP or TLS Authenticated calls 554

CCMEncryption Enhancements 555

CIUS Session Persistency 556

Notify the Line Application and Expose the Changed IP Address 556

Notify the Phone Application and Expose the Changed IP Address 557

Click to Conference 559

Drop Party by Using Click-2-Conference 565

Drop Entire Conference by Using Click-2-Conference Feature 567

Conference Enhancements 568

Noncontroller Adding Parties to Conferences 568

Chaining Two Ad Hoc Conferences Using Join 570

CTI Remote Device 574

CTI RD Call Forwarding 652

Video Capabilities and Multimedia Information 653

Direct Transfer Across Lines 684

Do Not Disturb-Reject 693

Application Enables DND-R on a Phone 693

Normal Feature Priority 693

Feature Priority - Emergency 693

Drop Any Party 695

Early Offer 709

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxiv

Contents

Application Dynamically Registers CTI Port with Early Offer Support 709

Configuration 709

Application Dynamically Registers CTI Port Without Early Offer Support 711

Application Dynamically Registers IPV6 CTI Port with Early Offer Support 712

Mutiple Applications Dynamically Register CTI Port/RP 714

Multiple Applications Dynamically Register CTI Port/RP with Early Offer Support 714

Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early
Offer Support 716

Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early
Offer Support 718

Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support 719

Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support
720

Mutiple Applications Statically Register CTI Port 721

End-To-End Call Trace 722

Direct Call Scenario: Variation 1 722

Direct Call Scenario: Variation 2 723

Consult Transfer Scenario: Variation 1 724

Consult Transfer Scenario: Variation 2 727

Blind Transfer Scenario 729

Redirect Scenario 730

Shared Line Scenario 731

Shared Line Scenario with Barge 732

Call Park Scenario: Variation 1 736

Call Park Scenario: Variation 2 738

3-Party Conference Call Scenario 740

Three-Party Conference Drop Down to Two-Party Call Scenario 743

Conference Chaining Scenario Using Join 745

Transfer Call Scenario via QSIP Without Path Replacement 746

Transfer Call Scenario via QSIP with Path Replacement 748

Hunt List Scenario 751

Call Pickup Scenario: Variation 1 752

Call Pickup Scenario: Variation 2 754

EnergyWise Deep Sleep Mode Use Cases 755

Verify EnergyWisePowerSavePlus Reason Code in LINEDEVSTATE Message 755

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxv

Contents

Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend 756

Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message
757

Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message 760

Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event 762

Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message 764

Extension Mobility Cross Cluster 766

TAPI Application Does LineInitializeEx and EMCC User Logs Into a Device 766

TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device 767

Application Does PhoneInitializeEx and EMCC User Logs In to a Device 767

TAPI Application Does PhoneInitializeEx and EMCC User Logs Out of a Device 767

EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster) 768

EMCC User Logs Out of a Device From Cluster 2 (Visiting Cluster) 768

EMCC User Logs In to a Device with LineH Configured 768

EMCC User Logs Out of a Device with LineH Configured 769

EMCC User Logs In to a DeviceH Configured for Multiple Lines (LineH) 769

EMCC User Logs In to a Device with LineH Configured and Administrator Removes the Device
From Application Control List 769

EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the
Device From Application Control List 770

EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in
Application Control List 771

EMCCUser Logs In to a DeviceV and EM_Profile Is Removed by Administrator FromApplication
Control List 771

EMCC User Logs In to a Device Then Application Does Provider Open 772

EMCC User Logs In to a DeviceV in Visiting Cluster and Administrator Adds the EM_Profile to
Application Control List 772

Extension Mobility Memory Optimization Option 773

Common Configuration 773

Use Cases 773

External Call Control 777

Basic Call Initiated From TAPI with External Call Control on Translation Pattern and CEPMReturns
Reject 777

Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM
Returns Divert with Modified Calling and Called Parties 778

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxvi

Contents

Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM
Returns Continue with Modified Calling and Called Parties 780

Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and
CEPM Returns Continue with Modified Calling and Called Parties in the Consult Call 781

Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and
Conferences in the Called Party 785

Forced Authorization and Client Matter Code Scenarios 790

Manual Call to a Destination That Requires an FAC 790

Manual Call to a Destination That Requires Both FAC and CMC 793

lineMakeCall to a Destination That Requires an FAC 796

lineMakeCall to a Destination That Requires Both FAC and CMC 798

Timeout Waiting for FAC or Invalid FAC 800

Gateway Recording 802

Hunt List 813

Basic Hunt List Call 814

Hunt List Call Moved to Next Member 816

Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot 817

Hunt List Call FWNA with FWNA to B 819

Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured 820

Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B 821

HuntList Call Redirected When in ACCEPT State 821

Hunt List Call Redirected When in Connected State 822

Hunt List Call Member Is CTI or RP Port 824

Hunt List Call Moved to Different Line Group Members and Answered by CTI Port 824

Hunt List Call Is Redirected to Another Hunt List 824

Hunt List Call Is Consult Transferred to Another Line 827

Hunt List Call Direct Transferred to Another Line 829

Hunt List Call Is Conferenced to Another Line 831

Hunt List Call Is Joined to Another Line 835

Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers 839

Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List
Agent Answers 842

Hunt List Basic Call with SharedLine 847

Hunt List Basic Call with DND-R Configured on LG1 849

Hunt List Call Put in Conference via Join Operation 849

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxvii

Contents

Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled 853

Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup
Disabled 854

Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up
Enabled 855

Conferenced Hunt List Call Becomes Two-Party Call 857

Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1) 861

Hunt List Call Is Involved in c-Barge Conference 861

Hunt List Feature Interact with Four-Party Conference 870

Hunt Pilot Connected Number Feature 877

Caller Consult Transfer Call to Another Hunt List 897

Hunt Group Login Status 899

Intercom 903

Application Invoking Speeddial 904

Agent Invokes Talkback 905

Change the SpeedDial 905

IPv6 Use Cases 906

Join Across Lines 912

Logical Partitioning 927

Manual Outbound Call 930

Monitoring and Recording 933

Monitoring a Call 933

Automatic Recording 937

Application-Controlled Recording 938

NuRD (Number Matching for Remote Destination) Support 940

Park Monitoring 940

Persistent Connection Use Cases 951

Presentation Indication 965

Making a Call Through Translation Pattern 965

Blind Transfer Through Translation Pattern 968

Redirect to Device 973

Redirect Set Original Called (TxToVM) 977

Refer and Replace Scenarios 979

In-Dialog Refer -Referrer in Cisco Unified Communications Manager Cluster 979

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxviii

Contents

In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State 981

In-Dialog Refer Where Refer Fails or Refer to Target Is Busy 982

Out-of-Dialog Refer 984

Invite with Replace for Confirmed Dialog 986

Refer with Replace for All in Cluster 987

Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station 989

Secure Conferencing 990

Conference with All Parties as Secure 990

Hold or Resume in Secure Conference 992

Secure Monitoring and Recording 995

Silent Monitoring 995

Basic Silent Monitoring Scenario in Secure Mode 998

Silent Monitoring Scenario on Non-Secure Call in Secure Mode 999

Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure 1000

Silent Monitoring Scenario on Secure Call From Supervisor Which Is Non-Secure 1000

Transfer of Monitored Call From Supervisor to Other Supervisor 1001

Transfer of Call From One Customer to Other 1003

Park on Supervisor 1004

Silent Monitoring on Conferenced Call 1005

Conference on Monitored Call 1006

Conference on Monitored Call 1008

Supervisor Holds the Call 1009

Recording 1009

Basic Recording Scenario 1010

Basic Recording Scenario in Secure Mode 1011

Recording Scenario on Non-Secure Call in Secure Mode 1012

Recording Scenario on Non-Secure Call Using Secure Recording Profile/Device 1012

Recording Scenario When Agent Holds the Call 1013

Recording and Monitoring 1013

Both Silent Monitoring and Recording on Agent Call in Secure Mode 1014

Recording Silent Monitored Call on Supervisor 1017

Shared Lines-Initiating a New Call Manually 1019

SRTP 1024

Media Terminate by Application (Open Secure CTI Port or RP) 1024

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxix

Contents

Media Terminate by TSP Wave Driver (Open Secure CTI Port) 1024

Support for Cisco IP Phone 6900 Series 1025

Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases 1035

Swap or Cancel 1039

Unrestricted Unified CM 1062

LineHold Enhancement 1064

Whisper Coaching 1064

Setup 1064

Application Initiates a Whisper Coaching Session 1064

Application Updates the Monitoring Mode 1065

Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the
Call 1068

Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor 1070

Application Updates the Monitoring Mode (WhisperCoaching to Silent) 1071

Supervisor Holds/Resumes the Whisper Coaching Monitoring Session 1073

Supervisor Transfers the Whisper Coaching Session to Another Supervisor 1075

Supervisor Conferences the Whisper Coaching Session to Another Supervisor 1076

Application Initiates aWhisper Coaching Session Second Application on a Different Client Opens
All Lines 1079

Secure R & M with Whisper Coaching Supports 1081

Application Initiates a Secure Whisper Coaching Session 1081

Application Updates the Monitoring Mode on an Agent Call That Is on Hold 1083

Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware
Version That Does Not Support Media Mixing 1084

Application Updates the Monitoring ModeWhere the Agent Is a SIP Device with Older Firmware
Version That Does Not Support Media Mixing 1084

Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a
Conference 1085

Application InitiatesWhisper Coaching on an Agent That Is Already Playing an Agent Greeting
1085

Application Initiates Agent Greeting on a Call That Already Has a Whisper Coaching Session 1085

Cisco Unified TAPI Interfaces 1087A P P E N D I X B

Cisco Unified TAPI Version 2.1 Interfaces 1087

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxx

Contents

Troubleshooting Cisco Unified TAPI 1097A P P E N D I X C

TSP Trace of Internal Messages 1097

TSP Operation Verification 1097

Version Compatibility 1098

Cisco TSP Readme 1098

Unsupported CTI Events for SIP Phones 1098

Cisco Unified TAPI Operations-by-Release 1099A P P E N D I X D

Cisco Unified TAPI Operations-by-Release 1099

CTI Supported Devices 1109A P P E N D I X E

CTI Supported Devices 1109

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxxi

Contents

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
xxxii

Contents

C H A P T E R 1
Overview

Cisco Unified Communications Manager is the powerful call-processing component of the Cisco Unified
Communications Solution. It is a scalable, distributable, and highly available enterprise IP telephony
call-processing solution. Unified CommunicationsManager acts as the platform for collaborative communication
and as such supports a wide array of features. In order to provision, invoke the features, monitor, and control
such a powerful system, Unified Communications Manager supports different interface types.

This chapter also describes the major concepts of Cisco Unified TAPI service provider (Cisco Unified TSP)
implementation. It contains the following sections:

• Cisco Unified Communications Manager Interfaces, on page 1
• Cisco Unified TSP Overview, on page 4
• Cisco Unified TSP Concepts, on page 5
• Development Guidelines, on page 12

Cisco Unified Communications Manager Interfaces
The interface types supported by Unified Communications Manager are divided into the following types:

Provisioning Interfaces
The following are the provisioning interfaces of Unified Communications Manager:

• Administration XML

• Cisco Extension Mobility service

Administrative XML
The Administration XML (AXL) API provides a mechanism for inserting, retrieving, updating and removing
data from the Unified CommunicationsManager configuration database using an eXtensibleMarkup Language
(XML) Simple Object Access Protocol (SOAP) interface. This allows a programmer to access Unified CM
provisioning services using XML and exchange data in XML form, instead of using a binary library or DLL.
The AXL methods, referred to as requests, are performed using a combination of HTTP and SOAP. SOAP
is an XML remote procedure call protocol. Users perform requests by sending XML data to the Unified
Communications Manager Publisher server. The publisher then returns the AXL response, which is also a
SOAP message.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1

For more information, See the Administrative XML Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/axl/home.

Cisco Extension Mobility
The Cisco Extension Mobility (Extension Mobility) service, a feature of Unified Communications Manager,
allows a device, usually a Cisco Unified IP Phone, to temporarily embody a new device profile, including
lines, speed dials, and services. It enables users to temporarily access their individual Cisco Unified IP Phone
configuration, such as their line appearances, services, and speed dials, from other Cisco Unified IP Phones.
The Extension Mobility service works by downloading a new configuration file to the phone. Unified
Communications Manager dynamically generates this new configuration file based on information about the
user who is logging in. You can use the XML-based Extension Mobility service API with your applications,
so they can take advantage of Extension Mobility service functionality.

For more information, See the Extension Mobility API Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/emapi/home.

Also, see Unified Communications Manager XML Developers Guide for relevant release of Unified
Communications Manager at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Device Monitoring and Call Control Interfaces
The following are the device monitoring and call control interfaces of Unified Communications Manager:

Cisco TAPI and Media Driver
Unified Communications Manager exposes sophisticated call control of IP telephony devices and soft-clients
using the Computer Telephony TAPI interface. Cisco's Telephone Service Provider (TSP) and Media Driver
interface enables custom applications to monitor telephony-enabled devices and call events, establish first-and
third-party call control, and interact with the media layer to terminate media, play announcements, record
calls.

For more information, see the TAPI and Media Driver Tech Center on the Cisco Developer Network at the
following location:

http://developer.cisco.com/web/tapi/home

Cisco JTAPI
For more information, see the JTAPI Tech Center on the Cisco Developer Network at the following location:

http://developer.cisco.com/web/jtapi/home

Also, see Cisco Unified JTAPI Developers Guide for Unified Communications Manager for relevant release
of Unified Communications Manager at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

Cisco Web Dialer
The Web Dialer, which is installed on a Unified Communications Manager server, allows Cisco Unified IP
Phone users to make calls from web and desktop applications. For example, the Web Dialer uses hyperlinked
telephone numbers in a company directory to allow users to make calls from a web page by clicking the

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
2

Overview
Cisco Extension Mobility

http://developer.cisco.com/web/axl/home
http://developer.cisco.com/web/emapi/home
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html
http://developer.cisco.com/web/tapi/home
http://developer.cisco.com/web/jtapi/home
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

telephone number of the person that they are trying to call. The two main components ofWeb Dialer comprise
the Web Dialer Servlet and the Redirector Servlet.

For more information, see the Web Dialer Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/wd/home.

For more information on Cisco Web Dialer, see Unified Communications Manager XML Developers Guide
for relevant release of Unified Communications Manager at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Serviceability Interfaces
The following are the serviceability interfaces of Unified Communications Manager:

Serviceability XML
A collection of services and tools designed to monitor, diagnose, and address issues specific to Unified CM.
serviceabiltiy XML interface:

• Provides platform, service and application performance counters to monitor the health of Unified CM
hardware and software

• Provides real-time device and Computer Telephony Integration (CTI) connection status to monitor the
health of phones, devices, and applications connected to Unified Communications Manager.

• Enables remote control (Start/Stop/Restart) of Unified Communications Manager services.

• Collects and packages Unified Communications Manager trace files and logs for troubleshooting and
analysis.

• Provides applications with Call Detail Record files based on search criteria.

• Providesmanagement consoles with SNMP data specific to Unified CommunicationsManager hardware
and software.

For more information, see the Serviceability XML Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/sxml/home.

SNMP/MIBs
SNMP interface allows external applications to query and report various UCMgr entities. It provides information
on the connectivity of the Unified Communication Manager to other devices in the network, including syslog
information.

The MIBs supported by Unified Communications Manager includes:

• Cisco-CCM-MIB, CISCO-CDP-MIB, Cisco-syslog-MIB

• Standard MIBs like MIB II, SYSAPPL-MIB, HOST RESOURCES-MIB

• Vendor MIBs

For more information, see the SNMP/MIB Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/sxml/home.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
3

Overview
Serviceability Interfaces

http://developer.cisco.com/web/wd/home
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html
http://developer.cisco.com/web/sxml/home
http://developer.cisco.com/web/sxml/home

Also, see Unified Communications Manager XML Developers Guide for relevant release of Unified
Communications Manager at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Routing Rules Interface
Unified Communication Manager 8.0(1) and later supports the external call control (ECC) feature, which
enables an adjunct route server to make call-routing decisions for Unified CommunicationsManager by using
the Cisco Unified Routing Rules Interface.When you configure external call control, Unified Communications
Manager issues a route request that contains the calling party and called party information to the adjunct route
server. The adjunct route server receives the request, applies appropriate business logic, and returns a route
response that instructs Unified Communications Manager on how the call should get routed, along with any
additional call treatment that should get applied.

For more information, see the Routing Rules Interface Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/curri/home.

Cisco Unified TSP Overview
The standard TAPI provides an unchanging programming interface for different implementations. The goal
of Cisco in implementing TAPI for the Unified Communications Manager platform remains to conform as
closely as possible to the TAPI specification, while providing extensions that enhance TAPI and expose the
advanced features of Unified Communications Manager to applications.

As versions of Unified Communications Manager and Cisco Unified TSP are released, variances in the API
should be minor and should tend in the direction of compliance. Cisco stays committed to maintaining its API
extensions with the same stability and reliability, though additional extensions may be provided as newUnified
Communications Manager features become available.

The following figure shows the architecture of TAPI.
Figure 1: Architecture of TAPI Service Process

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
4

Overview
Routing Rules Interface

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html
http://developer.cisco.com/web/curri/home

The Cisco TSP is a TAPI 2.1 service provider.Note

Cisco Unified TSP Concepts
The following are described in this section:

• Basic TAPI Applications, on page 5

• Cisco TSP Components, on page 6

• Cisco Media Drivers, on page 6

• TAPI Debugging, on page 6

• Cisco TSP Components, on page 6

See Basic TAPI Implementation, on page 143 and Cisco Device-Specific Extensions, on page 317 for lists and
descriptions of interfaces and extensions.

Basic TAPI Applications
Microsoft has defined some basic APIs which can be invoked/supported from application code. All Microsoft
defined APIs that can be used from the TAPI applications are declared in TAPI.H file. TAPI.H file is a standard
library file that is with the VC++/VS2005 Installation. For example, C:\Program Files\Microsoft Visual
Studio\VC98\Include\TAPI.H.

To use any specific API which is added or provided by Cisco TSP, the application needs to invoke that API
by using the LineDevSpecific API.

Simple application

#include <tapi.h>#include <string>
#include "StdAfx.h"
class TapiLineApp {
LINEINITIALIZEEXPARAMS mLineInitializeExParams;//was declared in TAPI.h files

HLINEAPP mhLineApp;
DWORD mdwNumDevs;
DWORD dwAPIVersion = 0x20005

public:
// App Initialization
// Note hInstance can be NULL
// appstr – value can be given the app name "test program"
bool TapiLineApp::LineInitializeEx(HINSTANCE hInstance, std::string appStr)

{
unsigned long lReturn = 0;
mLineInitializeExParams.dwTotalSize = sizeof(mLineInitializeExParams);
mLineInitializeExParams.dwOptions = LINEINITIALIZEEXOPTION_USEEVENT;
lReturn = lineInitializeEx (&mhLineApp, hInstance, NULL, appStr.c_str),

&mdwNumDevs,&dwAPIVersion,&LineInitializeExParams);
if (lReturn = = 0) {

return true;
}

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
5

Overview
Cisco Unified TSP Concepts

else {
return false;

}
}
//App shutdown
bool TapiLineApp::LineShutdown()
{

return! (lineShutdown (mhLineApp));
}
};

Cisco TSP Components
The following are Cisco TSP components:

• CiscoTSP dll– TAPI service implementation provided by Cisco TSP

• CTIQBE over TCP/IP – Cisco protocol used to monitor and control devices and lines

• CTI Manager Service – Manages CTI resources and connections to devices. Exposed to 3rd-party
applications via Cisco TSP and/or JTAPI API

Cisco Media Drivers
Cisco Media Driver can be used to play announcements or record the call media. For information about the
installation of the Media Drivers, see Cisco Media Driver Selection, on page 113.

TAPI Debugging
The TAPI browser is a TAPI debugging application. It can be downloaded from the Microsoft MSDN Web
site at ftp://ftp.microsoft.com/developr/TAPI/tb20.zip. The TAPI browser can be used to initialize TAPI, for
use by TAPI developers to test a TAPI implementation and to verify that the TSP is operational.

CTI Manager (Cluster Support)
The CTI Manager, along with the Cisco Unified TSP, provide an abstraction of the Unified Communications
Manager cluster that allows TAPI applications to access Unified Communications Manager resources and
functionality without being aware of any specific Unified Communications Manager. The Unified
CommunicationsManager cluster abstraction also enhances the failover capability of CTIManager resources.
A failover condition occurs when a node fails, a CTI Manager fails, or a TAPI application fails, as illustrated
in the following figure.

Cisco does not support CTI device monitoring or call control with 3rd-party devices.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
6

Overview
Cisco TSP Components

ftp://ftp.microsoft.com/developr/TAPI/tb20.zip

Figure 2: Cluster Support Architecture

Cisco Unified Communications Manager Failure
When a Unified Communications Manager node in a cluster fails, the CTI Manager recovers the affected CTI
ports and route points by reopening these devices on another Unified Communications Manager node. When
the failure is first detected, Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_SUSPEND)message
to the TAPI application.

When the CTI port/route point is successfully reopened on another Unified Communications Manager, Cisco
Unified TSP sends a phone PHONE_STATE (PHONESTATE_RESUME) message to the TAPI application.
If no Unified Communications Manager is available, the CTI Manager waits until an appropriate Unified
Communications Manager comes back in service and tries to open the device again. The lines on the affected
device also go out of service and in service with the corresponding LINE_LINEDEVSTATE
(LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE (LINEDEVSTATE_INSERVICE)
events Cisco Unified TSP sends to the TAPI application. If for some reason the device or lines cannot be
opened, even when all Unified CommunicationsManagers come back in service, the system closes the devices
or lines, and CiscoUnified TSPwill send PHONE_CLOSE or LINE_CLOSEmessages to the TAPI application.

When a failed Unified Communications Manager node comes back in service, CTI Manager “re-homes” the
affected CTI ports or route points to their original Unified CommunicationsManager. The graceful re-homing
process ensures that the re-homing only starts when calls are no longer being processed or are active on the
affected device. For this reason, the re-homing process may not finish for a long time, especially for route
points, which can handle many simultaneous calls.

When a Unified Communications Manager node fails, phones currently re-home to another node in the same
cluster. If a TAPI application has a phone device opened and the phone goes through the re-homing process,
CTI Manager automatically recovers that device, and Cisco Unified TSP sends a PHONE_STATE
(PHONESTATE_SUSPEND) message to the TAPI application. When the phone successfully re-homes to
another Unified Communications Manager node, Cisco Unified TSP sends a PHONE_STATE
(PHONESTATE_RESUME) message to the TAPI application.

The lines on the affected device also go out of service and in service, and Cisco Unified TSP sends
LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) messages to the TAPI application.

Call Survivability
When a device or Unified Communications Manager failure occurs, no call survivability exists; however,
media streams that are already connected between devices will survive. Calls in the process of being set up
or modified (transfer, conference, redirect) simply get dropped.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
7

Overview
Cisco Unified Communications Manager Failure

CTI Manager Failure
When a primary CTIManager fails, CiscoUnified TSP sends a PHONE_STATE (PHONESTATE_SUSPEND)
message and a LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE) message for every phone
and line device that the application opened. Cisco Unified TSP then connects to a backup CTIManager. When
a connection to a backup CTI Manager is established and the device or line successfully reopens, the Cisco
Unified TSP sends a PHONE_STATE (PHONESTATE_RESUME) or LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) message to the TAPI application. If the Cisco Unified TSP is unsuccessful
in opening the device or line for a CTI port or route point, the Cisco Unified TSP closes the device or line by
sending the appropriate PHONE_CLOSE or LINE_CLOSE message to the TAPI application.

After Cisco Unified TSP is connected to the backup CTIManager, Cisco Unified TSP will not reconnect to
the primary CTIManager until the connection is lost between Cisco Unified TSP and the backup CTIManager.

If devices are added to or removed from the user while the CTIManager is down, Cisco Unified TSP generates
PHONE_CREATE/LINE_CREATE or PHONE_REMOVE/LINE_REMOVE events, respectively, when
connection to a backup CTI Manager is established.

Cisco Unified TAPI Application Failure
When a Cisco TAPI application fails (the CTIManager closes the provider), calls at CTI ports and route points
that have not yet been terminated get redirected to the Call Forward On Failure (CFF) number that has been
configured for them. The system routes new calls into CTI Ports and Route Points that are not opened by an
application to their CFNA number.

LINE_CALLDEVSPECIFIC Event Support for RTP Events
RTP events are generated as LINE_CALLDEVSPECIFIC events that contain Call Handle details of the call.
However, to activate the feature, the application must negotiate the extension version greater than or equal to
0x00040001 when opening the line.

Due to dependency on the extension version of the line, the Media Events, RTP_START / STOP, are reported
differently to the application:

• If extension version is less than EXTVERSION_FOUR_DOT_ZERO - 0x00040000 — TSP reports
LINE_DEVSPECIFIC event to application on the line irrespective whether call object is present. In this
case, even if a call is DeAllocated after IDLE state, RTP_STOP events are delivered to the application.

• If extension version is greater than or same as EXTVERSION_FOUR_DOT_ZERO - 0x00040000—TSP
does report the Media Events if the Call Object is DeAllocated from Application.

So a check must be added for the Extension Version to maintain backward compatibility. So it must not be
assumed that RTP events will always come before IDLE event.

QoS
Cisco Unified TSP supports the Cisco baseline for baselining of Quality of Service (QoS). Cisco Unified TSP
marks the IP Differentiated Services Code Point (DSCP) for QBE control signals that flow from TSP to CTI
with the value of the Service parameter “DSCP IP for CTI Applications” that CTI sends in the
ProviderOpenCompletedEvent. The Cisco TAPI Wave driver marks the RTP packets with the value that CTI
sends in the StartTransmissionEvent. The system stores the DSCP value received in the StartTransmissionEvent
in the DevSpecific portion of the LINECALLINFO structure, and fires the
LINECALLINFOSTATE_DEVSPECIFIC event with the QoS indicator.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
8

Overview
CTI Manager Failure

QoS information is not available if you begin monitoring in the middle of a call because existing calls do not
have an RTP event.

Note

Presentation Indication (PI)
There is a need to separate the presentability aspects of a number (calling, called, and so on) from the actual
number itself. For example, when the number is not to be displayed on the IP phone, the information might
still be needed by another system, such as Unity VM. Hence, each number/name of the display name needs
to be associated with a Presentation Indication (PI) flag, which will indicate whether the information should
be displayed to the user or not.

You can set up this feature as follows:

On a Per-Call Basis

You can use Route Patterns and Translation Patterns to set or reset PI flags for various partyDNs/Names on
a per-call basis. If the pattern matches the digits, the PI settings that are associated with the pattern will be
applied to the call information.

On a Permanent Basis

You can configure a trunk device with “Allow” or “Restrict” options for parties. This will set the PI flags for
the corresponding party information for all calls from this trunk.

Cisco Unified TSP supports this feature. If calls are made via Translation patterns with all of the flags set to
Restricted, the system sends the CallerID/Name, ConnectedID/Name, and RedirectionID/Name to applications
as Blank. The system also sets the LINECALLPARTYID flags to Blocked if both the Name and Party number
are set to Restricted.

When developing an application, be sure only to use functions that the Cisco TAPI Service Provider supports.
For example, the Cisco TAPI Service Provider supports transfer, but not fax detection. If an application
requires an unsupported media or bearer mode, the application will not work as expected.

Cisco Unified TSP does not support TAPI 3.0 applications.

Call Control
You can configure Cisco Unified TSP to provide first-or third-party call control.

First-Party Call Control

In first-party call control, the application terminates the audio stream. Ordinarily, this occurs by using the
Cisco wave driver. However, if you want the application to control the audio stream instead of the wave driver,
use the Cisco device-specific extensions.

Third-Party Call Control

In third-party call control, the control of an audio stream terminating device is not “local” to the Unified
Communications Manager. In such cases, the controller might be the physical IP phone on your desk or a
group of IP phones for which your application is responsible.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
9

Overview
Presentation Indication (PI)

Cisco does not support CTI device monitoring or call control with 3rd-party devices.Note

CTI Port
For first-party call control, a CTI port device must exist in the Cisco Unified Communications Manager.
Because each port can only have one active audio stream at a time, most configurations only need one line
per port.

A CTI port device does not actually exist in the system until you run a TAPI application and a line on the port
device is opened requesting LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE.Until the port is opened, anyonewho calls the directory number
that is associated with that CTI port device receives a busy or reorder tone.

The IP address and UDP port number is either specified statically (the same IP address and UDP port number
is used for every call) or dynamically. By default, CTI ports use static registration.

Dynamic Port Registration
Dynamic Port Registration enables applications to specify the IP address and UDP port number on a call-by-call
basis. Currently, the IP address and UDP port number are specified when a CTI port registers and is static
through the life of the registration of the CTI port. When media is requested to be established to the CTI port,
the system uses the same static IP address and UDP port number for every call.

An application that wants to use Dynamic Port Registration must specify the IP address and UDP port number
on a call before invoking any features on the call. If the feature is invoked before the IP address and UDP
port number are set, the feature will fail, and the call state will be set depending on when the media time-out
occurs.

CTI Route Point
You can use Cisco Unified TAPI to control CTI route points. CTI route points allow Cisco Unified TAPI
applications to redirect incoming calls with an infinite queue depth. This allows incoming calls to avoid busy
signals.

CTI route point devices have an address capability flag of LINEADDRCAPFLAGS_ROUTEPOINT. When
your application opens a line of this type, it can handle any incoming call by disconnecting, accepting, or
redirecting the call to some other directory number. The basis for redirection decisions can be caller ID
information, time of day, or other information that is available to the program.

Media Termination at Route Point
The Media Termination at Route Point feature lets applications terminate media at route points. This feature
enables applications to pass the IP address and port number where they want the call at the route point to have
media established.

The system supports the following features at route points:

• Answer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
10

Overview
CTI Port

• Multiple Active Calls

• Redirect

• Hold

• UnHold

• Blind Transfer

• DTMF Digits

• Tones

Monitoring Call Park Directory Numbers
The Cisco Unified TSP supports monitoring calls on lines that represent Call Park Directory Numbers (Call
Park DNs). The Cisco Unified TSP uses a device-specific extension in the LINEDEVCAPS structure that
allows TAPI applications to differentiate Call Park DN lines from other lines. If an application opens a Call
Park DN line, all calls that are parked to the Call Park DN get reported to the application. The application
cannot perform any call control functions on any calls at a Call Park DN.

To open Call Park DN lines, you must check theMonitor Call Park DNs check box in Unified
Communications Manager User Administration for the Cisco Unified TSP user. Otherwise, the application
will not perceive any of the Call Park DN lines upon initialization.

Multiple Cisco Unified TSPs
In the Cisco Unified TAPI solution, the TAPI application and Cisco Unified TSP get installed on the same
machine. The Cisco Unified TAPI application and Cisco Unified TSP do not directly interface with each
other. A layer written by Microsoft sits between the TAPI application and Cisco Unified TSP. This layer,
known as TAPISRV, allows the installation of multiple TSPs on the same machine, and it hides that fact from
the Cisco Unified TAPI application. The only difference to the TAPI application is that it is now informed
that there are more lines that it can control.

Consider an example—assume that Cisco Unified TSP1 exposes 100 lines, and Cisco Unified TSP2 exposes
100 lines. In the single Cisco Unified TSP architecture where Cisco Unified TSP1 is the only Cisco Unified
TSP that is installed, Cisco Unified TSP1 would tell TAPISRV that it supports 100 lines, and TAPISRVwould
tell the application that it can control 100 lines. In the multiple Cisco Unified TSP architecture, where both
Cisco Unified TSPs are installed, this means that Cisco Unified TSP1 would tell TAPISRV that it supports
100 lines, and Cisco Unified TSP2 would tell TAPISRV that it supports 100 lines. TAPISRV would add the
lines and inform the application that it now supports 200 lines. The application communicates with TAPISRV,
and TAPISRV takes care of communicating with the correct Cisco Unified TSP.

Ensure that each Cisco Unified TSP is configured with a different username and password that you administer
in the Unified Communications Manager Directory. Configure each user in the Directory, so devices that are
associated with each user do not overlap. Each Cisco Unified TSP in the multiple Cisco Unified TSP system
does not communicate with the others. Each Cisco Unified TSP in the multiple Cisco Unified TSP system
creates a separate CTI connection to the CTIManager as shown in the following figure. Multiple Cisco Unified
TSPs help in scalability and higher performance.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
11

Overview
Monitoring Call Park Directory Numbers

Figure 3: Multiple Cisco Unified TSPs Connect to CTI Manager

CTI Device/Line Restriction
With CTI Device/Line restriction implementation, a CTIRestricted flag is be placed on device or line basis.
When a device is restricted, it assumes that all its configured lines are restricted.

Cisco Unified TSP does not report any restricted devices and lines back to application. When a CTIRestricted
flag is changed fromUnified CommunicationsManager Administration, Cisco Unified TSP treats it as normal
device/line add or removal.

Development Guidelines
Ciscomaintains a policy of interface backward compatibility for at least one previous major release of Unified
Communications Manager. Cisco still requires Cisco Technology Developer Program member applications
to be retested and updated as necessary to maintain compatibility with each new major release of Unified
Communications Manager.

The following practices are recommended to all developers, including those in the Cisco Technology Developer
Program, to reduce the number and extent of any updates that may be necessary:

• The order of events and/or messages may change. Developers should not depend on the order of events
or messages. For example, where a feature invocation involves two or more independent transactions,
the events or messages may be interleaved. Events related to the second transactionmay precedemessages
related to the first. Additionally, events or messages can be delayed due to situations beyond control of
the interface (for example, network or transport failures). Applications should be able to recover from
out of order events or messages, even when the order is required for protocol operation.

• The order of elements within the interface event or message may change, within the constraints of the
protocol specification. Developers must avoid unnecessary dependence on the order of elements to
interpret information.

• New interface events, methods, responses, headers, parameters, attributes, other elements, or new values
of existing elements, may be introduced. Developers must disregard or provide generic treatments where
necessary for any unknown elements or unknown values of known elements encountered.

• Previous interface events, methods, responses, headers, parameters, attributes, and other elements, will
remain, and will maintain their previous meaning and behavior to the extent possible and consistent with
the need to correct defects.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
12

Overview
CTI Device/Line Restriction

• Applications must not be dependent on interface behavior resulting from defects (behavior not consistent
with published interface specifications) since the behavior can change when defect is fixed.

• Use of deprecated methods, handlers, events, responses, headers, parameters, attributes, or other elements
must be removed from applications as soon as possible to avoid issues when those deprecated items are
removed from Unified Communications Manager.

• Application Developers must be aware that not all new features and new supported devices (for example,
phones) will be forward compatible. New features and devices may require application modifications to
be compatible and/or to make use of the new features/devices.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
13

Overview
Development Guidelines

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
14

Overview
Development Guidelines

C H A P T E R 2
New and Changed Information

This chapter describes new and changed Cisco Unified TAPI Service Provider (TSP) information for Unified
Communications Manager release 10.0(1) and features supported in the previous releases.

Refer to the programming guides Web site for prior Cisco TAPI Developer Guides at
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

This chapter contains the following sections:

• Cisco Unified Communications Manager, Release 12.5(1), on page 15
• Features Supported in Previous Releases, on page 15

Cisco Unified Communications Manager, Release 12.5(1)
This section describes new and changed features that were released with Unified Communications Manager
Release 12.5(1).

• Call Recording for SIP or TLS Authenticated calls, on page 34

Features Supported in Previous Releases
This section describes the features supported in previous releases and contains the following sections:

• There are no new or changed TAPI specifications for Unified CommunicationsManager Release 12.0(1).

• Cisco Unified Communications Manager, Release 11.5(1), on page 16

• Cisco Unified Communications Manager, Release 11.0(1), on page 16

• Cisco Unified Communications Manager Release 10.5(2), on page 16

• Cisco Unified Communications Manager Release 10.0(1), on page 17

• Cisco Unified Communications Manager Release 9.1(1), on page 17

• Cisco Unified Communications Manager Release 9.0(1), on page 17

• Cisco Unified Communications Manager Release 8.6(1), on page 17

• Cisco Unified Communications Manager Release 8.5(1), on page 18

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
15

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

• Cisco Unified Communications Manager Release 8.0(1), on page 18

• Cisco Unified Communications Manager Release 7.1(3), on page 19

• Cisco Unified Communications Manager Release 7.1(2), on page 19

• Cisco Unified Communications Manager Release 7.0(1), on page 19

• Cisco Unified Communications Manager Release 6.1(x), on page 20

• Cisco Unified Communications Manager Release 6.0(1), on page 20

• Cisco Unified Communications Manager Release 5.1, on page 20

• Cisco Unified Communications Manager Release 5.0, on page 21

• Cisco Unified Communications Manager Release 4.x, on page 21

• Cisco Unified Communications Manager Releases Prior to 4.x, on page 21

Cisco Unified Communications Manager, Release 11.5(1)
This section describes new and changed features that were released with Unified Communications Manager
Release 11.5(1).

• Hunt Group Login Status, on page 70

• Redirect to Device, on page 84

Cisco Spark Device has been added as a new device type for this release of Unified CommunicationsManager
and may appear in the user's control list. However, Cisco Spark Device is not a supported device for this
release of Cisco Unified TAPI.

Note

Cisco Unified Communications Manager, Release 11.0(1)
This section describes new and changed features that were released with Unified Communications Manager
Release 11.0(1)

• Default CTI IP Addressing for Devices, on page 51

• Ringback on SIP 183 for Transfers, on page 87

Cisco Unified Communications Manager Release 10.5(2)
This section describes the new and changed features for release 10.5(2) of Unified CommunicationsManager:

• AES 256 Algorithm IDs, on page 26

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
16

New and Changed Information
Cisco Unified Communications Manager, Release 11.5(1)

Cisco Unified Communications Manager Release 10.0(1)
This section describes new and changed features that are supported in Unified Communications Manager
Release 10.0(1) and contains the following topics:

• CTI Video Support, on page 49
• Gateway Recording, on page 67
• CCMEncryption Enhancements, on page 37
• Video On Hold Support, on page 104
• CTI Remote Device Enhancements:

• Announcement Call, on page 45
• Persistent Connection, on page 43
• Call Forwarding, on page 48
• NuRD (Number Matching for Remote Destination) Support, on page 47
• Mobility Interaction Support, on page 47

Cisco Unified Communications Manager Release 9.1(1)
This section describes new and changed features that are supported in Unified Communications Manager
Release 9.1(1) and contains the following topics:

CTI Remote Device:

• Application Dial Rule Support, on page 42

• DTMF Support, on page 42

• Extend Mode Support for CSF Is Removed, on page 43

• Remote Destination Reachability Verification, on page 43

Cisco Unified Communications Manager Release 9.0(1)
This section describes new and changed features that are supported in Cisco Unified CommunicationsManager
release 9.0(1) and contains the following topics:

• Call Queuing Feature Support, on page 31
• Call Recording and Call Recording Enhancement, on page 32

• CIUS Session Persistency, on page 36

• CTI Remote Device, on page 40

• Hunt Pilot Connected Number, on page 70

• URI Dialing, on page 103

Cisco Unified Communications Manager Release 8.6(1)
This section describes new and changed features that are supported in Unified Communications Manager
release 8.6(1) and contains the following topics:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
17

New and Changed Information
Cisco Unified Communications Manager Release 10.0(1)

• EnergyWise DeepSleep Mode Support, on page 62

• FIPS Compliance, on page 66

• Password Expiry Notification, on page 82

Cisco Unified Communications Manager Release 8.5(1)
This section describes new and changed features that are supported in Unified Communications Manager
release 8.5(1) and contains the following topics:

• Agent Greeting, on page 26

• Agent Zip Tone, on page 27

• Early Offer, on page 56

• Extension Mobility Memory Optimization Option, on page 64

• Other-Device State Notification, on page 79

• Unrestricted Unified CM, on page 102

• Whisper Coaching, on page 104

Cisco announces the end-of-Availability for Cisco TAPI Wave Driver. The last release includes the affected
product(s) is Unified Communication Manager Release 8.X. Unified Communication Manager 9.0(1) and
later does not include Cisco TAPI Wave Driver.

Note

Develop Partners are encouraged to adopt support for Cisco TAPI Media Driver introduced in Unified
CommunicationManager 8.0(1) (releasedMarch 2010), which provides like or better functionality. Information
for Cisco TAPI Media Driver can be found in the TAPI Developer Guides at the following location:

http://www.cisco.com/en/US/partner/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

Note

Cisco Unified Communications Manager Release 8.0(1)
This section describes new and changed features that are supported in Unified Communications Manager
Release 8.0(1) and contains the following topics:

• Call Control Discovery, on page 29

• Call PickUp, on page 30

• CallFwdAll Notification, on page 35

• End-to-End Call Trace, on page 61

• Extension Mobility Cross Cluster, on page 63

• External Call Control, on page 65

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
18

New and Changed Information
Cisco Unified Communications Manager Release 8.5(1)

http://www.cisco.com/en/US/partner/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

• Hunt List, on page 69

• New Cisco Media Driver, on page 79

• Secured Monitoring and Recording, on page 92

• Support for 100 + Directory Numbers, on page 100

Cisco Unified Communications Manager Release 7.1(3)
This section describes new and changed features that are supported in Unified Communications Manager
Release 7.1(3) and contains the following topics:

• Support for Cisco Unified IP Phone 6900 and 9900 Series, on page 97

Cisco Unified Communications Manager Release 7.1(2)
This section describes new and changed features that are supported in Unified Communications Manager
Release 7.1(2) and contains the following topics:

• IPv6, on page 73

• Direct Transfer Across Lines, on page 53

• Message Waiting Indicator Enhancement, on page 77

• Swap and Cancel Softkeys, on page 100

• Drop-Any-Party, on page 56

• Park Monitoring, on page 80

• Logical Partitioning, on page 77

• Support for Cisco Unified IP Phone 6900 and 9900 Series, on page 97

• Device State Server, on page 52

Cisco Unified Communications Manager Release 7.0(1)
This section describes new and changed features supported in Unified Communications Manager Release
7.0(1) and contains the following:

• Join Across Lines (SIP), on page 75

• Localization Infrastructure Changes, on page 76

• Secure Conference, on page 87

• Calling Party Normalization, on page 30

• Click to Conference, on page 37

• Microsoft Windows Vista, on page 78

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
19

New and Changed Information
Cisco Unified Communications Manager Release 7.1(3)

For the features, Join Across Lines, Do Not Disturb-Reject, and Calling Party Normalization, each TAPI
application must be upgraded to a version that is compatible with these features. Additionally, if you are
upgrading from Release 5.1 and you use Join Across Lines, the Conference Chaining feature must not be
enabled or used until all applications are either upgraded to a version compatible with the newCUCMversion.
Also, you should verify that the applications are not impacted by the Conference Chaining feature.

Note

Cisco Unified Communications Manager Release 6.1(x)
This section describes new and changed features that Unified Communications Manager Release 6.1(x)
supports and contains the following topic:

• Join Across Lines (SCCP), on page 74

Cisco Unified Communications Manager Release 6.0(1)
This section describes new and changed features that are supported in Unified Communications Manager
Release 6.0(1), and contains the following topics:

• Intercom, on page 71

• Secure Conference, on page 87

• Do Not Disturb, on page 54

• Conference Enhancements, on page 38

• Arabic and Hebrew Language, on page 28

• Additional Features Supported on SIP Phones, on page 25

• Silent Monitoring, on page 94

• Call Recording and Call Recording Enhancement, on page 32

• Calling Party IP Address, on page 29

Cisco Unified Communications Manager Release 5.1
This section describes new and changed features supported in Unified Communications Manager, Release
5.1 and contains the following topics:

• Partition, on page 82

• Alternate Script, on page 28

• Secure RTP, on page 88

• Presentation Indication, on page 102

• Refer and Replaces for Phones That Are Running SIP, on page 86

• SIP URL Address, on page 95

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
20

New and Changed Information
Cisco Unified Communications Manager Release 6.1(x)

• Presentation Indication, on page 102

• Presentation Indication, on page 102

• Unicode, on page 102

Cisco Unified Communications Manager Release 5.0
This section describes new and changed features that are supported in Unified Communications Manager,
Release 5.0, and contains the following topics:

• Unicode, on page 102

• Line-Side Phones That Run SIP, on page 75

Cisco Unified Communications Manager Release 4.x
This section describes new and changed features that are supported in Unified Communications Manager,
Release 4.x, and contains the following topics:

Release 4.0

• Redirect and Blind Transfer, on page 85

• Direct Transfer, on page 53

• Join, on page 74

• Set the Original Called Party Upon Redirect, on page 93

• Cisco Unified TSP Auto Update, on page 35

• Shared Line Appearance, on page 93
• XSI Object Pass Through, on page 107

Release 4.1

• Forced Authorization Code and Client Matter Code, on page 67

• CTI Port Third-Party Monitoring Port, on page 39

• Translation Pattern, on page 102

• Hold Reversion, on page 69

Cisco Unified Communications Manager Releases Prior to 4.x
The chapter includes the following list of all features that are available in the Unified TSP implementation of
Cisco Unified Communications Manager, prior to Release 4.x:

• Forwarding, on page 67

• Extension Mobility, on page 63

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
21

New and Changed Information
Cisco Unified Communications Manager Release 5.0

• Privacy Release, on page 84

• Join, on page 74

• Privacy Release, on page 84

• Barge and cBarge, on page 29

• XSI Object Pass Through, on page 107

• Silent Install, on page 94

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
22

New and Changed Information
Cisco Unified Communications Manager Releases Prior to 4.x

C H A P T E R 3
Features Supported by TSP

This chapter describes the features that Cisco Unified TAPI Service Provider (TSP) supports. See New and
Changed Information, on page 15 for described features, which are listed by Unified CommunicationsManager
release.

• 3XX, on page 25
• Additional Features Supported on SIP Phones, on page 25
• AES 256 Algorithm IDs, on page 26
• Agent Greeting, on page 26
• Agent Zip Tone, on page 27
• Alternate Script, on page 28
• Arabic and Hebrew Language, on page 28
• Barge and cBarge, on page 29
• Call Control Discovery, on page 29
• Calling Party IP Address, on page 29
• Calling Party Normalization, on page 30
• Call PickUp, on page 30
• Call Queuing Feature Support, on page 31
• Call Recording and Call Recording Enhancement, on page 32
• Call Recording for SIP or TLS Authenticated calls, on page 34
• CallFwdAll Notification, on page 35
• Cisco Unified TSP Auto Update, on page 35
• CIUS Session Persistency, on page 36
• Click to Conference, on page 37
• CCMEncryption Enhancements, on page 37
• Conference Enhancements, on page 38
• CTI Port Third-Party Monitoring Port, on page 39
• CTI Remote Device, on page 40
• Call Forwarding, on page 48
• CTI Video Support, on page 49
• Default CTI IP Addressing for Devices, on page 51
• Device State Server, on page 52
• Direct Transfer, on page 53
• Direct Transfer Across Lines, on page 53
• Directory Change Notification, on page 54

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
23

• Do Not Disturb, on page 54
• Do Not Disturb-Reject, on page 55
• Drop-Any-Party, on page 56
• Early Offer, on page 56
• End-to-End Call Trace, on page 61
• EnergyWise DeepSleep Mode Support, on page 62
• Extension Mobility, on page 63
• Extension Mobility Cross Cluster, on page 63
• Extension Mobility Memory Optimization Option, on page 64
• External Call Control, on page 65
• FIPS Compliance, on page 66
• Conference Changes, on page 67
• Forced Authorization Code and Client Matter Code, on page 67
• Forwarding, on page 67
• Gateway Recording, on page 67
• Hold Reversion, on page 69
• Hunt List, on page 69
• Hunt Pilot Connected Number, on page 70
• Hunt Group Login Status, on page 70
• Intercom, on page 71
• IPv6, on page 73
• Transfer Changes, on page 74
• Join, on page 74
• Join Across Lines (SCCP), on page 74
• Join Across Lines (SIP), on page 75
• Line-Side Phones That Run SIP, on page 75
• Localization Infrastructure Changes, on page 76
• Logical Partitioning, on page 77
• Message Waiting Indicator Enhancement, on page 77
• Microsoft Windows Vista, on page 78
• Monitoring Call Park Directory Numbers, on page 78
• Multiple Calls Per Line Appearance, on page 78
• New Cisco Media Driver, on page 79
• Other-Device State Notification, on page 79
• Park Monitoring, on page 80
• Partition, on page 82
• Password Expiry Notification, on page 82
• Privacy Release, on page 84
• Redirect to Device, on page 84
• Redirect and Blind Transfer, on page 85
• Refer and Replaces for Phones That Are Running SIP, on page 86
• Ringback on SIP 183 for Transfers, on page 87
• Secure Conference, on page 87
• Secure RTP, on page 88
• Presentation Indication, on page 90
• Secure TLS, on page 90

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
24

Features Supported by TSP

• Secured Monitoring and Recording, on page 92
• Select Calls, on page 93
• Conference Changes, on page 93
• Transfer Changes, on page 93
• Set the Original Called Party Upon Redirect, on page 93
• Shared Line Appearance, on page 93
• Silent Install, on page 94
• Silent Monitoring, on page 94
• SIP URL Address, on page 95
• Presentation Indication, on page 96
• Change Notification of SuperProvider and CallPark DN Monitoring Flags, on page 96
• Super Provider, on page 96
• SuperProvider, on page 96
• Support for Cisco Unified IP Phone 6900 and 9900 Series, on page 97
• Support for 100 + Directory Numbers, on page 100
• Swap and Cancel Softkeys, on page 100
• Translation Pattern, on page 102
• Presentation Indication, on page 102
• Change Notification of SuperProvider and CallPark DN Monitoring Flags, on page 102
• Unicode, on page 102
• Unrestricted Unified CM, on page 102
• URI Dialing, on page 103
• Video On Hold Support, on page 104
• Whisper Coaching, on page 104
• XSI Object Pass Through, on page 107

3XX
Cisco TSP maps the CTI reason code for 3XX to REDIRECT. When a call arrives on a monitored line due
to 3XX feature, the call reason for the incoming call will get REDIRECT in this case. No interface change
for TSP 3XX support.

Backward Compatibility

This feature is backward compatible.

Additional Features Supported on SIP Phones
Unified Communications Manager extends support for phones that are running SIP with these new features:

• PhoneSetLamp (but only for setting the MWI lamp)

• PhoneSetDisplay

• PhoneDevSpecific (CPDST_SET_DEVICE_UNICODE_DISPLAY)

• LineGenerateTone

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
25

Features Supported by TSP
3XX

• Park and UnPark

• The LINECALLREASON_REMINDER reason for CallPark reminder calls

• PhoneGetDisplay (but only after a PhoneSetDisplay)

TSP does not pass unicode name for phones that are running SIP.

AES 256 Algorithm IDs
From release 10.5(2) Cisco Unified Communications Manager has updated its list of supported encryption
algorithm IDs. CiscoTSP has also updated its list of SRTP AlgorithmIDs. The new CiscoSRTPAlgorithm IDs
added to CiscoLineDevSpecificMsg.h are:

• SRTP_AES_CM_128_HMAC_SHA1_80

• SRTP_F8_128_HMAC_SHA1_32

• SRTP_F8_128_HMAC_SHA1_80

• SRTP_AEAD_AES_128_GCM

• SRTP_AEAD_AES_256_GCM

The SRTP_AEAD_128_GCM and SRTP_AEAD_AES_256_GCM will be negotiated only for secure calls
between two SIP endpoints.

CTI Ports can register with the above mentioned algorithm IDs, but will negotiate only on the existing
SRTP_AEAD_128_COUNTER for a secure call.

Agent Greeting
Agent Greeting allows a CTI application (for example, the Contact Center) to instruct Unified Communications
Manager to automatically play a pre-recorded announcement to the customer immediately after a successful
media connection to the agent device. Applications are responsible for answering this call and playing greeting
(for example, “Thank you for calling Citibank Visa. My name is Joe. May I have your account number
please.”). The agent and customer can hear the agent greeting and the agent can remain on mute until the
greeting ends or talk to the customer before the greeting ends. To support the Agent Greeting feature, Cisco
Unified TSP introduces a new CCiscoLineDevSpecific extension to initiate and stop Agent Greeting.

To handle agent greetings during the customer calls:

• CCiscoLineDevSpecificStartSendMediaToBIBRequest allows the application to initiate an agent greeting
to the customer call. The request contains IVRDN and CGPNToIVR.

• CCiscoLineDevSpecificStopSendMediaToBIBRequest allows the application to stop an agent greeting.
This request is placed on the line where the agent greeting is currently playing and no other parameter
is required.

• When an agent greeting is initiated or stopped, Cisco Unified TSP sends LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) or LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED) to application.

• In the case of an agent greeting ended event, param2 indicates if the agent greeting was played successfully.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
26

Features Supported by TSP
AES 256 Algorithm IDs

• If the application opens another line while an agent greeting is currently playing to the agent-to-customer
call, Cisco Unified TSP exposes SendMediaToBIB bitmap in CallAttributeBits bitmap of
LineCallInfo::DevSpecific indicating that the agent greeting is in progress. When the agent greeting ends,
CiscoUnified TSP sends LineCallDevSpecific (SLDSMT_MEDIA_TO_BIB_ENDED) to the application
and clears SendMediaToBIB bitmap in the CallAttributeType field.

• When the agent greeting call arrives on the IVR port, two new bitmaps (ServerCall and BIBCall) are
exposed as CallAttributeType. Cisco Unified TSP exposes LINECALLREASON_UNKNOWN as TAPI
call reason when the agent greeting call arrives at IVR port, and exposes CtiReasonSendMediaToBIB
in the ExtendedCallReason field.

• CTI Port and Route Point do not support Agent Greeting. Application gets
LINEERR_OPERATIONUNAVAIL if CCiscoLineDevSpecificStartSendMediaToBIBRequest is issued
on a CTI port or Route Point.

To support this feature, the application must negotiate line extension 0x000B0000 or above.Note

Interface Changes

See Start SendMedia to BIB, on page 382, Stop SendMedia to BIB, on page 383,Media to BIB Started Event,
on page 417, Media to BIB Ended Event, on page 417, and Details, on page 332.

Message Sequences

See Agent Greeting, on page 455.

Backward Compatibility

This feature is backward compatible.

Agent Zip Tone
The Agent Zip Tone Support feature allows the TAPI applications to play tone on active calls, that is, play a
tone on an agent phone after the call is answered (active state) by an agent.

TAPI defines a new line devspecific CCiscoLineDevSpecificPlaytone (lineHandle, callHandle, Tone, and
PlayToneDirection) message type. Applications use this message type to play the tone on a phone placed
locally or remotely.

Applications can play the tone on a local phone when the call is in the Accepted/Ringback state and on a
remote phone when the call is in the Connected state.

When the application issues CCiscoLineDevSpecificPlaytone request with tone as CTONE_ZIP and direction
as local, then the Zip tone is played at the local phone and the

LINE_DEVSPECIFIC event with the following parameters is reported on the local phone indicating that the
tone is played:

• dwParam1 = SLDSMT_CALL_TONE_CHANGED

• dwParam2 = CTONE_ZIP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
27

Features Supported by TSP
Agent Zip Tone

• dwParam3 = 0(local)

Similarly, when the application issues CCiscoLineDevSpecificPlaytone request with tone as CTONE_ZIP
and direction as remote, then the Zip tone is played at the remote phone and the

LINE_DEVSPECIFIC event the following parameters is reported on the remote phone indicating that the
tone is played:

• dwParam1 = SLDSMT_CALL_TONE_CHANGED

• dwParam2 = CTONE_ZIP

• dwParam2 = 0(local)

and also LINE_DEVSPECIFIC event the following parameters is reported on the local phone:

• dwParam1 = SLDSMT_CALL_TONE_CHANGED

• dwParam2 = CTONE_ZIP

• dwParam3 = 1(remote)

Extension 0x000B0000 is introduced for release 8.5(1).

Interface Changes

See Agent Zip Tone, on page 472.

Message Sequences

See Agent Zip Tone, on page 472.

Backward Compatibility

This feature is backward compatible.

Alternate Script
Certain IP phone types support an alternate language script other than the default script that corresponding to
the phone configurable locale. For example, the Japanese phone locale associates two written scripts. Some
phone types support only the default Katakana script, while other phones types support both the default
Katakana script and the alternate Kanji script. Because applications can send text information to the phone
for display purposes, they need to know what alternate script a phone supports – if any.

Arabic and Hebrew Language
Users can select Arabic and Hebrew languages during installation and also in the Cisco TSP settings user
interface.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
28

Features Supported by TSP
Alternate Script

Barge and cBarge
Unified CommunicationsManager supports the Barge and cBarge features. The Barge feature uses the built-in
conference bridge. The cBarge feature uses the shared conference resource.

Cisco Unified TSP supports the events that are caused by the invocation of the Barge and cBarge features. It
does not support invoking either Barge or cBarge through an API of Cisco Unified TSP.

Call Control Discovery
The Call Control Discovery feature facilitates provisioning for inter-call agent communications. It uses the
Service Advertisement Framework (SAF) network service to advertise itself as a call control entity and to
discover other call control entities (CUCMs or CMEs) on the network so that it can dynamically adapt their
routing behavior.

When call is made between two devices on different clusters, and the ICT bandwidth doesn't allow the call
to go through, the CCD feature will fail over the call through a PSTN trunk to reach the same destination.
PSTN failover will also be triggered by the CCDRequestingServicewhen the call to a learnedHosted DNPattern
gets rejected with a cause code other than unallocated, unassigned number and user busy

TAPI shall pass the CtiReasonSAF_CCD_PSTNFailover in the existing ExtendedCallReason field of the
devSpecific portion of lineCallInfo. Since TAPI requires the TAPI call reason field to be set only once, the
TAPI call reason shall remain as LINECALLREASON_DIRECT.

Interface Changes

There are no interface changes.

Message Sequences

See Call Control Discovery, on page 485

Backward Compatibility

This feature is backward compatible.

Calling Party IP Address
The Calling Party IP Address feature provides the IP address of the calling party. The calling party device,
which must be supported, must be an IP phone. The IP address is provided to applications in the devspecific
data of LINECALLINFO. A value of zero (0) indicates that the information in not available.

The enhancement provides the IP address to the destination side of basic calls, consultation calls for transfer
and conference, and basic redirect and forwarding. If the calling party changes, no support is provided.

Message Sequence

See Calling Party IP Address, on page 507.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
29

Features Supported by TSP
Barge and cBarge

Calling Party Normalization
Prior to the Unified Communication Manager Release 7.0(1), the “+” symbol was not supported. Also, no
support existed for displaying the localized or global number of the caller to the called party on its alerting
display and the entry into its call directories for supporting a callback without the need of an EditDial.

Unified Communications Manager Release 7.0(1) adds support for “+” symbol and also the calling number
is globalized and passed to the application. This enables the end user to dial back without using EditDial.
Along with the globalized calling party, the user would also get the number type of the calling party. This
would help the user to know where the call originated, that is, whether it is a SUBSCRIBER, NATIONAL
or INTERNATIONAL number.

Interface Changes

See LINECALLINFO, on page 324.

Message Sequences

See Calling Party Normalization, on page 508.

Backward Compatibility

This feature is backward compatible.

Call PickUp
Call Pickup enables TAPI applications to invoke pickup, group-pickup, other-pickup, and directed pickup
features from the application. Apart from providing the API to invoke Call PickUp feature, application registers
Call pickup groups for alert notification, whenever a call is available for pickup. There will not be any
notification if the call is picked up and the alerting stops.

Whenever there is a new call on the Pickup Group, TAPI fires a LINE_APPNEWCALL event followed by
a LINE_CALLSTATE with a LINECALLSTATE_UNKNOWN | CLDSMT_CALL_PICKUP_STATE.

TAPI provides the pickup group Direct Number or Partition for the line in the devSpecific data of
LINEDEVCAPS when LineGetDevCaps API is invoked with Extension version 0x000A0000 or higher.

NewLineType is added for this feature, which is exposed to Application in Devspecific part of LINEDEVCAPS
for the Pickup Line.

#define LINEDEVCAPSDEVSPECIFIC_PICKUPDN 0x00000004

New extension 0x000A0000 must be negotiated to use the new APIs.

Range of Permanent Line ID for the Pickup Line is between MAX_PICKUP_PERMID and
MIN_PICKUP_PERMID.

const DWORD MAX_PICKUP_PERMID = 0xFFFFFFFF;

const DWORD MIN_PICKUP_PERMID = 0xFF000000;

New Call State Callpickup State is added for this feature

#define CLDSMT_CALL_PICKUP_STATE 0x10000000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
30

Features Supported by TSP
Calling Party Normalization

Interface Changes

See RegisterCallPickUpGroupForNotification, on page 380, UnRegisterCallPickUpGroupForNotification, on
page 381, and CallPickUpRequest, on page 381.

Message Sequences

See Call PickUp, on page 511

Backward Compatibility

This feature is backward compatible.

Call Queuing Feature Support
Unified Communications Manager queuing feature provides the ability to hold callers in a queue if there are
more calls distributed through the call distribution feature than it can handle at any given time until the hunt
members are available to answer them. While a call is in queue, the user is given the initial greeting
announcement, music on hold, repeated announcements and so on.

TAPI exposes the below call reasons for the respective conditions in extendedCallInfo in the DevSpecific
part of the LINECALLINFO structure.

• CallQueue {45 (0x2D)}

CallQueue call reason is exposed on the calling party call when the call is queued when all HuntMembers
of the HuntGroup are busy

• CallDeQueue {46 (0x2E)}

CallDeQueue call reason is exposed on the connected party call when the dequeued-call is offered on
the available Huntmember or any other DN which has been configured in the Queuing feature if no
Huntmember is available

• CallDeQueueTimerExpired {47 (0x2F)}

CallDeQueueTimerExpired call reason is exposed on the connected party call when the queued-call timer
expires and the call is offered on the DN which has been configured in the Queuing feature when the
"Maximum wait time in Queue" expires

• CallDeQueueAgentsBusy {48 (0x30)}

CallDeQueueAgentsBusy call reason is exposed on the connected party call when all the hunt members
are busy and hence the call is never queued and directly offered on the DN which has been configured
in the Queuing feature when "Maximum Number of callers allowed in Queue" is reached

• CallDeQueueAgentsUnavailable {49 (0x31)}

CallDeQueueAgentsUnavailable call reason is exposed on the connected party call when no hunt member
is either logged-in or registered and the call is offered on the DN which has been configured in the
Queuing feature when "No hunt members are Logged-in or registered"

TAPI shall not expose the ConnectedHuntPilotDN in the devspecific part of LINECALLINFO, on the calling
party when the call is queued. The connectedHuntPilotDN is updated when the de-queued call offered on one
of the hunt members is answered and goes to connected state.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
31

Features Supported by TSP
Call Queuing Feature Support

The following Call queue setting configurations are available in the Hunt Pilot Configuration page.

MaximumNumber of Callers Allowed in Queue (1-100): This is the queue depth configuration and reflects
the maximum number calls that can be in the queue at any point of time.

DestinationWhenQueue is full: It is the user configurable destination number to which the calls are forwarded
when the maximum number of calls allowed in queue limit is reached.

MaximumWait Time in Queue (10 -3600 seconds): User configurable maximum wait time a call on be in
the queue.

Destination When MaximumWait Time is Met: User configurable destination DN to which the call is
forwarded when the maximum wait time in queue is reached.

Destination When There Are No Agents Logged In or Registered: User configurable destination DN to
which the queue feature forwards the calls when none of the hunt members in the HuntPilot are registered or
logged in.

Interface Changes

Not applicable.

Message Sequences

See Call Queuing, on page 518.

Backward Compatibility

This feature is not backward compatible.

Call Recording and Call Recording Enhancement
The Call Recording feature provides two ways of recording the conversations between the agent and the
customer: automatic call recording and selective call recording. A line appearance configuration determines
whichmode is enabled. Administrators can configure no recording, automatic recording of all calls, or selective
recording for a line appearance. In selective call recording, recording can be initiated using a softkey or
programmable line key assigned to the device, a CTI-enabled application, or both interchangeably.

Selective recording supports two modes: silent recording and user recording.

In the silent recording mode, the call recording status is not reflected on the Cisco IP device display. Silent
recording is typically used in a call center environment to enable a supervisor to record an agent call. A
CTI-enabled application running on the supervisor desktop is generally used to start and stop the recording
for the agent-customer call.

In the user recording mode, the call recording status is reflected on the Cisco IP device display. A recording
may be started or stopped using a softkey, programmable line key, or CTI-enabled application running on the
user desktop.

The recording configuration on a line appearance cannot be overridden by an application. TSP will report
‘Recording type’ information to app in devSpecificData of LineDevCaps structure.Whenever there is a change
in ‘Recording Type’, TSPwill send LINE_DEVSPECIFIC (SLDSMT_LINE_PROPERTY_CHANGEDwith
indication of LPCT_RECORDING_TYPE) event to application.

If the automatic call recording is enabled, a recording session will be triggered whenever a call is received or
initiated from the line appearance. When the application invoked call recording is enabled, application can

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
32

Features Supported by TSP
Call Recording and Call Recording Enhancement

start a recording session by using CCiscoLineDevSpecificStartCallRecording
(SLDST_START_CALL_RECORDING) on the call after it becomes active. The selective recording can
occur in the middle of the call, whereas the automatic recording always starts at the beginning of the call. The
recorder is configured in CallManager as a SIP trunk device. Recorder DN can not be overridden by an
application.

TSP will provide start recording request in lineDevSpecific to app for establishing a recording session.
Application need to provide toneDirection as input to TSP in the start recording request. The result of the
recording session is that the two media streams of the recorded call (agent-customer call) is being relayed
from agent’s phone to the recorder. TSP will provide agent’s CCM Call Handle in the devSpecificData of
LINECALLINFO.

TSP will inform the application when recording starts on its call by sending LINE_CALLDEVSPECIFIC
(SLDSMT_RECORDING_STARTED) event. TSP will provide recording call attribute information
(deviceName, DN, Partition) in devspecific data of LINECALLINFO after recording starts.

The recording session will be terminated when the call is ended or if app sends stop recording request to TSP
through lineDevSpecific – CciscoLineDevSpecificStopCallRecording
(SLDST_STOP_CALL_RECORDING).TSP will inform agent by sending LINE_CALLDEVSPECIFIC
(SLDSMT_RECORDING_ENDED) when recording is stopped by stop recording request.

Both recording and monitoring get supported only for IP phones/CTI supported phones that are running SIP
and within one cluster. It can be invoked only on phones that support built in bridges. Also built in bridge
should be turned on to monitor or record calls on a device. Monitoring party does not need to have a BIB
configured. Recording and monitoring will not be supported for secure calls in this phase.

Call Attributes

Call Attributes can be found in the DEVSPECIFIC portion of the LINECALLINFO structure. The Call
Attribute Info is presented in the format of an array because Silent Monitoring and Call Recording could
happen at the same time.

DWORD CallAttrtibuteInfoOffset;
DWORD CallAttrtibuteInfoSize;
DWORD CallAttrtibuteInfoElementCount;
DWORD CallAttrtibuteInfoElementFixedSize;

Offset pointing to array of the following structure:

typedef struct CallAttributeInfo{
DWORD CallAttributeType;
DWORD PartyDNOffset;
DWORD PartyDNSize;
DWORD PartyPartitionOffset;
DWORD PartyPartitionSize;
DWORD DeviceNameOffset;
DWORD DeviceNameSize;

}CallAttributeInfo;

enum CallAttributeType

{
CallAttribute_Regular = 0,
CallAttribute_SilentMonitorCall,
CallAttribute_SilentMonitorCall_Target,
CallAttribute_RecordedCall,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
33

Features Supported by TSP
Call Recording and Call Recording Enhancement

CallAttribute_WhisperCoachingCall,
CallAttribute_WhisperCoachingCall_Target,
CallAttribute_Recorded_Automatic,
CallAttribute_Recorded_AppInitiatedSilent,
CallAttribute_Recorded_UserInitiatedFromApp,
CallAttribute_Recorded_UserInitiatedFromDevice
} ;

For recorded calls, if the application negotiates an extension less than 0x000C0000 the CallAttributeType is
set to CallAttribute_RecordedCall. If the application negotiates an extension version equal to 0x000C0000
or higher, the CallAttributeType is set to CallAttribute_Recorded_Automatic,
CallAttribute_Recorded_AppInitiatedSilent, CallAttribute_Recorded_UserInitiatedFromApp, or
CallAttribute_Recorded_UserInitiatedFromDevice.

Call Recording Enhancement

Unified CommunicationsManager Release 9.0 the Call Recording feature is enhanced to allow user to start/stop
current active call recording by pressing softkey on IP phone. Record key toggles between start and stop
modes.

When TAPI Application invokes Recording Start / Stop APIs it has the same effect as if the user pressed the
Record key on his IP phone. In addition, applications can control whether or not the phone display indication
of on-going recording.

The data types that are used by Cisco TSP to report recording configuration and recording type to TAPI
applications are re-worked in order to reflect the recent changes in UCM.

Interface Changes

• LineDevCaps::DevSpecific change (Cisco Extention 0x000C0000) LINEDEVCAPS, on page 252
• LineCallInfo::DevSpecific change (Cisco Extention 0x000C0000) LINECALLINFO, on page 324
• CciscoLineDevSpecificStartCallRecording Start Call Recording, on page 375
• CciscoLineDevSpecificStopCallRecording StopCall Recording, on page 376

Message Sequence

There are no changes to the message sequence with this enhancement.

Backward Compatability

This feature is backward compatible.

Call Recording for SIP or TLS Authenticated calls
Prior to 12.5.1 version, the phones which are authenticated (phone with Security profile having Device Security
Mode as Authenticated) were not allowed to make use of the Call Recording feature. Whereas, Non–Secured
phones or Secured/ Encrypted phones could use Call Recording feature with Non- Secured or Secured recorders,
respectively. With the release 12.5.1, Cisco UCM TAPI interface has been enhanced to allow recording in
Authenticated Phones based on the value of the new service parameter Authenticated Phone Recording.

The expectation is that the authenticated phones should also be allowed to make use of the Call Recording
feature. It depends on value set in the newly added service parameterAuthenticated Phone Recordingwhich
can be set to the following values:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
34

Features Supported by TSP
Call Recording for SIP or TLS Authenticated calls

• Allow Recording – Authenticated Phones can be allowed to record the calls.

• Do Not Allow Recording – Authenticated Phones cannot make use of Call Recording feature. This will
be the default value for the service parameter. The behavior would be the same as that of the current
behavior.

Message Sequences

Call Recording for SIP or TLS Authenticated calls, on page 554

Backward Compatibility

This feature is backward compatible. TAPI will support the current API’s.

CallFwdAll Notification
This enhancement allows TAPI applications to distinguish off-hook calls (outgoing calls) from calls made by
using the CFwdAll softkey.

TAPI provide two new additional mask bits in the existing bitmask, CallAttributeBitMask, as a part of
LINECALLINFO::DEVSPECIFIC. For normal outgoing calls, the newmask is set to 0 and if a call is generated
due to CFwdAll activation or deactivation, the corresponding new bit is set to 1.

Cases where the user presses CFwdAll softkey for an on-hook device are addressed, but when users go off-hook
first and then press CFwdAll softkey, are not covered.

Interface Changes

In the CallAttributeBitMask field, LINECALLINFO::DEVSPECIFIC is modified to include the two new bit
masks, TSPCallAttribute_CallForwardAllSet and TSPCallAttribute_CallForwardAllClear. For more
information, see Details, on page 332.

Message Sequences

See CallFwdAll Notification, on page 503.

Backward Compatibility

This feature is backward compatible.

Cisco Unified TSP Auto Update
Cisco Unified TSP supports auto update functionality, so the latest plug-in can be downloaded and installed
on a client machine. Be aware that the new plug-in will be QBE compatible with the connected CTIManager.
When the Unified Communications Manager is upgraded to a newer version, and Cisco Unified TSP auto
update functionality is enabled, the user will receive the latest compatible Cisco Unified TSP, which will work
with the upgraded Unified Communications Manager. This ensures that the applications work as expected
with the new release (provided the new Cisco Unified Communications Manager interface is backward
compatible with the TAPI interface). The locally installed Cisco Unified TSP on the client machine allows
applications to set the auto update options as part of the Cisco Unified TSP configuration. The user can opt
for updating Cisco Unified TSP in the following different ways:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
35

Features Supported by TSP
CallFwdAll Notification

• Update Cisco Unified TSP whenever a different version (higher version than the existing version) is
available on the Unified Communications Manager server.

• Update Cisco Unified TSPwhenever a QBE protocol versionmismatch exists between the existing Cisco
Unified TSP and the Unified Communications Managerversion.

CIUS Session Persistency
Wireless devices introduced by Cisco such as CIUS have the capability to move between WiFi networks and
also across WiFi and VPN networks (over 3G/4G) and still retain their registration with the same CiscoUCM.
However, due to the change in the network the IP address of the device might undergo a change. The same
scenario is applicable for docking and undocking of the CIUS phones.

To indicate this change in IP address of wireless devices such as Cius, TAPI will expose the changed IP
address for lineDevices and phoneDevices through DEVCAPS structure.

TAPI will send notification to Applications on change in IP Address information on lineDevices of CIUS
Device. LINE_DEVSPECIFIC notification is fired on all Open lines on a CIUS Device. TSP would fire
LINE_DEVSPECIFIC event with param1 = SLDSMT_LINE_PROPERTY_CHANGED,param2 =
LPCT_DEVICE_IPADDRESS.

TAPI will send notification to Applications on change in IP Address information on phoneDevices.
PHONE_DEVSPECIFIC notification is fired on the phoneDevices. TSP would fire PHONE_DEVSPECIFIC
event with param1 = CPDSMT_PHONE_PROPERTY_CHANGED_EVENT, param2 =
PPCT_DEVICE_IPADDRESS.

TAPI will expose the changed IP address, IP Addressing Mode (IPv4, IPv6) of lineDevices in the devspecific
data of LINEDEVCAPSwhen lineGetDevCapsAPI is invokedwith Extension version 0x00090001 or higher.

TAPI will expose the changed IP address, IP AddressingMode (IPv4, IPv6) of phoneDevices in the devspecific
data of PHONEDEVCAPS when phoneGetDevCaps API is invoked withExtension version 0x00090001 or
higher.

CIUS devices are SIP end points and like all other SIP end Points, they currently don't support IPV6.Note

Interface Changes

No interface changes.

Message Sequences

See CIUS Session Persistency, on page 556.

Backward Compatibility

This feature is backward compatible.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
36

Features Supported by TSP
CIUS Session Persistency

Click to Conference
The Click to Conference feature enables users to create conferences from an InstantMessaging (IM) application
without creating a consult call first. The Cisco TSP treats the feature as an existing conference model; however,
when the conference is created or dropped, the CtiExtendedReason may come as Click2Conference.

Interface Changes

None.

Message Sequences

See Click to Conference, on page 559.

Backward Compatibility

This feature is backward compatible.

CCMEncryption Enhancements
Starting with release Unified CommunicationsManager 10.0(1), Encryption method, which is used to encrypt
the user login password, is enhanced. Older CiscoTSP clients (9.x or earlier) use Symmetric Key Encryption.
Starting with rlease 10.x, the CiscoTSP client is enhanced to use a combination of Asymmetric and Symmetric
Encryption mechanism. This enhancement provides more security for user credentials in non-secured
connections.

Cisco recommends that applications/users upgrade Cisco TAPI clients to take advantage of this security
enhancement.

To maintain backward compatibility from CTI, a new CTI Service Parameter is introduced - Require Public
key Encryption.

The default value for this Service Parameter for this Release is False.

On False: CTI/CUCM allows applications/CiscoTSP clients using symmetric encryption method and
Asymmetric Public key encryption method to connect with CUCM.

On True: Only CiscoTSP clients/applications which use asymmetric PublicKey Encryption Method will be
able to open provider with Unified Communications Manager 10.x.

Cisco recommends that applications upgrade Cisco TAPI clients and set this service parameter to "true". The
proposed plan for future releases is to set default value as true for this service parameter and later deprecate
it to ensure that applications do not use older CiscoTSP Clients which use Symmetric Encryption method.

Interface Changes

There are no interface changes for this feature.

Message Sequence

CCMEncryption Enhancements, on page 555

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
37

Features Supported by TSP
Click to Conference

Backward Compatibility

As mentioned above, new CTI Service parameter is added to maintain backward compatibility.

Conference Enhancements
The Conference feature of Unified CommunicationManager has been enhanced with the following functions:

• Allowing a noncontroller to add another party into an ad hoc conference.

Applications can issue the lineGetCallStatus against a CONNECTED call of a noncontroller conference
participant and check the dwCallFeatures before adding another party into the conference. The application
should have the PREPAREADDCONF feature in the dwCallFeatures list if the participant is allowed to
add another party.

• Allowing multiple conferences to be chained.

Be aware that these features are only available if the 'Advanced Ad-hoc Conference' service parameter is
enabled on the Unified Communications Manager.

When this service parameter is changed from enabled to disabled, the system no longer allows new chaining
between ad hoc conferences. However, existing chained conferences will stay intact. Any participant who is
brought into the ad hoc conference by a noncontroller before this change will remain in the conference, but
they can no longer add a new participant or remove an existing participant.

To avoid ad hoc conference resources remaining connected together after all real participants have left, Unified
Communications Manager will disallow having more than two conference resources connected to the same
ad hoc conference. However, using a star topology to connect multiple conferences could yield better voice
quality than a linear topology. A new advanced service parameter, 'Non-linear Ad Hoc Conference Linking
Enabled', lets an administrator select the star topology.

A participant can use the conference, transfer, or join commands to chain two conferences together. When
two conferences are chained together, each participant only sees the participants from their own conference,
and the chained conference appears as a participant with a unique conference bridge name. In other words,
participants do not have a full view of the chained conference. The system treats the conferences as two
separate conferences, even though all the participants are talking to each other.

The following figures shows how TSP presents a conference model in the case of conference chaining. A, B,
and C are in conference-1, and C, D, and E are in conference-2. C has an ONHOLD call on conference-1 and
an active call on conference-2.
Figure 4: Conference Before Join

C then does a join with the primary call from conference-1. For A, B, and C, the conference participants
comprise A, B, C, and conference-2. For D and E, the conference participants comprise D, E, and conference-1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
38

Features Supported by TSP
Conference Enhancements

Figure 5: Conference After Join

When a user removes a CONFERENCE from its conference list on the phone, the operation actually drops
the chained conference bridge. In the previous example, the two chained conferences have been unchained.
Conference-1 will remain active and has A, B, and C as participants. However, conference-2 will become a
direct call between Dave and Ed because they are the only two parties left in the conference.

Applications can achieve conference chaining by issuing a JOIN or TRANSFER on two separated conference
calls. However, a LineCompleteTransfer with a conference option will fail due to a Microsoft TAPI limitation
on this standard API. The application can use the Cisco LineDevSpecific extension to issue the join request
to chain multiple conferences together.

As of Unified Communications Manager Release 8.6, Cisco TelePresence MCU conference bridges are
supported through JTAPI/TSP. From a JTAPI/TSP perspective, these conference bridges behave in the same
way as other supported conference bridges.

Note

CTI Port Third-Party Monitoring Port
Opening a CTI port device in first-party mode means that either the application is terminating the media itself
at the CTI port or that the application is using the Cisco Wave Drivers to terminate the media at the CTI port.
This also comprises registering the CTI port device.

Opening a CTI port in third-party mode means that the application is interested in just opening the CTI port
device, but it does not want to handle the media termination at the CTI port device. An example of this would
be a case where an application would want to open a CTI port in third-party mode because it is interested in
monitoring a CTI port device that has already been opened/registered by another application in first party
mode. Opening a CTI Port in third-party mode does not prohibit the application from performing call control
operations on the line or on the calls of that line.

Cisco Unified TSP allows TAPI applications to open a CTI port device in third-party mode via the
lineDevSpecific API, if the application has negotiated at least extension version 6.0(1) and set the high order
bit, so the extension version is set to at least 0x80050000.

The TAPI architecture lets two different TAPI applications that are running on the same PC use the same
Cisco Unified TSP. In this situation, if both applications want to open the CTI port, problems could occur.
Therefore, the first application to open the CTI port will control the mode in which the second application is
allowed to open the CTI port. In other words, all applications that are running on the same PC, using the same
Cisco Unified TSP, must open CTI ports in the same mode. If a second application tries to open the CTI port
in a different mode, the lineDevSpecific() request fails.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
39

Features Supported by TSP
CTI Port Third-Party Monitoring Port

CTI Remote Device
This feature provides the TSP/CTI applications to extend its ability to monitor and have limited call control
capability over third-party devices of a User. This capability is provided to users by representing all the
third-party devices/end points of a user as a Remote Destinations configured on a virtual device type named
as "CTI Remote Device".

"CTI Remote Device" is a new type of Virtual Device, can be configured from Admin pages just like any
other device and need to be associated with End User with Mobility support enabled. Remote Destinations
can be configured on CTI Remote Device page and each of these Remote Destinations will be configured
with the Number which can be used to dial any Third Party devices (PSTN, Mobile or other PBX) and thus
each of these Remote Destinations will be representing one of the third-party devices of a User which are not
actually registered to Unified Communications Manager.

"CTI Remote Device" can be configured with 5 Lines, each of them shared with Enterprise Phone's Lines.
On any incoming call to CTI Remote Device, the call will be extended to all the Remote Destinations/Third
Party Devices configured/associated with CTI Remote Device. Call will be reported to Applications on a line
on CTI Remote Device, which represents the call that is extended to Third Party Devices. Call events will be
reported like other normal calls representing the state of the calls extended to Third Party Devices.

"Cisco Unified Client Services Framework" (CSF) Devices are also enhanced to be registered in ExtendMode
from Jabber Clients. In the Extend Mode CSF devices behave exactly like CTI Remote Devices. Capability
to configure and associate Remote Destinations to CTI Remote Device is also extended to CSF Devices.

Remote Destinations can be configured from CUCM Admin Device pages of CTI Remote Device and CSF
Device or from Remote Destination pages (add new and associate it to CTI Remote/CSF device) or from TSP
applications using Add/Update/Remove Remote Destination feature. The max number of remote destinations
can be configured for a single CTI Remote Device depends on its owner user's max remote destinations
configuration on the CUCM Admin user page (Default is 4).

Following are the supported features on CTI Remote Devices in this Release.

1. Receiving Incoming Enterprise Calls

2. Make Call (DVO -Dial via Office)

3. Call Disconnect

4. Hold / UnHold(Resume/Retrieve)

5. Redirect

6. DSS(Device State Server), and DND -(Do Not Disturb) and CPN (Globalized Calling Party)

7. Call Forwarding (Busy, Forward All ...)

8. Transfer and Direct Transfer

1. only Direct Transfer on Same Line (DTSL) is supported

9. Conference and Join

1. DropAnyParty Feature is also supported

2. only Join on Same Line (JSL) is supported

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
40

Features Supported by TSP
CTI Remote Device

10. Add/Update/Remove Remote Destinations

11. URI dialing

Refer to FFS for detailed information on feature (EDCS # 1048080).

To support this feature, CiscoTSP enumerates and exposes the newly added "CTI Remote Device" and expose
the Remote Destination information configured on the "CTI Remote Device" to applications. New Line Type
is added for CTI Remote Device, which is exposed to Application in Devspecific part of LINEDEVCAPS
(LINEDEVCAPS::DevSpecific::dwLineTypeFlags = LINEDEVCAPSDEVSPECIFIC_REMOTEDEVICE
(0x00000008)) using which Remote Device Lines are identified.

It provides applications/Users capability to Add new Remote Destinations and Remove/Update existing
Remote Destinations configured on "CTI Remote Device" or CSF Devices. CiscoTSP would provide
applications the capability to monitor and control incoming and outgoing calls.

Note: This feature requires a Cisco Jabber client and this functionality is intended to be supported in Jabber
for Windows 9.1

Note

Interface Changes

The following new interfaces were added to support this feature:

• CciscoLineDevSpecificAddRemoteDestination Add Remote Destination, on page 388

• CciscoLineDevSpecificRemoveRemoteDestination Remove Remote Destination, on page 389

• CciscoLineDevSpecificUpdateRemoteDestination Update Remote Destination, on page 390

The following new error codes were added to support this feature:

DescriptionError

Reported on new LineDevSpecific Extensions (Add and Update)
when the remote Destination Information which application is
trying to update or add is already available.

LINEERR_DUPLICATE_INFORMATION

Reported on new LineDevSpecific Extensions (Update and
Remove) when the RemoteDestination Number provided is not
present on the Device/Line.

LINEERR_REMOTE_DESTINATION_UNAVAIL

Reported on new LineDevSpecifc Extension (Add) when total
Remote Destination count has exceeded the limit of Remote
Destinations configured for Owner User ID associated with Cti
Remote Device/CSF device.

LINEERR_REMOTE_DESTINATION_LIMIT_EXCEEDED

Reported if any feature related operation request on CTI
RemoteDevice failed as Active RD is not set.

LINEERR_OPERATION_FAIL_NO_ACTIVE_RD_SET

Reported if any feature related operation request on CTI
RemoteDevice failed as there is noAssociated EndUser associated
with Device.

LINEERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
41

Features Supported by TSP
CTI Remote Device

See device specific extensions.

Message Sequences

See CTI Remote Device, on page 574.

Backward Compatibility

This feature is backward compatible.

Application Dial Rule Support
Starting with Cisco Unified CommunicationManager Release 9.1 a matching Application Dial Rule is applied
prior to digit analysis when a call is offered to Remote Destination associated with a CTI Remote Device.
When an application adding or updating Remote Destination on a CTI Remote Device is a part of verification
process the Application Dial Rules are applied before digit analysis.

Interface Change

No Interface changes

Message Sequensce

Not Applicable

Backward Compatibility

In Cisco Unified Communication Manager Release 9.0 Application Dial Rules were not applied to Remote
Destinations that are associated with CTI Remote Device.

DTMF Support
Starting with Cisco Unified Communication Manager Release 9.1, applications are able to invoke
lineGenerateDigits() API on a CTI Remote Device. Only out-of-band DTMF is supported in Cisco Unified
Communication Manager Release 9.1.

Interface Change

No Interface changes

Message Sequensce

Not Applicable

Backward Compatibility

This is a new feature and is backward compatible.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
42

Features Supported by TSP
Application Dial Rule Support

Extend Mode Support for CSF Is Removed
In CiscoUnified CommunicationManager Release 9.0 a CSF device had the ability to add Remote Destinations,
starting with Cisco Unified Communication Manager Release 9.1 CSF devices can no longer register with
CTI in extend mode as CTI Remote Devices and CSF devices will not be able to add Remote Destination.

Interface Change

No Interface changes

Message Sequensce

Not Applicable

Backward Compatibility

Application upgrades from Cisco Unified Communication Manager Release 9.0 to Release 9.1 or later results
in the removal of Remote Destinations configured for CSF devices.

Remote Destination Reachability Verification
In Cisco Unified Communication Manager Release 9.1, an enhancement is added in CTI to verify Remote
Destination reachability when it is added or updated on a CTI Remote Device. To determine if the destination
is reachable, CTI performs digit analysis based on Reroute CSS configured on the CTI Remote Device. The
reachability verifies that the outside dial prefix, CSS and route pattern are configured correctly.

If the destination is not reachable the request returns the error:
CTIERR_EXTEND_AND_CONNECT_DESTINATION_NOT_REACHABLE.

Error code

LINEERR_REMOTE_DESTINATION_NOT_REACHABLE – can be returnedwhen an application attempts
to add or update a Remote Destination and it cannot be reached.

Interface Change

No Interface changes

Message Sequensce

Not Applicable

Backward Compatibility

Backward compatibility issues may be seen when upgrading to Cisco Unified Communication Manager
Release 9.1. In Unified Communication Manager Release 9.0 destination reachability was not verified and
there were no errors returned.

Persistent Connection
Persistent connection or Persistent call refers to a call between a CTI remote device and a remote destination
that stay connected even when no active customer calls exist. For example: At the beginning of the day, a

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
43

Features Supported by TSP
Extend Mode Support for CSF Is Removed

Unified Communications Manager server phones a teleworker at home to establish a persistent connection
that remains active all day, until the application drops the call.

At least one remote destination must be configured and active on the CTI remote device in order to create a
persistent call. One persistent call for each remote device is allowed at a time. No feature invocations, such
as park, hold, conference, and transfer, are allowed on persistent calls.

Once a persistent call is created it remains connected until application drops the call or the maximum call
duration timer expires. A persistent call is also disconnected when a remote destination drops the call or is no
longer active.

Persistent calls cannot be dropped if an active call to the remote device exists. Therefore, if there is an active
call, the persistent call will be dropped as soon as that call is finished.

A Persistent Connection Call differs from a typical call in that no media events are generated for the persistent
call. An application may not always receive notification about a persistent call that was accepted
(LNECALLSTATE_ACCEPTED). This notification may depend on the type of trunks and gateways used in
a specific telephone network.

The Persistent Call feature enhances some TAPI APIs and introduces new APIs and error codes.

This feature is backward compatible and existing applications are not affected.Note

Create a Persistent Call

The TAPI lineMakeCall function is used to create persistent call.. The relevant data is provided in
LINECALLPARAMS structure pointed to by the lpLineCallParams parameter. Cisco TSP ignores all other
lineMakeCall parameter for a persistent call.

For a persistent call, the LINECALLPARAMS contains the following data:

• DevSpecific part refering to Cisco_CallParamsDevSpecific structure where DevSpecificFlags is set to
Cisco_CALLPARAMS_DEVSPECIFICFLAGS_PERSISTENT CALL (0x00000002)

• CallingPartyID set to a directory number that appears as a remote destination CallerID directory number

• DisplayableAddress set to a name that appears as the remote destination CallerIDName.

Drop a Persistent Call

Use the standard TAPI lineDrop function to drop or disconnect persistent call. The hCall parameter should
specify the persistent call handle (HCALL) returned by lineMakeCall when the persistent call was created.

Persistent Call State Change

When the persistent call status changes, an application receives a standard TAPI LINE_CALLSTATEmessage.
For a persistent call, the new call state in the dwParamas1 field will be constructed as follows:

• The low-order 24 bits are set to one of the LINECALLSTATE_constants as they are for a regular call.

• The high-order 8 bits is set to 0x20. A corresponding bitmask is defined in CiscoLineDevspecificMsg
header file as CLDSMET_PERSISTENT_CALL_STATE (0x200000000).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
44

Features Supported by TSP
Persistent Connection

Persistent Call Attribute Bit Mask

A new bit definition, TSPCallAttribute_PersistentCall(0x00004000), is added to the CallAttributeBitMask
enumeration in CiscoLineDevSpecificMsg.h header file. For a persistent call, a corresponding bit is turned
on in the CallAttributeBitMask field in Cisco TSP extension of the TAPI LINECALLINFO structure.

Interface Changes

• lineMakeCall, on page 177 TAPI Line Functions – lineMakeCall – Note added
• LINECALLINFO, on page 324 DevSpecific change - (Cisco Extention 000D0000 – new bit definition
added for Call Attribute Type - TSPCallAttribute_PersistentCall(0x00004000))

• LINECALLPARAMS, on page 343 Cisco Device-Specific Extentions – LINECALLPARAMS section
added.

The following new error codes were added to support this feature:

DescriptionError

Attempt to create persistent call failed.LINEERR_PERSISTENT_CALL_CREATE_FAILED

Persistent call cannot be created because
another one already exists.

LINEERR_PERSISTENT_CALL_ALREADY_EXISTS

No feature invocation is allowed on
persistent call, such as park, hold,
conference, and transfer.

LINEERR_OPERATION_NOT_ALLOWED_ON_PERSISTENT_CALL

An attempt to disconnect persistent call
while customer call is still active

LINEERR_PERSISTENT_CALL_DROP_FAILED_CALL_ACTIVE

An attempt to create announcement call on
a device where persistent call does not exist

LINEERR_NO_PERSISTENT_CALL_EXISTS

An attempt to create announcement call
while persistent call is still being setup

LINEERR_PERSISTENT_CALL_NOT_ESTABLISHED

Requested operation is not allowed in
current call state

LINEERR_OPERATION_NOT_AVAILABLE_IN_CURRENT_STATE

Usage Cases

See Persistent Connection Use Cases, on page 951.

Backward Compatibility

This enhancement is backward compatible and existing applications will not be affected with introduction of
this enhancement.

Announcement Call
Cisco Extend and Connect is enhanced with an ability to play announcements to a remote destination. In order
to play the announcement, an application creates a special type of call -Announcement Call -and identifies
an announcement to be played.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
45

Features Supported by TSP
Announcement Call

The announcement can be played only to a remote destination with an existing Persistent Call. Only
announcements that were uploaded to the Unified Communications Manager can be played.

Applications are notified that an announcement started by the LINE_DEVSPECIFIC event:
SLDSMT_ANNOUNCEMENT_STARTED.

Applications are notified that an announcement stopped by the LINE_DEVSPECIFIC event:
SLDSMT_ANNOUNCEMENT_ENDED.

Create Announcement Call

The TAPI lineMakeCall function is used to create announcement call. The relevant data is provided in
LINECALLPARAMS structure pointed to by the lpLineCallParams parameter. CiscoTSP ignores all other
lineMakeCall parameters in the case of announcement call.

In the case of an announcement call, the following data is provided in the LINECALLPARAMS:

• DevSpecific part refers to Cisco_CallParamsDevSpecific structure where the DevSpecificFlags is set to
Cisco_CALLPARAMS_DEVSPECIFICFLAGS_ANNOUNCEMENTCALL

• CallData is set to a media content identifier (announcementID)

Drop Announcement Call

The standard TAPI lineDrop function drops or disconnects the announcement call. The hCall parameter
specifies the announcement call handle (HCALL) returned by lineMakeCall when the announcement call is
created.

Announcement Call State Change

When the status of the announcement call changes, an application receives the standard TAPI
LINE_CALLSTATE message. For an announcement call, the construction of the new call state in the
dwParams1 field is:

• The low-order 24 bits are set to one of the LINECALLSTATE_constants, which is the same as a regular
call.

• The high-order 8 bits are set to 0x40. A corresponding bitmask is defined in the CiscoLineDevspecificMsg
header file as follows:

CLDSMT_ANNOUNCEMENT_CALL_STATE 0x40000000

Announcement Call Attribute Bit Mask

Anew bit definition, TSPCallAttribute_AnnouncementCall (0x00008000), is added to the CallAttributeBitMask
enumeration in the CiscoLineDevSpecificMsg.h header file. For an announcement call, a corresponding bit
is turned on in the CallAttributeBitMask field in the Cisco TSP extension of the TAPI LINECALLINFO
structure.

Interface Changes

• Cisco_LineCallInfo_Ext000D0000extD0 is added. See LINECALLINFO, on page 324.
• Cisco_CALLPARAMS_DEVSPECIFICFLAGS_ANNOUNCEMENTCALL is added. See
LINECALLPARAMS, on page 343.

• lineMakeCall:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
46

Features Supported by TSP
Announcement Call

Beginning with Unified Communications Manager Release 10.01, applications can use lineMakeCall to
create a Persistent Call or Announcement Call. For a Persistent Call or Announcement Call, the relevant
data is provided in the LINECALLPARAMS structure pointed to by the lpLineCallParams parameter.
All other lineMakeCall parameters are ignored in these cases.

• See Announcement Events, on page 406.

Message Sequence

See Announcement Call, on page 480.

Backward Compatibility

This enhancement is backward compatible and existing applications are not affected by the introduction of
this enhancement.

NuRD (Number Matching for Remote Destination) Support
In CUCM 10.0, the existing "Cisco Extend and Connect" feature includes number matching for remote
destination support. When users directly call a number that is configured as a remote destination for CTI
Remote Device (CTI RD), and that remote destination is set to be active, the call is offered on the CTI Remote
Device and extended to the remote destination. The called party is presented to the application as the CTI RD.
If active remote destination is not set, when users call a remote destination number, a direct call between the
caller and the remote destination occurs. This scenario also applies to a remote destination making a call to
an enterprise directory number. If the remote destination is set to be active, from an application perspective,
the CTI RD appears to initiate the call to the enterprise dn. If the active remote destination is not set, when
the remote destination calls an enterprise dn, it is a direct call between the remote destination and the enterprise
dn.

For those calls from and to a remote destination number, all existing features allowed on CTI RD can be
performed.

Interface Changes

There are no interface changes for this feature.

Use Cases

See NuRD (Number Matching for Remote Destination) Support, on page 940.

Backward Compatibility

This feature can change the existing expected behavior in regards to calls to and from remote destination
numbers directly. Applications that do not want to leverage this NuRD feature can keep the cluster-wide
service parameter "Reroute Remote Destination Calls to Enterprise Number" set to false. Enabling it will
enable the NuRD features. This parameter by default is set to false.

Mobility Interaction Support
The "Cisco Extend and Connect" feature includes mobility interaction. Users can specify remote destinations
that are shared between the CTI Remote Device (CTI RD) and the Remote Destination Profile (RDP). When
both the CTI RD and the RDP are configured for the same user, and if the application is active (active rd is

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
47

Features Supported by TSP
NuRD (Number Matching for Remote Destination) Support

set), the CTI RD processes the call first and then offers the call to the RDP. If the application is not active,
the RDP processes the call first and does not offer the call to the CTI RD.When only the CTI RD is configured
for a user, the existing "Cisco Extend and Connect" feature behavior with remote destinations remains
unchanged. When only RDP is configured for a user, there is no application support because the devices are
not controllable from a CTI.

Interface Changes

There are no interface changes for this feature.

Use Cases

There are no new use cases for this feature. (Add/Update/Delete Remote Destination) are added for CTIRD,
and are applicable (without any change from App/User).

Backward Compatibility

There are no backward compatibility issues for this feature.

Call Forwarding
Starting with Unified Communications Manager 10.0(1), a new feature called “CTI Rd Call Forward” allows
users to control when incoming calls are forwarded to all configured Remote Destinations on the CTI Remote
Device, when no active remote destination is set.

A new check box, Route calls to all remote destinations when client is not connected, is added to the
Unified Communications Manager device window. The check box determines whether calls are routed to all
remote destinations when Active Remote Destination is not set.

When you enable the Route calls to all remote destinations when client is not connected check box, and
Active Remote Destination is not set, the call is routed to all remote destinations. If this check box is disabled,
and Active Remote Destination is not set, the call is disconnected with User_Busy error on the CTI Remote
Device.

In scenarios where Active Remote Destination is set, the call is always routed to the Active Remote Destination
regardless of whether the Route calls to all remote destinations when client is not connected check box is
enabled or disabled.

Interface Changes

There are no interface changes for this feature.

Message Sequence

See CTI RD Call Forwarding, on page 652.

Backward Compatibility

There are no backward-compatibility issues for this feature.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
48

Features Supported by TSP
Call Forwarding

CTI Video Support
The CTI Video Support feature allows the TAPI Application to retrieve the multimedia capabilities of Line
Devices. Applications that monitor devices use this information to answer or route video calls to video capable
devices.

TAPI shall expose a new structure DeviceMultiMediaCapability in Devspecific data of linedevcaps when
applications issue a TSPI_LineGetDevCaps () API with Extension version 0x000D0000 or higher, on these
line devices, Cisco TSP will fire SLDSMT_LINE_PROPERTY_CHANGED or
CPDSMT_PHONE_PROPERTY_CHANGED_EVENT with param1=
LPCT_DEVICE_MULTIMEDIACAP_INFO orPPCT_DEVICE_MULTIMEDIACAP_INFO to report
Multimedia capability information change.

A new structure, DeviceCallMultiMediaCapInfo, is introduced under CiscoLineDevSpecificMsg.h, which
provides the information about calling and called party multimedia capabilities that is exposed in the devspecific
data of LineGetCallInfo.

Similarly, when the video capability of a calling/called of a Call changes, TSP fires
LINE_CALLDEVSPECIFIC with param1= SLDSMT_LINECALLINFO_DEVSPECIFICDATA and
param2= SLDST_DEVICE_VIDEO_CAP_INFO to report Multimedia capability information of the call

Also, devspecific data of LineCallInfo contains two new fieldsCallingPartyMultiMediaCapBitMask and
CalledPartyMultiMediaCapBitMask, which indicate the fields in the DeviceMultiMediaCapInfo with valid
information.

When the application makes a video call from one video enabled phone to another, the TSP fires
LINE_CALLDEVSPECIFIC event with param1= SLDSMT_MULTIMEDIA_STREAMSDATA to report
MultiMedia Streams information of the call. The Multimedia Streams information of the call is exposed in
the Devspecific data of linecallinfo (As a part of VideoStreamInfo structure) when application issues
TSPI_LineGetCallInfo() API with Extension version 0x000D0000 or higher.

The following table describes the video capabilities provided by TAPI for currently supported devices.

Supports
Multimedia
Streams
Information

Reports calling
and called
Multimedia
Capabilities on
call info
(LineGetCallInfo)

Supports Dynamic
Video Capability
Change

Supports Initial Device
Multimedia Capability

Device

YesYesYesYes8945 (SIP)

NoYesYesYes8945 (SCCP)

YesYesYesYes9951, 9971(SIP)

YesYesN/AYesEX60/90 (SIP)

YesYesN/AYesCTS 500-32 (SIP)

NoYesYesYesJabber(CSF/softphone
mode) (SIP)

NoYesN/AN/ACTI RoutePoint (SCCP)

NoYesN/AN/ACTI Port (SCCP)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
49

Features Supported by TSP
CTI Video Support

Supports
Multimedia
Streams
Information

Reports calling
and called
Multimedia
Capabilities on
call info
(LineGetCallInfo)

Supports Dynamic
Video Capability
Change

Supports Initial Device
Multimedia Capability

Device

NoYesN/AN/AAll other phones

Supported Features (With in the same cluster):

• Originating Call and Consult Call
• Redirect
• Call Forward
• Hold and Resume
• Hunt List
• Transfer
• Extension Mobility
• Super Provider

Supported Features (Across the cluster):

• Originating Call and Consult Call
• Redirect
• Call Forward
• Hold and Resume
• Hunt List
• Extension Mobility
• Super Provider

Limitations:

• Remote In Use

• CiscoTSP does not provide correct calling and called party multimedia capabilities on a call that is
in inactive state or is in Remote In Use state.

• MultiMedia Capability

• Calling and called party multimedia capabilities are UKNOWN on the calling side until the called
party answers the call.

• When a call is initiated over SIP trunk configured with early offer, the called party video capabilities
are the negotiated capabilities that get reported instead of the actual capability, on the called party.

• Only video capability information is known for calls over the H323 trunk, Screen count and
telepresence interop information is unknown.

• MultiMediaStreams

• CiscoTSP does not provide multimedia streams information if the device is a SCCP phone. The
CiscoTSP does not deliver SLDSMT_MULTIMEDIA_STREAMSDATA, and the
TSPI_LineGetCallInfo() API does not provide multimedia streams information in the
VideoStreamInfo structure.

• Change in called party

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
50

Features Supported by TSP
CTI Video Support

In scenarios such as Shared Lines or redirect, where the called party changes, the application is
notified of the new called party capability only if the called party is configured with unique display
names.

•

Interface Changes

• LineDevCaps::DevSpecific change - (Cisco Extention 000D0000) LINEDEVCAPS, on page 321
• LineCallInfo::DevSpecific change - (Cisco Extention 000D0000) LINECALLINFO, on page 324
•
• LPCT_DEVICE_MULTIMEDIACAP_INFO – Indicates or notifies application that DeviceMulti Media
Capability Information on the Line/Device has changed. Line Property Changed Events, on page 413

• PPCT_DEVICE_MULTIMEDIACAP_INFO– Indicates or notifies application that DeviceMultiMedia
Capability Information on the Line/Device has changed. Phone Property Changed Events, on page 414

• SLDST_DEVICE_VIDEO_CAP_INFO – (New bit mask type added for Param2 bits on
SLDSMT_LINECALLINFO_DEVSPECIFICDATA) LINECALLINFO_DEVSPECIFICDATAEvents,
on page 411

• SLDSMT_MULTIMEDIA_STREAMSDATA – (New Message Type in Line_DevSpecific Message)
MultiMedia Streams Data Notification Event, on page 418

Message Sequences

See Video Capabilities and Multimedia Information, on page 653.

Backward Compatibility

This feature is not backward compatible.

Default CTI IP Addressing for Devices
A new CTIManager service parameter, IP Addressing Mode for Devices, has been added that allows you
to configure the default CTI IP addressingmode for a device that does not have an associated CommonDevice
Configuration.

Cisco TAPI communicates the value of this parameter to an application in the device-specific extension of
the TAPI LINEDEVCAPS structure.When the application invokes the lineGetDevCaps() method for a device
that does not have a Common Device Configuration, Cisco TAPI returns the value in
dwLineDevCapsIPAddressingMode field. By default this parameter is set to allow both IPv4 and IPv6 modes
(IPAddress_IPv4_IPv6).

For an individual CTI device, if that device has an associated CommonDevice Configuration, the IP Addressing
Mode setting in the Common Device Configuration overrides the value of the IP Addressing Mode for
Devices service parameter.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
51

Features Supported by TSP
Default CTI IP Addressing for Devices

Device State Server
The Device State Server feature provides accumulative state of all the lines on the device. Applications are
notified about the device status through the PHONE_DEVSPECIFIC and LINE_DEVSPECIFIC events.

An application for enabling the Device State Server support needs to set the DEVSPECIFIC_DEVICE_STATE
and DEVSPECIFIC_DEVICE_STATE_STATUS_ message flags using the lineDevSpecific
SLDST_SET_STATUS_MESSAGES request and the PhoneDevSpecific
CPDST_SET_DEVICE_STATUS_MESSAGES request respectively.

When Cisco TSP receives the DEVICE_STATE events from CTI, it notifies the application about the
accumulative state of all the lines on the device using the PHONE_DEVSPECIFIC and LINE_DEVSPECIFIC
events.

The device status in the LINE_DEVSPECIFIC and PHONE_DEVSPECIFIC events can be one of the following.

enum lineDeviceState{
lineDeviceState_UNKNOWN = 0,
lineDeviceState_ACTIVE = 1,
lineDeviceState_ALERTING = 2,
lineDeviceState_HELD = 3,
lineDeviceState_WHISPER = 4,
lineDeviceState_IDLE = 5
};

enum PhoneDeviceState{
PhoneDeviceState_UNKNOWN = 0,
PhoneDeviceState_ACTIVE = 1,
PhoneDeviceState_ALERTING = 2,
PhoneDeviceState_HELD = 3,
PhoneDeviceState_WHISPER = 4,
PhoneDeviceState_IDLE = 5

};

This feature provides the accumulative state of all the lines on the device or the phone to the application.
Events are provided based on the following criteria:

• IDLE

If all the lines on the device are IDLE, the device state is considered IDLE and the corresponding event
is delivered to the qualified applications.

• ACTIVE

If any of the lines on the device have an ACTIVE (call states are LINECALLSTATE_DIALTONE,
LINECALLSTATE_DIALING, LINECALLSTATE_PROCEEDING,LINECALLSTATE_RINGBACK,
and LINECALLSTATE_DISCONNECTED) call, the device state is considered ACTIVE and the
corresponding event is delivered to the qualified applications.

• ALERTING

If there is no ACTIVE call on any of the lines of the device and at least one of the lines has an ALERTING
(call states are LINECALLSTATE_OFFERING and LINECALLSTATE_ACCEPTED) call, the device
state is considered ALERTING and the corresponding event is delivered to the qualified applications.

• HELD

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
52

Features Supported by TSP
Device State Server

If there is no ACTIVE or ALERTING call on any of the lines of the device and at least one of the lines
has a HELD call, the device state is considered HELD and the corresponding event is delivered to the
qualified applications.

• WHISPER

If there is no ACTIVE or ALERTING or HELD call on any of the lines of the device and at least one of
the lines have an intercom call, the device state is considered WHISPER and the corresponding event is
delivered to the qualified applications.

The ACTIVE state has priority over the ALERTING, HELD, and IDLE states.

The ALERTING state has priority over the HELD and IDLE states.

The HELD state has priority over the IDLE state.

Note

To make the LineDevSpecific event indicate the device state for any line of that device, the
DEVSPECIFIC_DEVICE_STATE_STATUS_message flag for that line must be turned on using the
lineDevSpecific SLDST_SET_STATUS_MESSAGES request.

Note

Direct Transfer
In Unified Communications Manager, the Direct Transfer softkey lets users transfer the other end of one
established call to the other end of another established call, while dropping the feature initiator from those
two calls. Here, an established call refers to a call that is either in the on hold state or in the connected state.
The “Direct Transfer” feature does not initiate a consultation call and does not put the active call on hold.

A TAPI application can invoke the “Direct Transfer” feature by using the TAPI lineCompleteTransfer()
function on two calls that are already in the established state. This also means that the two calls do not have
to be set up initially by using the lineSetupTransfer() function.

Direct Transfer Across Lines
The Direct Transfer Across Lines feature allows the application to directly transfer calls across the lines that
are configured on the device. The application monitors both the lines when directly transferring the calls
across the lines.

A new LineDevSpecific extension, CciscoLineDevSpecificDirectTransfer, is added to direct transfer calls
across the lines or on the same line. The 0x00090000 extension must be negotiated to use
CciscoLineDevSpecificDirectTransfer.

Interface Changes

See Direct Transfer, on page 379.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
53

Features Supported by TSP
Direct Transfer

Message Sequences

See CTI Remote Device, on page 574.

Backward Compatibility

This feature is backward compatible.

Directory Change Notification
The Cisco Unified TSP sends notification events when a device has been added to or removed from the
user-controlled device list in the directory. Cisco Unified TSP sends events when the user is deleted from
Unified Communications Manager.

Cisco Unified TSP sends a LINE_CREATE or PHONE_CREATE message when a device is added to a users
control list.

It sends a LINE_REMOVE or PHONE_REMOVEmessage when a device is removed from the user controlled
list or the device is removed from database.

When the system administrator deletes the current user, Cisco Unified TSP generates a LINE_CLOSE and
PHONE_CLOSE message for each open line and open phone. After it does this, it sends a LINE_REMOVE
and PHONE_REMOVE message for all lines and phones.

Cisco Unified TSP generates PHONE_REMOVE / PHONE_CREATEmessages only if the application called
the phoneInitialize function earlier.

The system generates a change notification if the device is added to or removed from the user by usingUnified
Communications Manager or the Bulk Administration Tool (BAT).

If you program against the LDAP directory, change notification does not generate.

Note

Do Not Disturb
The Do Not Disturb (DND) feature lets phone users go into a Do Not Disturb state on the phone when they
are away from their phone or simply do not want to answer incoming calls. The phone softkey DND enables
and disables this feature.

From the Unified Communications Manager user windows, users can select the DND option DNR (Do Not
Ring).

Cisco TSP makes the following phone device settings available for DND functionality:

• DND Option: None/Ringer off

• DND Incoming Call Alert: Beep only/flash only/disable

• DND Timer: a value between 0-120 minutes. It specifies a period in minutes to remind the user that DND
is active.

• DND enable and disable

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
54

Features Supported by TSP
Directory Change Notification

Cisco TSP includes DND feature support for TAPI applications that negotiate at least extension version 8.0
(0x00080000).

Applications can only enable or disable the DND feature on a device. Cisco TSP allows TAPI applications
to enable or disable the DND feature via the lineDevSpecificFeature API.

Cisco TSP notifies applications via the LINE_DEVSPECIFICFEATUREmessage about changes in the DND
configuration or status. To receive change notifications, an application must enable the
DEVSPECIFIC_DONOTDISTURB_CHANGED message flag with a lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

This feature applies to phones and CTI ports. It does not apply to route points.

Do Not Disturb-Reject
DoNot Disturb (DND) enhancements support the rejection of a call. The enhancement DoNot Disturb–Reject
(DND–R) enables the user to reject any calls when necessary. Prior to the Unified Communications Manager
Release 7.0(1), DND was available only with the Ringer Off option. If DND was set, the call would still get
presented but without ringing the phone.

To enable DND–R, access the Unified Communications Manager Administration phone page or the user can
enable it on the phone.

However, if the call has an emergency priority set, the incoming call is presented on the phone even if the
DND–R option is selected. This will make sure that emergency calls are not missed.

Feature priority is introduced and defined in the enum type for making calls or redirecting existing calls. The
priority is defined as:

enum CiscoDoNotDisturbFeaturePriority {
CallPriority_NORMAL = 1
CallPriority_URGENT = 2
CallPriority_EMERGENCY = 3
};

Feature priority introduces LineMakeCall as part of DevSpecific data. Currently the following structure is
supported in DevSpecific data for LineMakeCall:

typedef struct LineParams {
DWORD FeaturePriority;
} LINE_PARAMS;

The new Cisco LineDevSpecific extension, CciscoLineRedirectWithFeaturePriority with type
SLDST_REDIRECT_WITH_FEATURE_PRIORITY, supports redirected calls with feature priority.

Also in a shared line scenario, if one of the lines is DND–R enabled and if the Remote In Use is true, then it
will be marked as connected inactive.

Interface Changes

See lineMakeCall, on page 177 and Redirect with Feature Priority, on page 373.

Message Sequences

See Do Not Disturb-Reject, on page 693.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
55

Features Supported by TSP
Do Not Disturb-Reject

Backward Compatibility

This feature is backward compatible.

Drop-Any-Party
The Drop-Any-Party feature enables the application to drop any call from the ad-hoc conference. This feature
is currently supported from the phone interface. The application uses the LineRemoveFromConference function
to drop the call from a conference.When the call is dropped from a conference, TSP receives CtiDropConferee
as the call state change cause, and this is sent to TAPI as the default cause.

Interface Changes

See lineRemoveFromConference, on page 186.

Message Sequences

See Drop Any Party, on page 695.

Backward Compatibility

This feature is backward compatible. The 0x00090000 extension is added to maintain backward compatibility.

Early Offer
The Early Offer feature allows the SIP trunk to support early offer outbound calls without using MTP when
the media capabilities and media port information of the calling endpoint is available. For the endpoints where
the media port information is not available (for example, H323 slow start calls or delayed offer SIP calls or
legacy SCCP phones) for Early Offer, Unified Communications Manager allocates an MTP to provide an
offer. This means Unified CM allocates MTP only when needed.

To support the Early Offer feature, Cisco TSP introduces CCiscoLineDevSpecific extension
(CciscoLineDevSpecificEnableFeatureSupport) to allow the application to enable or disable the Early Offer
feature. This DevSpecific type is generic and can be used for supporting features added in the future.

The registration of CTI ports or route points are as follows:

• Dynamic registration of CTI ports or route points with Early Offer Support:

• New LineDevSpecific type must be requested before registration.

• Static registration of CTI ports with Early Offer Support:

• New LineDevSpecific type is requested before registration and used to change the Device Capability
of Early Offer Support after registration.

GET IP and PORT EVENT reports to a CTI Port or Route Point registered with Early Offer Support enabled,
on an outbound call. When an outbound call is routed through the SIP trunk with Early Offer Support, TSP
reports LINE_DEVSPECIFIC event with Param1 = SLDSMT_RTP_GET_IP_PORT and Param2 =
IPAddressing Mode along with SetRTP bit information (ninth bit from LSB).

dwParam2 = 0x00000xyy, where:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
56

Features Supported by TSP
Drop-Any-Party

• x (ninth Bit from LSB) — SetRTPInfo (1 — Applications must set the RTP information and 0 —
Applications must not set the RTP Information

• yy (8 bits) — IPAddressing Mode.

For dynamically-registered CTI ports or route points with Early Offer: For this notification, applications have
to set the RTP information using the Existing LineDevspecific Type
(CciscoLineDevSpecificSetRTPParamsForCall) with the IP and Port Information for the IPAddressing Mode
reported. Applications must not set the RTP information on the Open Logical Channel notification if the
application has already set the information on GetIP and Port notification (SLDSMT_RTP_GET_IP_PORT).

For statically-registered CTI ports: For this notification, applications must open and reserve the port used for
registration.

To receive the Get IP and Port notification (SLDSMT_RTP_GET_IP_PORT), an application must set the
DEVSPECIFIC_GET_IP_PORT message flag by using the lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

TAPI provides setRTP information in dwParam2 of OpenLogical Channel notification (LINE_DEVSPECIFIC
Event with dwParam1 = SLDSMT_OPEN_LOGICAL_CHANNEL) along with the IP addressing capability
using which the application must determine whether it has to set the RTP information.

dwParam2 = 0x0000xxyy, where:

• xx — SetRTPInfo (1 — Applications must set the RTP information and 0 — Applications must not set
RTP information)

• yy — IPAddressing Capability.

TSPReportsNewErrorCode (LINEERR_REGISTER_GETPORT_SUPPORT_MISMATCH)when application
tries to dynamically or statically register CTI port or route point without Early Offer Support, where as the
CTI port is already Registered Dynamically/Statically with Early Offer support by other applications.

Media Driver Support for Early Offer
For an Early Offer call on a CTI Port registered with Early Offer support, when the other party has the IP and
Port information of the calling party, the other party starts transmitting the media early even before the Media
Events are reported on the CTI Port (registered with Early Offer).

Due to this Early Media or delay in reporting Media Reception Event to the application, Wave Driver misses
initial data transmitted as the current Wave Drivers (both Legacy and Cisco New Wave Driver) supports
opening of the Ports and starts reception of data only after Media Events are reported to the application.

To capture the early transmitted data, the receiving port needs to be opened after GET_IP_PORT Event and
Buffer Incoming Data. Current supported APIs for opening a port in New Wave Driver and Legacy Wave
Driver requires CODEC and other supported information (DSCP, SRTP Information, and Silence Type). But
in the Early Offer case, this information is not available at GET_IP_PORT event and needs to add new API’s
to open the Port, start buffering, and then Update the endpoint with other media endpoint related information
(CODEC, DSCP, SRTP Information, and Silence Type).

The following API’s have been added to the New Wave Driver to capture Early Media for Early Offer Call:

• EpStreamOpen()—Opens the Port and Starts Buffering Incoming Data.

• EpUpdateById()—Updates the Media endpoint Data Information (CODEC, DSCP, SRTP Information,
and Silence Type).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
57

Features Supported by TSP
Media Driver Support for Early Offer

• Returns True on successful updation or false on failure; specific error code can be retrieved by
calling EpApiGetLastError.

• When the Stream is already started using EpStreamStart() API, EpUpdateById() request fails with
error EP_ERR_TOAPP_INVALID_STATE.

• When the Port is opened using EpStreamOpen() API, EpUpdateByID() will update the data
information related to the media endpoint except the address and port.

• On a Stream that is opened; In case of mismatch of LocalAddrInfo with the actual port used for
Opening Socket, the request fails with error EP_ERR_ADDR_MISMATCH.

Applications must use these newly added APIs to capture Early Media Data for Early Offer Call.Note

TAPI Application Message Flow for Early Offer Call
The message flow in the following figure is described in steps 1 and 2.
Figure 7: Application Message Flow for Early Offer Call — Steps 1 and 2

1. Initialize TAPI, get LINEINFO for the available line devices, and find the devices that are capable of
using the Cisco RTP Library functionalities.

2. Get the media device identifier associated with a particular line device.

The message flow in the following figure is described in steps 3 to 6.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
58

Features Supported by TSP
TAPI Application Message Flow for Early Offer Call

Figure 8: Application Message Flow for Early Offer Call — Steps 3 to 6

3. Initialize RTP Library.

4. Subscribe for media stream, and GetIP and Port events for the relevant devices using the Cisco
lineDevSpecific extension (CciscoLineDevSpecificSetStatusMsgs).

5. Enable the Early Offer feature support on that line/device using the lineDevSpecific extension
(CciscoLineDevSpecificEnableFeatureSupport).

6. GetIP and Port events reported to the application, and reports for the Early Offer call.

The message flow in the following figure is described in steps 7 to 8.
Figure 9: Application Message Flow for Early Offer Call — Steps 7 to 10

7. Create Media End Point for receiving the data.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
59

Features Supported by TSP
TAPI Application Message Flow for Early Offer Call

8. Get stream handle for Media End Point created for receiving the data.

9. Open the port and start buffering the data on the receiving port.

10. Start monitoring Media Events.

*** hEpRecv = StreamHandle for Receiving Stream

The message flow in the following figure is described in steps 11 to 17.
Figure 10: Application Message Flow for Early Offer Call — Steps 11 to 17

11. Create Media End Point for transmitting the data.

12. Get out stream handle.

13. Start data streaming.

14. Update the opened Media End Point with CODEC and other information available in Media Event.

15. Receive/transmit data.

16. Stop data streaming and close end point.

17. Close EpAPI before exiting program.

*** hEpTrans = StreamHandle for Transmitting Stream

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
60

Features Supported by TSP
TAPI Application Message Flow for Early Offer Call

• For the IPV6 Registered port, GetPort Notification is not reported to the application. For the Dual Mode
CTI Port or Route Point the Early Offer is supported with IPV4 addresses capability.

• For the Statically Registered CTI port with Legacy Wave driver, the Early Offer feature is not supported
and TSP reports error if new LineDevspecific is requested to enable Feature Support.

• For the Statically Registered CTI port with New Cisco Wave Driver/User control Registered CTI Port,
New Get IP and Port Notification applications has to open the port that is assigned for the CTI Port.

• On an Early Offer support registered CTI Port, the applications must send the RTP information about
new notification and must not set the RTP information on OpenLogical Channel Notification. If set, it
is failed by CTI and an acknowledgement is reported to the application.

• When IPv6 support is added, the application receives GetPort Notification twice (one for Ipv4 and one
for Ipv6 address) for dual mode device. When a call is answered, the application can close the unused
port based on IPAddressingType in Open Logical Channel Notification.

Note

To support this feature, the application must negotiate line extension 0x000B0000 or above.Note

Interface Changes

See Early Offer, on page 385, Enable Feature, on page 385, Get IP and Port Event, on page 418, Set Status
Messages, on page 355, and Open Logical Channel Events, on page 410.

Message Sequences

See Early Offer, on page 709.

Backward Compatibility

This feature is backward compatible.

End-to-End Call Trace
End-to-End Call Trace allows tracing of calls that traverse multiple Cisco voice products, such as Unified
Communications Manager, Cisco IOS Gateway, and Cisco Call Center products.

A new tool called System Call Tracing tool is developed to collect call records from all voice platforms to
trace specific calls and to troubleshoot call failure or other issues.

This tool uses the calling party number, called party number, and time stamp to find at least one call record
from any voice product that it can access. From that single call record, System Call Tracing tool traces the
call on all the voice products it has traversed.

Interface Changes

LINECALLINFO::DEVSPECIFIC ismodified to include TSPUniqueCall Reference ID. Formore information,
see LINECALLINFO, on page 324.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
61

Features Supported by TSP
End-to-End Call Trace

Message Sequences

See End-To-End Call Trace, on page 722.

Backward Compatibility

New extension 0x000A0000 is added to maintain backward compatibility.

EnergyWise DeepSleep Mode Support
This feature allows the phone to participate in an EnergyWise enabled system. The phone reports its power
usage to a EnergyWise compliant switch to allow the tracking and control of power within the customer
premise. The phone provides alternate reduced power modes including an extremely low, off mode. The
Unified Communications Manager administrator configures and exclusively manages the phones power state
through vendor specific configuration on the Cisco Unified CM Admin pages.

When the phone turns off power after negotiation with an EnergyWise switch, it unregisters from Cisco
Unified CM and enters Deep Sleep/PowerSavePlus mode. Phones automatically re-register back with the
Cisco Unified CM once the Deep Sleep mode configured PowerON time is reached.

However, for Cisco Unified IP Phones Series 9900 and 6900 phones, press the select key on the phone to
wake up the phone from the Deep Sleep/PowerSavePlus mode, but there is no way to register Cisco Unified
IP Phones 7900 Series phones back to the Cisco Unified CM during Deep Sleep. This is the limitation for the
Cisco Unified IP Phones 7900 Series phones. You can configure Deep Sleep mode on the Device page of the
Cisco Unified CM. Configure Deep Sleep mode for the phones at least 10 minutes before the actual power
off time to allow the information to synchronize between the switch and the phone.

Power off idle timer enables only in the case when there is physical interaction on the phone. For example if
there is a call on the EnergyWise configured phone during the deep sleep time and the user tries to disconnect
the call from the application, then the power off idle timer defaults to 10 minutes but if the user disconnects
the call manually from the phone, then the power off idle timer takes the value configured on the Cisco Unified
CM device page.

TAPI provides the PHONE_STATE message with dwparam1 = PHONESTATE_SUSPEND and
EnergyWisePowerSavePlus reason in dwParam2 when the phone unregisters as it enters DeepSleep, and if
the phone successfully negotiates with the appropriate extension version 0x000B0000 or higher.

TAPI provides the LINE_LINEDEVSTATEmessage with dwparam1 = LINEDEVSTATE_OUTOFSERVICE
and EnergyWisePowerSavePlus reason in dwparam2 when the phone unregisters as it enters DeepSleep, and
if the phone successfully negotiates with the appropriate extension version 0x000B0000 or higher.

As part of this feature TAPI exposes all out of service reason codes in the PHONESTATE_SUSPEND and
LINEDEVSTATE_OUTOFSERVICE in dwParam2when the phone unregisters, and if the phone successfully
negotiates with the appropriate extension version 0x000B0000 or higher.

TAPI defines a new enum CiscoLineDevStateOutOfServiceReason in CiscoLineDevSpecificMsg.h

And enum CiscoPhoneStateOutOfServiceReason in CiscoPhoneDevSpecificMsg.h

Interface Changes

New Enum under CiscoLineDevSpecificMsg.h
enum CiscoLineDevStateOutOfServiceReason
{

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
62

Features Supported by TSP
EnergyWise DeepSleep Mode Support

CiscoLineDevStateOutOfServiceReason_Unknown = 0x00000000,
CiscoLineDevStateOutOfServiceReason_CallManagerFailure = 0x00000001,
CiscoLineDevStateOutOfServiceReason_ReHomeToHigherPriorityCM = 0x00000002,
CiscoLineDevStateOutOfServiceReason_NoCallManagerAvailable = 0x00000003,
CiscoLineDevStateOutOfServiceReason_DeviceFailure = 0x00000004,
CiscoLineDevStateOutOfServiceReason_DeviceUnregistered = 0x00000005,
CiscoLineDevStateOutOfServiceReason_EnergyWisePowerSavePlus = 0x00000006,
CiscoLineDevStateOutOfServiceReason_CtiLinkFailure = 0x00000101

};

New Enum under CiscoPhoneDevSpecificMsg.h
enum CiscoPhoneStateOutOfServiceReason
{

CiscoPhoneStateOutOfServiceReason_Unknown = 0x00000000,
CiscoPhoneStateOutOfServiceReason_CallManagerFailure = 0x00000001,
CiscoPhoneStateOutOfServiceReason_ReHomeToHigherPriorityCM = 0x00000002,
CiscoPhoneStateOutOfServiceReason_NoCallManagerAvailable = 0x00000003,
CiscoPhoneStateOutOfServiceReason_DeviceFailure = 0x00000004,
CiscoPhoneStateOutOfServiceReason_DeviceUnregistered = 0x00000005,
CiscoPhoneStateOutOfServiceReason_EnergyWisePowerSavePlus = 0x00000006,
CiscoPhoneStateOutOfServiceReason_CtiLinkFailure = 0x00000101

};

Message Sequences

See EnergyWise Deep Sleep Mode Use Cases, on page 755

Backwards Compatibility

This feature is backward compatible.

Extension Mobility
Extension Mobility, a Unified Communications Manager feature, allows a user to log in and log out of a
phone. Cisco Extension Mobility loads a user Device Profile (including line, speed dial numbers, and so on)
onto the phone when the user logs in.

Cisco Unified TSP recognizes a user who is logged into a device as the Cisco Unified TSP User.

Using Unified Communications Manager, you can associate a list of controlled devices with a user.

When the Cisco Unified TSP user logs into the device, the system places the lines that are listed in the user
Cisco Extension Mobility profile on the phone device and removes lines that were previously on the phone.
If the device is not in the controlled device list for the Cisco Unified TSP User, the application receives a
PHONE_CREATE or LINE_CREATE message. If the device is in the controlled list, the application receives
a LINE_CREATE message for the added line and a LINE_REMOVE message for the removed line.

When the user logs out, the original lines get restored. For a non-controlled device, the application perceives
a PHONE_REMOVE or LINE_REMOVE message. For a controlled device, it perceives a LINE_CREATE
message for an added line and a LINE_REMOVE message for a removed line.

Extension Mobility Cross Cluster
Extension Mobility Cross Cluster allows users provisioned in one cluster to log in to an IP phone in another
cluster.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
63

Features Supported by TSP
Extension Mobility

For this feature, Extension Mobility profile can be added to the control list in addition to the devices. When
this profile is added to the control list and an Extension Mobility Cross Cluster user logs in to or logs out of
a device within a cluster or either across the cluster, Cisco TSP notifies the application with required Phone
Create/Line_Create and Phone_Remove/Line_Remove events.

Interface Changes

None

Message Sequences

See Extension Mobility Cross Cluster, on page 766.

Backward Compatibility

This feature is backward compatible.

Extension Mobility Memory Optimization Option
The Extension Mobility (EM) feature supports Cisco Unified TSP to use TAPI LINE_CREATE /
LINE_REMOVE mechanism to dynamically create and remove line devices resulting from EM login or
logout. TAPI, by design, does not remove a device dynamically and marks the device as ‘not available’. It
remains in memory until the provider is shutdown. As a result, when the EM feature is used, memory utilization
grows over time (during login/logout operations) until the memory is exhausted. In many cases, the only
workaround is to restart the telephony service or reboot a TAPI client machine.

The EM Memory Optimization Option feature is intended to minimize the usage of LINE_CREATE /
LINE_REMOVE in EM-related scenarios by reusing TAPI device IDs for lines from different EM profiles
loaded on the same IP Phone. Lines with the same index in different EM profiles share the same TAPI line
device ID.

The feature can be enabled or disabled by using the registry settings. By default, the feature is disabled so
that the existing applications are not affected.

If the feature is enabled, LINE_CREATE messages are used by Cisco Unified TSP only for the first time
when an EM profile is loaded on a particular IP Phone. After the EM line is created, it is not removed with
LINE_REMOVE. It is instead placed in the Inactive state when EM logout occurs. Operations cannot be
performed when a device is in the Inactive state and the LINEERR_DEVICE_INACTIVE error returns if an
operation is invoked.

The line is reactivated when an EM profile is reloaded on the IP Phone as a result of a new EM login. Along
with the line reactivation notification, the application is also notified that line device capabilities have changed.
The Other-Device State Notification feature is utilized for delivering active, inactive, and capability change
messages to an application. For more information, see Other-Device State Notification, on page 79.

The EM Memory Optimization Option feature intends to minimize the usage of
LINE_CREATE/LINE_REMOVE messages. Even if the feature is enabled, an application can still receive
the LINE_CREATE and LINE_REMOVE messages in some scenarios. So the application has to be written
in a way that it can handle the existing LINE_CREATE/LINE_REMOVE events along with the new
LineActive/LineInactive notifications.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
64

Features Supported by TSP
Extension Mobility Memory Optimization Option

Installation/Configuration Change

This feature can be enabled or disabled using the registry settings. The registry settings are stored in the
EMOptions registry entry that is created during the Cisco TSP installation or upgrade. There is only one
EMOptions entry in the Cisco TSP registry settings which applies to all Cisco TSP instances on the box.

The EMOptions registry settings must be changed manually. There is no Cisco TSP configuration interface
to modify the setting and no possibility to change the feature behavior dynamically. Cisco TSP must be
restarted for the modified setting to take effect.

A corresponding parameter is also available for a silent Cisco TSP install. This allows enabling or disabling
of the feature at the time of the silent install/upgrade process.

Interface Changes

CiscoLineDevStateCloseReason provides details to the LINEDEVSTATE_CLOSE state and is passed to the
application as dwParam2 in the LINE_LINEDEVSTATE message.

enum CiscoLineDevStateCloseReason
{
CiscoLineDevStateCloseReason_Unknown = 0,
CiscoLineDevStateCloseReason_LineNotAvailable,
CiscoLineDevStateCloseReason_EMActivity
};

Message Sequences

See Extension Mobility Memory Optimization Option, on page 773.

Backward Compatibility

This feature can be enabled or disabled using the registry settings. By default, this feature has been disabled
so that the existing applications are not affected.

External Call Control
External Call Control enables Unified Communications Manager to route calls based on enterprise policies
and presence-based routing rules of individual users. When External Call Control is enabled, Unified
Communications Manager queries the designated web services hosting the enterprise policies or user rules
and routes the calls based on the routing decisions returned.

As TSP receives the expected unmodified Directory Number or partition in all of the party fields, most
scenarios remain unaffected by the External Call Control feature. TSP passes these unmodified fields in the
PartyId fields to TAPI. Since it is also possible for the External Call Control feature to change the modified
calling and called parties, TSP passes this in the existing modified fields of the devSpecific part of lineCallInfo.

With the changes made by CTI for the External Call Control feature, TSP also supports Translation Patterns.
Calls going through translation patterns are supported by the TSP and if these calls are involved in a conference,
the correct number of CONFERENCE calls shall be created and maintain for the duration of the conference.

Interface Changes

NewCtiReasonExternalCallControl (42) in the ExtendedCallReason field in the devSpecific part of lineCallInfo
for some intercept scenarios.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
65

Features Supported by TSP
External Call Control

Newdev specific error, LINEERR_OPERATION_FAIL_CHAPERONE_DEVICE, is returned in LINE_REPLY
for any request that is rejected for a device which is involved in a chaperone call except for
lineSetupConference/lineAddToConference, lineDevSpecific(SLDST_START_CALL_RECORDING), and
lineDrop requests.

In the CallAttributeBitMask field, LINECALLINFO::DEVSPECIFIC is modified to include a new bit mask,
TSPCallAttribute_ChaperoneCall. For more information, see Details, on page 332.

Message Sequences

See External Call Control, on page 777.

Backward Compatibility

This feature is backward compatible.

As TSP did not support Translation Patterns before this release, the support of Translation Patterns is considered
backward compatible even though there is a change in the CallInfo for calls using Translation Patterns.

Note

FIPS Compliance
Federal Information Processing Standards (FIPS) are publicly announced standards developed by the United
States federal government for use in computer systems by all non-military government agencies and government
contractors. The FIPS 140-2 requirements have been defined jointly by the American NIST (National Institute
for Standards and Technology) and the Canadian CSEC (Communications Security Establishment of Canada).

FIPS compliance support has been added to Unified Communications Manager. This mode can be enabled
or disabled using CallManager Administration Command Line Interface.

From CiscoTSP, FIPS Compliance is supported by upgrading to FIPS 140-2 validated OpenSSL Version,
“FIPS capable OpenSSL”, library which is used for setting TLS connection with CTI Manager or Unified
CommunicationsManager. FIPSmode on CiscoTSP can be updated dynamically. Currently, CiscoTSP enables
FIPS Mode and depends on FIPS Mode of the Unified Communications Manager.

Interface Changes

No interface changes.

Message Sequences

No impact on end user.

Backward Compatibility

This feature is backwards compatible.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
66

Features Supported by TSP
FIPS Compliance

Conference Changes

Forced Authorization Code and Client Matter Code
Cisco Unified TSP supports and interacts with two Unified Communications Manager features: Forced
Authorization Code (FAC) and Client Matter Code (CMC). The FAC feature lets the System Administrator
require users to enter an authorization code to reach certain dialed numbers. The CMC feature lets the System
Administrator require users to enter a client matter code to reach certain dialed numbers.

The system alerts a user of a phone that a FAC or CMC must be entered by sending a “ZipZip” tone to the
phone that the phone in turn plays to the user. Cisco Unified TSP will send a new LINE_DEVSPECIFIC
event to the application whenever the application should play a “ZipZip” tone. Applications can use this event
to indicate when a FAC or CMC is required. For an application to start receiving the new LINE_DEVSPECIFIC
event, it must perform the following steps:

1. lineOpen with dwExtVersion set to 0x00050000 or higher

2. lineDevSpecific – Set Status Messages to turn on the Call Tone Changed device specific events

The application can enter the FAC or CMC code with the lineDial() API. Applications can enter the code in
its entirety or one digit at a time. An application may also enter the FAC and CMC code in the same string
as long as they are separated by a “#” character and also ended with a “#” character. The optional “#” character
at the end only serves to indicate dialing is complete.

If an application does a lineRedirect() or a lineBlindTransfer() to a destination that requires a FAC or CMC,
Cisco Unified TSP returns an error. The error that Cisco Unified TSP returns indicates whether a FAC, a
CMC, or both are required. Cisco Unified TSP supports two new lineDevSpecific() functions, one for Redirect
and one for BlindTransfer, that allows an application to enter a FAC or CMC, or both, when a call gets
redirected or blind transferred.

Forwarding
Cisco Unified TSP now provides added support for the lineForward() request to set and clear ForwardAll
information on a line. This will allow TAPI applications to set the Call Forward All setting for a particular
line device. Activating this feature will allow users to set the call forwarding Unconditionally to a forward
destination.

Cisco Unified TSP sends LINE_ADDRESSSTATE messages when lineForward() requests successfully
complete. These events also get sent when call forward indications are obtained from the CTI, indicating that
a change in forward status has been received from a third party, such as Unified Communications Manager
Administration or another application setting call forward all.

Gateway Recording
Unified Communications Manager has been providing a recording solution since release 6.0. In previous
releases, the call recording was phone-based. The Cisco IP phones are used to fork, or direct, the two media
streams of the agent-customer call to the recorder.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
67

Features Supported by TSP
Conference Changes

However, for call scenarios where the devices involved do not directly register with Unified Communications
Manager, phone-based recording is not possible. This situation excludes the calls handled by the mobile agents
from being recorded. In addition, the recording of mobile calls becomes increasingly mandatory by regulations
in different jurisdictions, or becomes the essential business requirement for call centers or enterprises. These
requirements call for a recording solution that does not rely on media forking from the endpoints.

The enhancements for the recording solution allow an external call that goes through a Cisco voice gateway
to be recorded by having the voice gateway direct the two media streams to a voice recorder. This solution
uses the existing CCiscoLineDevSpecificStartCallRecording and CCiscoLineDevSpecificStopCallRecording
APIs to start and stop a user control recording session. Automatic recording is also configured on the line.
There is an additional option to specify the voice gateway, or the IP phone as the prefered recording resource
on a particular line.

In addition, the CTI Remote Device that was introduced in Unified Communications Manager Release 9.0
now supports recording through a gateway enabled for recording. If there is a recording gateway between the
CTI Remote Device and the remote-destination where the call was routed, the recording can be started at the
CTI Remote Device. If there is a recording gateway between the caller and the CTI Remote Device, the
recording can also be started at the CTI Remote Device. You can also configure the line(s) on the CTI Remote
Device to support Automatic or Selective Recording. The CTI Remote Device can only use a gateway to route
the media.

CTI port calls can be captured using the Network Recording feature available in Unified Communications
Manager Release 10.0(1). The call media must pass through at least one recording-enabled gateway to be
recorded. A typical use case: An external call to a CTI Port softphone. The Recording Media Source for the
CTI Port is always gateway-preferred.

Interface Changes

• Recording Failure Event, on page 416
• LINECALLINFO, on page 324
• LINEDEVCAPS, on page 321

Message Sequences

Gateway Recording, on page 802

Backward Compatibility

Due to a design change to support Gateway Recording, the same recording may be stopped and restarted due
to a feature invocation that was not seen in prior releases. Previously, this stop and start of the recording was
only seen when the call being recorded is put on hold and then resume. In this release, this can happen when
the party on the other end of the call being recorded changes. Take the following example:

10.0Pre-10.0Action

A calls B and B answers

App receives
SLDSMT_RECORDING_STARTED event at
A

App receives
SLDSMT_RECORDING_STARTED
event at A

TSP application issues
CCiscoLineDevSpecificStartCallRecording
at A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
68

Features Supported by TSP
Gateway Recording

10.0Pre-10.0Action

App receives
SLDSMT_RECORDING_ENDED event at A

App receives
SLDSMT_RECORDING_STARTED event at
A

No event is received at AB transfers the call to C and C answers

Applications do not need to start the recording again but must handle these extra events.

Hold Reversion
The Hold Reversion feature allows a holding party to be notified about the HELD call after the hold reversion
duration times out. The holding party gets audio and visible hold reversion notifications. The application can
set the hold reversion event flag to receive the hold reversion notification from Cisco TSP. CallInfo and
CallState of the call remains unchanged when a hold reversion event occurs and the LineCallDevSpecific
event is sent to the application indicating the hold reversion if the application has enabled the hold reversion
event flag.

Hunt List
CiscoTSP supports lines and their devices included in the Hunt List and provides appropriate information for
applications to understand that the call is offered through a Hunt Pilot. Hunt List can include more than one
Line Group and each Line Group may have different call distribution algorithms. Irrespective of the algorithm
used in the Line Groups, CiscoTSP provides consistent information to applications.

When call offered on the line is routed through Hunt Pilot, CiscoTSP provides Hunt Pilot Directory Number
or Partition in LINECALLINFO::DEVSPECIFIC for Caller, Called, or Connected IDs. However, there will
be no Hunt Pilot information for Redirection and Redirecting ID. Hunt Pilot name is not passed to
LINECALLINFO::DEVSPECIFIC.

There is no separate LineDevSpecific event to report the Hunt Pilot information, however, it is reported by
existing event when caller, called, or connected id changes.

Hunt List can also interact with Call Pickup feature. However, Hunt List broadcast feature is not supported
while interacting with Call Pickup feature. In this case, there will be no Pickup notification for the broadcasted
call. CTI or Unified Communications Manager fails the pickup request if the application tries to pickup a
broadcast call in Hunt List.

When call is routed to Hunt List and offering is accepted by Line Group member, the called information
becomes Hunt Pilot's information. After Line Group member answers the call, connected ID will shows the
actual Line Group member information with Hunt Pilot information in LINECALLINFO::DEVSPECIFIC.
In this case, both called and connected ID contains Hunt Pilot information.

In case of a conference, Hunt Pilot Directory Number or Partition is presented if connected party's primary
call is routed through Hunt List.

To support this feature, the application must negotiate line extension 0x00A0000 or above.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
69

Features Supported by TSP
Hold Reversion

Interface Changes

LINECALLINFO, on page 324.

Message Sequences

See Hunt List, on page 813.

Backward Compatibility

This feature is backward compatible.

Hunt Pilot Connected Number
In Unified Communications Manager 9.0, the support for hunt pilots is enhanced to expose the huntmember
which has answered the call as the called party in a call involving a hunt pilot at the calling side. With this
enhancement, when a user calls a hunt pilot HP and the call is answered by the hunt list Line group member
LG1, TAPI exposes DNof the HuntMember as the ModifiedConnectedParty DN under devspecific part of
linecallinfo under Call Party Normalization info structure.

When this feature is disabled, the modifiedconnectedParty exposed is the HuntPilotDN.

The HuntPilot Information is available in the devspecific part of linecallinfo(under HuntPilotInfo structure).
There is no change in Huntpilot information for call scenarios involving huntpilot, when this feature is enabled
from the information exposed when this is feature is disabled.

Interface Changes

Not applicable.

Message Sequences

See Hunt Pilot Connected Number Feature, on page 877.

Backward Compatibility

This feature is backward compatible. It can be enabled on Huntpilot page Display Line GroupMember DN
as Connected Party. By default, this feature is disabled so that the existing applications are not affected.

Hunt Group Login Status
This feature allows TSP applications to log a controlled device in and out of a hunt group. In addition, TSP
applications can query a device for the hunt group login status.

After the TSP application successfully logs in or logs out of a hunt group, the TSP application sends a phone
event to notify associated applications of the updated login status. If the request to change the status does not
actually result in a status change (for example, if TSP tries to log a device into a hunt group, but the device
was already logged in to that group) no notification is sent.

Interface Updates

To support this feature, two interfaces have been updated:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
70

Features Supported by TSP
Hunt Pilot Connected Number

• To log in and log out of hunt groups, the CCiscoPhoneDevSpecificSetHuntGroupLoginStatus extension
has been added to the existing CCiscoPhoneDevSpecific interface. The new extension has an enum
mHuntGroupLoginStatus.

• To query the hunt group login status, a new extension Cisco_LineDevCaps_Ext000E0000 has been added
to the existing LineGetDevCapsinterface. The new extension has a member variable of
DeviceHuntGroupLoginStatus.

To log in and out of hunt groups, the application must negotiate line extension 0x000E0000 or above. The
new line extension is added as a part of this feature.

To make use of this feature, he application must open a TAPI phone device with minimum extension version
0x00030000.

Note

Error Description

Hunt group logins are not supported with the following device types. Login requests return the
LINEERR_OPERATIONUNAVAIL error:

• DeviceTapiRoutePoint

• CtiRemoteDevice

• CtiSparkRemoteDevice

The range of enum values for Hunt Group Login status must fall within the range of 0 to 2. Otherwise, the
request returns LINEERR_INVALPARAM.

If the request to set the Hunt Group Login Status is in process and a second request is sent, the second request
returns the LINEERR_PENDING_REQUEST error.

Interface Changes

Hunt Group Login Status, on page 402

Message Sequences

Hunt Group Login Status, on page 899

Backward Compatibility

none

Intercom
The Intercom feature allows one user to call another user and have the call automatically answered with
one-way media from the caller to the called party, regardless of whether the called party is busy or idle.

To ensure that no accidental voice of the called party is sent back to the caller, Unified Communications
Manager implements a ‘whisper’ intercom, which means that only one-way audio from the caller is connected,
but not audio from the called party. The called party must manually press a key to talk back to the caller. A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
71

Features Supported by TSP
Intercom

zip-zip (auto-answer) tone will play to the called party before the party can hear the voice of the caller. For
intercom users to know whether the intercom is using one-way or two-way audio, the lamp for both intercom
buttons appears colored amber for a one-way whisper Intercom and green for two-way audio. For TSP
applications, only one RTP event occurs for the monitored party: either the intercom originator or the intercom
destination, with the call state as whisper, in the case of a one-way whisper intercom.

TSP exposes the Intercom line indication and Intercom Speed Dial information in DevSpecific of LineDevCap.
The application can retrieve the information by issuing LineGetDevCaps. In the DevSpecific portion, TSP
provides information that indicates (DevSpecificFlag = LINEDEVCAPSDEVSPECIFIC_INTERCOMDN)
whether this is the Intercom line. You can retrieve the Intercom speed dial information in the DevSpecific
portion after the partition field.

If a CTI port is used for the Intercom, the application should open the CTI port with dynamicmedia termination.
TSP returns LINEERR_OPERATIONUNAVAIL if the Intercom line is opened with static media termination.

You cannot use CTI Route Point for the Intercom feature.Note

The administrator can configure the speed dial and label options from Unified Communications Manager
Administration. However, the application can issue CciscoLineSetIntercomSpeeddial with
SLDST_LINE_SET_INTERCOM_SPEEDDIAL to set or reset SpeedDial and Label for the intercom line.
The Application setting will overwrite the administrator setting that is configured in the database. Unified
Communications Manager uses the application setting to make the intercom call until the line is closed or
until the application resets it. In the case of a CommunicationsManager or CTIManager failover, CTIManager
or Cisco TSP resets the speed dial setting of the previous application. If the application restarts, the application
must reset the speed dial setting; otherwise, Unified Communications Manager will use the database setting
to make the intercom call. In any case, if resetting of the speed dial or label fails, the system sends a
LINE_DEVSPECIFIC event to indicate the failure. When the application wants to release the application
setting and have the speed dial setting revert to the database setting, the application can call
CciscoLineSetIntercomSpeeddial with a NULL value for SpeedDial and Label.

If the speed dial setting is changed, whether due to a change in the database or because the application
overwrites the setting, the system generates a LineDevSpecific event to indicate the change. However, the
application needs to call CCiscoLineDevSpecificSetStatusMsgs with
DEVSPECIFIC_SPEEDDIAL_CHANGED to receive this notification. After receiving the notification, the
application can call LineGetDevCaps to find out the current settings of speed dial and label.

Users can initiate an intercom call by pressing the Intercom button at the originator or by issuing a LineMakeCall
with a NULL destination if Speedial/Label is configured on the intercom line. Otherwise, LineMakeCall
should have a valid Intercom DN.

For an intercom call, a CallAttribute field in LINECALLINFODEVSPECIFIC indicates whether the call is
for the intercom originator or the intercom target.

After the intercom call is established, the system sends a zip-zip tone event to the application as a tone-changed
event.

Users can invoke a TalkBack at the destination in two ways:

• By pressing the intercom button

• By issuing CciscoLineIntercomTalkback with SLDST_LINE _INTERCOM_TALKBACK

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
72

Features Supported by TSP
Intercom

TSP reports the Whisper call state in the extended call state bit as CLDSMT_CALL_WHISPER_STATE. If
the call is being put on hold because the destination is answering an intercom call by using talk back, the
system reports the call reason CtiReasonTalkBack in the extended call reason field for the held call.

The application cannot set line features, such as set call forwarding and set message waiting, other than to
initiate the intercom call, drop the intercom call, or talk back. After the intercom call is established, the system
limits call features for the intercom call. For the originator, only LINECALLFEATURE_DROP is allowed.
For the destination, the system supports only the LINECALLFEATURE_DROP and TalkBack features for
the whisper intercom call. After the intercom call becomes two-audio after the destination initiates talk back,
the system allows only LINECALLFEATURE_DROP at the destination.

Speed dial labels support unicode.

IPv6
The IPv6 support feature enables IPv6 capabilities in a Unified Communications Manager network. IPv6
increases the number of addresses available for network devices. TAPI can connect to Unified CM with IPv6
support if the IPv6 Support feature is enabled on Unified CM. IPv6 enhancements include the following:

• Provides the IPv6 address of the calling party to the called party in the Devspecific part of
LINECALLINFO.

• Support to register a CTI port or a route point with an IPv6 address. The RTP destination address also
contains IPv6 addresses if the same is involved in media establishment.

The TSP user interface includes the primary and backup CTI Manager address and a flag that indicates the
preference of user while connecting to the CTI Manager. CTI ports and route points can be registered with
IPv4, IPv6, or both.

The following new CiscoLineDevSpecific functions allow the application to specify IP address mode and
IPv6 address before opening CTI port and route point:

• CciscoLineDevSpecificSetIPv6AddressAndMode

• CciscoLineDevSpecificSetRTPParamsForCallIPv6

For dynamic port registration, on receiving the SLDSMT_OPEN_LOGICAL_CHANNEL event, the
CciscoLineDevSpecificSetRTPParamsForCallIPv6 allows the application to provide IPv6 information for
the call.

Interface Changes

See Set IPv6 Address and Mode, on page 377.

Message Sequences

See IPv6 Use Cases, on page 906.

Backward Compatibility

This feature is backward compatible. The 0x00090000 extension must be negotiated to use this feature.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
73

Features Supported by TSP
IPv6

Transfer Changes

Join
In Unified Communications Manager, the Join softkey joins all the parties of established calls (at least two)
into one conference call. The Join feature does not initiate a consultation call and does not put the active call
on hold. It also can include more than two calls, which results in a call with more than three parties.

Cisco Unified TSP exposes the Join feature as a new device-specific function that is known as lineDevSpecific()
– Join. Applications can apply this function to two or more calls that are already in the established state. This
also means that the two calls do not need to be set up initially by using the lineSetupConference() or
linePrepareAddToConference() functions.

Cisco Unified TSP also supports the lineCompleteTransfer() function with dwTransferMode = Conference.
This function allows a TAPI application to join all the parties of two, and only two, established calls into one
conference call.

Cisco Unified TSP also supports the lineAddToConference() function to join a call to an existing conference
call that is in the ONHOLD state.

A feature interaction issue involves Join, Shared Lines, and the Maximum Number of Calls. The issue occurs
when you have two shared lines and the maximum number of calls on one line is less than the maximum
number of calls on the other line.

For example, in a scenario where one shared line, A, has a maximum number of calls set to 5 and another
shared line, A’, has a maximum number of calls set to 2, the scenario involves the following steps:

A calls B. B answers. A puts the call on hold.

C calls A. A answers. C puts the call on hold.

At this point, line A has two calls in the ONHOLD state, and line A’ has two calls in the
CONNECTED_INACTIVE state.

D calls A. A answers.

At this point, the system presents the call to A, but not to A’. This happens because the maximum calls for
A’ specifies 2.

A performs a Join operation either through the phone or by using the lineDevSpecific – Join API to join all
the parties in the conference. It uses the call between A and D as the primary call of the Join operation.

Because the call between A and D was used as the primary call of the Join, the system does not present the
ensuing conference call to A’. Both calls on A’ will go to the IDLE state. As the end result, A’ will not see
the conference call that exists on A.

Join Across Lines (SCCP)
This feature allows two or more calls on different lines of the same device to be joined through the join
operation. Applications can use the existing join API to perform the task. When the join across line happens,
the consultation call on the different line on which the survival call does not reside will get cleared, and a

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
74

Features Supported by TSP
Transfer Changes

CONFERENCED call that represents the consultation call will be created on the primary line where conference
parent is created. This feature should have no impact when multiple calls are joined on the same line.

This feature is supported on SCCP devices that can be controlled by CTI. In addition, this feature also supports
chaining of conference calls on different lines on the same device. Also, a join across line can be performed
on a non-controller line; that is, the original conference controller was on a different device then where the
join is being performed.

This feature returns an error if one of the lines that are involved in the Join Across Lines is an intercom line.Note

Backwards Compatibility

This feature is backward compatible.

Join Across Lines (SIP)
This feature allows two or more calls on different lines of the same device to be joined by using the join
operation. Applications can use the existing join API to perform the task. When the join across line happens,
the consultation call on the different line on which the survival call does not reside will get cleared, and a
CONFERENCED call that represents the consultation call will get created on the primary line where conference
parent is created. This feature should have no impact when multiple calls are joined on the same line.

This feature is supported both on SCCP and SIP devices that can be controlled by CTI. In addition, this feature
also supports chaining of conference calls on different lines on the same device. Also, a join across line can
be performed on a non-controller (the original conference controller was on a different device then where the
join is being performed) line.

This feature returns an error if one of the lines involved in the Join Across Lines is an intercom line.

Interface Changes

None.

Message Sequences

See Join Across Lines, on page 912.

Backwards Compatibility

This feature is backward compatible.

Line-Side Phones That Run SIP
TSP supports controlling and monitoring of TNP-based phones that are running SIP. Existing phones (7960
and 7940) that are running SIP cannot be controlled or monitored by the TSP and should not get included in
the control list. Though the general behavior of a phone that is running is similar to a phone that is running
SCCP not all TSP features get supported for phones that are running SIP.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
75

Features Supported by TSP
Join Across Lines (SIP)

CCiscoPhoneDevSpecificDataPassThrough functionality does not support on phones that are running SIP
configured with UDP transport due to UDP limitations. Phones that are running SIP must be configured to
use TCP (default) if the CCiscoPhoneDevSpecificDataPassThrough functionality is needed.

TSP application registration state for TNP phones that are running SIP with UDP as transport may not remain
consistent to the registration state of the phone. TNP phone that are running SIP with UDP as transport may
appear to be registered when application reports the devices as out of service. This may happen when
CTIManager determines that Unified CM is down and puts the device as out of service, but, because of the
inherent delay in UDP to determine the lost connectivity, phone may appear to be in service.

The way applications open devices and lines on phones that are running SIP remains the same as that of phone
that is running SCCP. It is the phone that controls when and how long to play reorder tone. When a SIP phone
gets a request to play reorder tone, the phone that is running SIP releases the resources from Unified CM and
plays reorder tone. The call appears to be IDLE to a TSP application even though reorder tone is being played
on the phone. Applications can still receive and initiate calls from the phone even when reorder tone plays on
the phone. Because resources have been released on Unified CM, this call does not count against the busy
trigger and maximum number of call counters.

When consult call scenario is invoked on the SIP, the order of new call event (for consult call) and on hold
call state change event (for original call).

Localization Infrastructure Changes
Beginning with Release 7.0(1), the TSP localization is automated. The TSP UI can download the new and
updated locale files directly from a configured TFTP server location. As a result of the download functionality,
Cisco TSP install supports only the English language during the installation.

During installation, the user inputs the TFTP server IP address. When the user opens the TSP interface for
the first time, the TSP interface automatically downloads the locale files from the configured TFTP server
and extracts those files to the resources directory. The languages tab in the TSP preferences UI also provides
functionality to update the locale files.

To upgrade from Unified Communications Manager, Release 6.0(1) TSP to Cisco Unified Communications
Manager, Release 7.0(1) TSP, you must ensure that Release 6.0(1) TSP was installed by using English. If
Release 6.0(1) TSP is installed using any language other than English and if the user upgrades to Release
7.0(1) TSP, then the user must manually uninstall Release 6.0(1) TSP from Add/Remove programs in control
panel and then perform a fresh install of Release 7.0(1) TSP.

Note

Interface Changes

None.

Message Sequences

None.

Backward Compatibility

Only English locale is packaged in Cisco TSP installer. The TSP UI downloads the locale files from the
configured TFTP server. The end user can select the required and supported locale after the installation.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
76

Features Supported by TSP
Localization Infrastructure Changes

Logical Partitioning
The Logical Partitioning feature restricts VoIP to PSTN calls and vice versa, based on the logical partitioning
policy. Any request that interconnects a VOIP call to a PSTN call or vice versa in two different geographical
locations fails and the error code is sent back to the applications.

The device, device pool, trunk, and gateway pages now provide configuration to select geo-location values
and construction rules for geo-location strings.

A new enterprise parameter has been added for this feature with the following values:

• Name: Logical partitioning enabled

• Values: True or False

• Default: False

A new error code has been added for this feature: LINEERR_INVALID_CALL_PARTITIONING_POLICY
0xC000000C

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Logical Partitioning, on page 927.

Backward Compatibility

This feature is backward compatible. Tomaintain earlier behavior, set the logical partitioning enabled parameter
to False.

Message Waiting Indicator Enhancement
The Message Waiting Indicator (MWI) feature enhancement enables the application to display the following
information on the supported phones:

• Total number of new voice messages (normal and high priority messages)

• Total number of old voice messages (normal and high priority messages)

• Number of new high priority voice messages

• Number of old high priority voice messages

• Total number of new fax messages (normal and high priority messages)

• Total number of old fax messages (normal and high priority messages)

• Number of new high priority fax messages

• Number of old high priority fax messages

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
77

Features Supported by TSP
Logical Partitioning

MWI also includes two CCiscoLineDevSpecific subclasses are added to enhance the MWI functionality.
Similar to the existing setMessageWaiting operation, one MWI operation sets the summary information for
the controlled line, while the another MWI operation sets the message summary information on any line that
is reachable by the controlled line, as defined by the configured calling search space of the controlled line.

Interface Changes

See Message Summary, on page 350 and Message Summary Dirn, on page 352.

Message Sequences

There are no message sequences for this feature.

Backward Compatibility

This feature is backward compatible.

Microsoft Windows Vista
Microsoft Windows Vista operating system supports Cisco TSP client with the following work around:

• Always perform the initial installation of the Cisco TSP and Unified Communications Manager TSP
Wave Driver as a fresh install.

• If a secure connection to Unified Communications Manager is used, turn off/disable the Windows
Firewall.

• If Unified Communications Manager TSP Wave Driver is used for inbound audio streaming, turn
off/disable the Windows Firewall.

If Unified CommunicationsManager TSPWave Driver is used for audio streaming, you must disable all other
devices in the Sound, Video, and Game Controllers group.

Monitoring Call Park Directory Numbers
Cisco TSP supports monitoring calls on lines that represent Unified CommunicationsManager Administration
Call Park Directory Numbers (Call Park DNs). Cisco TSP uses a device-specific extension in the
LINEDEVCAPS structure that enables TAPI applications to differentiate Call Park DN lines from other lines.
If an application opens a Call Park DN line, all calls that are parked to the Call Park DN are reported to the
application. The application cannot perform any call-control functions on any of the calls at a Call Park DN.

In order to open Call Park DN lines, the Monitor Call Park DNs check box in theUnified Communications
Manager Administration for the TSP user must be checked. Otherwise, the application will not see any of the
Call Park DN lines upon initialization.

Multiple Calls Per Line Appearance
The following topics describe the conditions of Line Appearance.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
78

Features Supported by TSP
Microsoft Windows Vista

Maximum Number of Calls

The maximum number of calls per Line Appearance remains database configurable, which means that the
Cisco TSP supports more than two calls per line on Multiple Call Display (MCD) devices. An MCD device
comprises a device that can display more than two call instances per DN at any given time. For non-MCD
devices, the Cisco TSP supports a maximum of two calls per line. The absolute maximum number of calls
per line appearance equals 200.

Busy Trigger

In Cisco Unified CM, a setting, busy trigger, indicates the limit on the number of calls per line appearance
before the Cisco Unified CM will reject an incoming call. Be aware that the busy trigger setting is database
configurable, per line appearance, per cluster. The busy trigger setting replaces the old call waiting flag per
DN. You cannot modify the busy trigger setting using the CiscoTSP.

Call Forward No Answer Timer

Be aware that the Call Forward No Answer timer is database configurable, per DN, per cluster. You cannot
configure this timer using the CiscoTSP.

New Cisco Media Driver
Cisco TSP now allows the application to use the new Cisco Media Driver (next generation Wave Driver).
CiscoMedia Driver provides applications with functions similar to the legacy kernel mode driver, has improved
scalability, and supports latest Microsoft operating system releases.

Two additional device classes, ciscowave/in and ciscowave/out, have been introduced to support the new
driver. These classes can be used in the lineGetID() to retrieve line-device identifiers for media devices
associated with line when the new Cisco Media Driver is used for audio streaming. For more information,
see Cisco TSP Media Driver, on page 421.

Interface Changes

None

Message Sequences

None

Backward Compatibility

This feature is not backward compatible.

Other-Device State Notification
TAPI specification does not have a provision to notify applications regarding state changes of non-opened
devices. The Other-Device State Notification feature enhances Cisco TSP with that functionality. Using this
feature, an application can assign devices that Cisco TSP should use to notify the application about non-opened
device state changes.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
79

Features Supported by TSP
New Cisco Media Driver

Currently, Cisco TSP supports this feature only for line devices. An application can enable the feature on any
open line device using a DEVSPECIFIC_OTHER_DEVICE_STATE_NOTIFY flag in
CCiscoLineDevSpecificSetStatusMsgs lineDevSpecific request. Cisco TSP then uses this line to deliver
other-device state change notifications to the application. Notifications are sent in LINE_LINEDEVSTATE
message as follows:

LINE_LINEDEVSTATE
hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) LINEDEVSTATE_OTHER;
dwParam2 = (DWORD) CISCO_LINEDEVSTATE_OTHER_REASON_constant;
dwParam3 = (DWORD) dwLineDeviceId;

CiscoLineDevStateOtherReason enumeration defines all relevant values of the Param2 in this notification.
Param3 contains the TAPI identifier of the line device for which the state has changed.

The other-device state notification is a supplementary mechanism that can be used by other features that
provide the application with state change notifications for non-opened devices. For example, EM Memory
Optimization uses this feature to notify an application when a line device becomes active or inactive as a
result of EM login or logout.

Interface Changes

CiscoLineDevStateOtherReason enumeration type provides details to LINEDEVSTATE_OTHER and is
passed to the application as dwParam2 in the LINE_LINEDEVSTATE message

enum CiscoLineDevStateOtherReason
{
CiscoLineDevStateOtherReason_Unknown = 0,
CiscoLineDevStateOtherReason_OtherLineInactive,
CiscoLineDevStateOtherReason_OtherLineActive,
CiscoLineDevStateOtherReason_OtherLineCapsChange
};

DEVSPECIFIC_OTHER_DEVICE_STATE_NOTIFY flag in Set Status Messages, lineDevSpecific request
must be used to enable other-device state notifications. For more information, see Set Status Messages, on
page 355.

Message Sequences

See Extension Mobility Memory Optimization Option, on page 773.

Backward Compatibility

The other-device state notification is a supplementary feature intended to be used by other features that require
to provide the application with state change notifications for non-opened devices. Its backward compatibility
should be considered in a context of a specific feature. For more information, see ExtensionMobilityMemory
Optimization Option, on page 64.

Park Monitoring
The Park Monitoring feature allows you to monitor the status of parked calls. This feature improves the user
experience of retrieving the parked calls. When TAPI receives a parked call notification, a call representing

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
80

Features Supported by TSP
Park Monitoring

the parked call is generated, and the call is set to CONNECTED INACTIVE state. The parked call is set to
IDLE when it is retrieved or forwarded to Park Monitoring Forward No Retrieve Destination.

DEVSPECIFIC_PARK_STATUS event is sent when call is parked, reminded, retrieved, and aborted.
LineDevSpecific SLDST_SET_STATUS_MESSAGES are enhanced to allow the application to enable/disable
DEVSPECIFIC_PARK_STATUS event.

When Cisco TSP receives the LINE_PARK_STATUS event for the newly parked call, Cisco TSP simulates
a call for each of the newly parked call using the SubID received from the LINE_PARK_STATUS event, and
notifies the application about the new parked call using the LINE_NEWCALL event.

Cisco TSP uses LINE_CALLSTATE event to notify changes in the park status to the application. The park
status in the LINE_CALLSTATE event can be one of the following:

• Parked -indicates a call is parked by the TSP monitored Cisco Unified IP phone.

• Retrieved -indicates a previously parked call is retrieved.

• Abandoned -indicates a previously parked call is disconnected while waiting to be retrieved.

• Reminder -indicates the park monitoring reversion timer for the parked call has expired.

• Forwarded -indicates the parked call has been forwarded to the configured Park Monitoring Forward No
Retrieve destination, or if the FNR destination is not configured, the call is forwarded back to the parker.

When Cisco TSP receives the LINE_PARK_STATUS event, it maps the existing CALLINFO structure with
the fields received from LINE_PARK_STATUS event. The application then retrieves the updated structure
by invoking lineGetCallInfo.

Themapping of the fields in the LINE_PARK_STATUS event to the LINECALLINFO structure is as follows:

DescriptionLINECALLINFO--LINE_PARK_STATUS

Identifies the line handle to which this
message applies

hlineLineHandle

Identifies the global call handle to which
this message applies.

dwcallidGCID

A unique ID that identifies a particular
parked call

dwRedirectingNameTransactionID

Identifies the call reason.dwReasonCallReason

Parked, retrieved, abandoned, reminder,
forwarded -indicates the status of the parked
call.

dwBearerModePark Status

The park slot DN.dwCallerIDParkSlotDN

The partition of the park slot DN.dwCallerIDNameParkSlotPartition

The parked party DN.dwCalledIDParkedPartyDN

The partition of the parked party DN.dwCalledIDNameParkedPartyPartition

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
81

Features Supported by TSP
Park Monitoring

To maintain the existing behavior of the Park feature for the Cisco Unified IP Phones running SIP, you can
set the value of the Park Monitoring Forward No Retrieve Destination timer equal to the existing Call Park
Duration timer and leave the Park Monitoring Forward No Retrieve Destination blank.

To override the Park Monitoring feature for the Cisco Unified IP Phones running SIP, turn off the
DEVSPECIFIC_PARK_STATUS message flag by using the lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

Interface Changes

See Set Status Messages, on page 355.

Message Sequences

See Park Monitoring, on page 940.

Backward Compatibility

This feature is backward compatible.

Partition
The CiscoTSP support of this feature will provide Partition support information. Prior to release 5.1, CiscoTSP
only reported partial information about the DNs to the applications in that it would report the numbers assigned
but not the information about the partitions with which they were associated.

Thus, if a phone has two lines that are configured with same DNs – one in Partition P1 and the other in P2, a
TSP application would cannot distinguish between these two and consequently open only one line of these
two.

CiscoTSP provides the partition information about all DNs to the applications. Thus, the preceding limitation
gets overcome and applications can distinguish between and open two lines on a device, which share the same
DN but belong to different partitions.

TSP applications can query for LINEDEVCAPS where the partition information is stored in the devSpecific
portion of the structure. The application will receive the partition information for the CallerID, CalledID,
ConnectedID, RedirectionID, and RedirectingID in a call. This is provided as a part of DevSpecific Portion
of the LINECALLINFO structure.

Also, the partition information of the Call Park DN at which the call was parked is also sent to the applications.
The value of the partition information is sent to applications in ASCII format.

Note

Password Expiry Notification
The password expiry notification notifies the user about the password expiry date and provides the specific
reason for the initialization failure if the password is already expired or the account is locked. The user can
create a credential policy and associate the same with user password credentials.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
82

Features Supported by TSP
Partition

After the CiscoTSP application is started, the password expiry notification appears. This information appears
only once, when the application is initially loaded, and will not be updated periodically.

If the application is already started and second application begins, the password expiry notification will not
appear again because the application is already loaded.

CiscoTSP notifies the user about the password expiry as follows:

Popup message from CiscoTSP notifier: Unified CM TSP initialization Success -Password will Expire in
Days : 9

Application Event Log message: Information : Password will Expire in [9] Days

Password Expired
The CiscoTSP initialization fails and a message is displayed if the password is expired.

The password of a user with Credential Policy configured can expire for any of the following reasons:

• User did not reset the password before the password expiry date.

• Credential Policy was not reconfigured to increase the number of days until password expiry.

Expired Password can be reset by either the administrator or the user.

CiscoTSP notifies the user about the expired password as follows:

Popup message from CiscoTSP notifier: Unified CM TSP initialization failed -Password has Expired,
Please RESET Password

Application Event Logmessage:ERROR : ProviderOpen Failed as Password is expired. User canRESET
the Password

Popup message from CiscoTSP notifier: Unified CM TSP initialization failed -Password has Expired,
User cannot RESET the Password, Please contact ADMIN

Application Event Log message: ERROR : Provider Open Failed as Password is expired. User cannot
RESET the Password, Please contact ADMIN

Account Lock
A user account gets locked in any of the following conditions:

• Threshold number of incorrect logins is exceeded. This appears as Failed Logon in the user credential
page.

• Administrator has locked the user account.

• Credential has not been used in a number of days as specified onthe user credential page and the account
is locked due to inactivity. This appears as Inactive Days Allowed on the user credential page.

CiscoTSP notifies the user about the initialization failure as follows:

Popup message from CiscoTSP notifier: Unified CM TSP initialization failed -Account is LOCKED.

Application Event Log message: ERROR: Provider Open Failed as User Account is LOCKED.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
83

Features Supported by TSP
Password Expired

Interface Changes

No interface changes.

Message Sequences

There are no message sequences.

Backward Compatibility

Feature is backward compatible.

Privacy Release
The Unified CommunicationsManager Privacy Release feature allows the user to dynamically alter the privacy
setting. The privacy setting affects all existing and future calls on the device.Cisco Unified TSP does not
support the Privacy Release feature.

Redirect to Device
This feature allows the Cisco TSP application to use the LineDevSpecific api to redirect a call to a specific
device. Even if the device is sharing a phone line, only the target device rings and not the device that is sharing
the phone line. This feature gets used by the PSAP Callback feature of Cisco Emergency Responder.

The new CCiscoLineDevSpecific extension - "CciscoLineDevSpecificRedirectEx" is added to support this
capability for the applications. This extension has the new RedirectDeviceName field to specify the target
device. This extension has the below variations of the Redirect feature:

• FAC

• CMC

• FeaturePriority

• SetUp OriginalCalled

• RedirectDirectName

• Application XML Data

• Calling Search Space

Error Description

If the redirect destination is not reachable, the LINEERR_INVALADDRESS gets returned.

Interface Change

Redirect Enhancement, on page 403

Message Sequence

Redirect to Device, on page 973

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
84

Features Supported by TSP
Privacy Release

Redirect and Blind Transfer
The Cisco Unified TSP supports several different methods of Redirect and Blind Transfer. This section outlines
the different methods as well as the differences between methods.

lineRedirect
This standard TAPI lineRedirect function redirects calls to a specified destination. The Calling Search Space
and Original Called Party that Cisco Unified TSP uses for this function follows:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected) for all cases
unless the call is in a conference or a member of a two-party conference where it uses the CSS of the
RedirectingParty (the party that is doing the redirect).

• Original Called Party — Not changed.

lineDevSpecific -redirect reset Original Called ID
This function redirects calls to a specified destination while resetting the Original Called Party to the party
that is redirecting the call. The Calling Search Space and Original Called Party that Cisco Unified TSP uses
for this function follow:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

• Original Called Party — Set to the RedirectingParty (the party that is redirecting the call).

lineDevSpecific -redirect set Original Called ID
This function redirects calls to a specified destination while allowing the application to set the Original Called
Party to any value. The Calling Search Space and Original Called Party that Cisco Unified TSP uses for this
function follow:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

• Original Called Party— Set to the preferredOriginalCalledID that the lineDevSpecific function specifies.

You can use this request to implement the Transfer to Voice Mail feature (TxToVM). Using this feature,
applications can transfer the call on a line directly to the voice mailbox on another line. You can achieve
TxToVM by specifying the following fields in the above request: voice mail pilot as the destination DN and
the DN of the line to whose voice mail box the call is to be transferred as the preferredOriginalCalledID.

lineDevSpecific -redirect FAC CMC
This function redirects calls to a specified destination that requires either a FAC, CMC, or both. The Calling
Search Space and Original Called Party that Cisco Unified TSP uses for this function follow:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

• Original Called Party — Not changed.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
85

Features Supported by TSP
Redirect and Blind Transfer

lineBlindTransfer
Use the standard TAPI lineBlindTransfer function to blind transfer calls to a specified destination. The Calling
Search Space and Original Called Party that Cisco Unified TSP uses for this function follow:

• Calling Search Space (CSS)—Uses CSS of the TransferringParty (the party that is transferring the call).

• Original Called Party — Set to the TransferringParty (the party that is transferring the call).

lineDevSpecific -blind transfer FAC CMC
This function blind transfers calls to a specified destination that requires a FAC, CMC, or both. The Calling
Search Space and Original Called Party that Cisco Unified TSP uses for this function follow:

• Calling Search Space (CSS)—Uses CSS of the TransferringParty (the party that is transferring the call).

Original Called Party — Set to the TransferringParty (the party that is transferring the call).

Refer and Replaces for Phones That Are Running SIP
As part of CTI support for phones that are running SIP, TSP will support new SIP features Refer and Replaces.
Refer, Refer with Replaces, Invite with Replaces represent different mechanisms to initiate different call
control features. For example, Refer with Replaces in SIP terms can be translated to Transfer operation in
Unified CM. Invite with Replaces can be used for Pickup call feature across SIP trunks. TSP will support
event handling corresponding to the features that are initiated by Unified CM phones that are running SIP /
third party phones that are running SIP. TSP will not support Refer / Replaces request initiation from the API.
Because TAPI does not have Refer/Replaces feature related reason codes defined, the standard TAPI reason
will be LINECALLREASON_UNKNOWN. TSP will provide new call reason to user as part of
LINE_CALLINFO::dwDevSpecificData if the application negotiated extension version greater or equal to
0x00070000.

For In-dialog refer, TSP places Referrer in LINECALLSTATE_UNKNOWN |
CLDSMT_CALL_WAITING_STATE call state with extended call reason as CtiCallReasonRefer. This helps
present the Referrer’s call leg such that applications cannot call any other call functions on this call. Any
request on this call when it is in LINECALLSTATE_UNKNOWN | CLDSMT_CALL_WAITING_STATE
will return an error as LINEERR_INVALCALLSTATE.

The Referrer must clear this call after the Refer request is initiated. If Referrer does not drop the call, Refer
feature will clear this call if the refer is successful. LINECALLSTATE_IDLE with extended reason as
CtiCallReasonRefer will get reported.

If Referrer does not drop the call and if Refer request fails (For example, Refer to target is busy), refer feature
will restore the call between Referrer and Referee.

With Unified CM Phones that are running SIP, Unified CM makes all the existing call features transparent
such that applications will get the existing events when the phone invokes a SIP feature whose behavior
matches with the existing feature of Unified CM. For example, when Refer with Replaces is called by a phone
that runs SIP (with both primary and secondary/consult call legs on same SIP line) within Unified CM cluster,
all the events will get reported the same as Transfer feature.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
86

Features Supported by TSP
lineBlindTransfer

Ringback on SIP 183 for Transfers
Cisco TAPI has been updated with how it responds to SIP 183 messages when a call is transferred over a
gateway or trunk. When an established call gets transferred over a trunk and a SIP 183 is received, Cisco
TAPI reports a RINGBACK state.When the call is answered, Cisco TAPI reports a call state of CONNECTED.

A new Cisco CallManager service parameter, CTI Report Ringback on SIP 183 with SDP, has been added
to configure this feature. When this sevice parameter is set to True, the above behavior applies. This is the
default setting.

If an application needs to use the legacy behavior, you can set the service parameter to False. Under this
setting, if the call gets transferred over a gateway or trunk, Cisco TAPI will report a PROGRESSING state
when Cisco Unified CommunicationsManager recieves a SIP 183, but after a connection is established, Cisco
TAPI does not report the CONNECTED state.

Secure Conference
Prior to release 6.0(1), the security status of each call matched the status for the call between the phone and
its immediately connected party, which is a conference bridge in the case of a conference call. No secured
conference resource existed, so secure conference calls were not possible.

Release 7.0(1) supports a secured conference resource to enable secure conference. The Secure Conference
feature lets the administrator configure the Conference bridge resources with either a non-secure mode or an
encrypted signaling and media mode. If the bridge is configured in encrypted signaling and media mode, the
Conference Bridge will register to Unified CommunicationsManager as a secure media resource. This enables
the user to create a secure conference session. When the media streams of all participants who are involved
in the conference are encrypted, the conference exists in encrypted mode. Otherwise, the conference exists
in non-secure mode.

The overall conference security status depends on the least-secure call in the conference. For example, suppose
parties A (secure), B (secure), and C (non-secure) are in a conference. Even though the conference bridge can
support encrypted sRTP and is using that protocol to communicate with A and B, C remains a non-secure
phone. Thus, the overall conference security status is non-secure. Even though the overall conference security
status is non-secure, because a secure conference bridge was allocated, all secure phones (in this case, A and
B) will receive sRTP keys. TSP informs each participant about the overall call security status. The system
provides the overall call security level of the conference to the application in the DEVSPECIFIC portion of
LINECALLINFO to indicate whether the conference call is encrypted or non-secure.

The Secure Conference feature uses four fields to present the call security status:

DWORD CallSecurityStatusOffset;
DWORD CallSecurityStatusSize;
DWORD CallSecurityStatusElementCount;
DWORD CallSecurityStatusElementFixedSize;

The offset will point to following structure:

typedef struct CallSecurityStatusInfo
{

DWORD CallSecurityStatus;
} CallSecurityStatusInfo;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
87

Features Supported by TSP
Ringback on SIP 183 for Transfers

The system updates LINECALLINFOwhenever the overall call security status changes during the call because
a secure or non-secure party joins or leaves the conference.

A conference resource gets allocated to the conference creator based on the creator security capability. If no
conference resource with the same security capability is available, the system allocates a less-secure conference
resource to preserve existing functionality.

When a shared line is involved in the secure conference, the phone that has its line in RIU (remote in use)
mode will not show a security status for the call. However, TSP exposes the overall security status to the
application along with other call information for the inactive call. This means that TSP also reports the
OverallSecurityStatus to all RIU lines. The status will match what is reported to the active line. Applications
can decide whether to expose the information to the end user.

Secure RTP
The secure RTP (SRTP) feature allows Cisco TSP to report SRTP information to application as well as allow
application to specify SRTP algorithm IDs during device registration. The SRTP information that Cisco TSP
provides will include master key, master salt, algorithmID, isMKIPresent, and keyDerivation. To receive
those key materials, administrator needs to configure TLS Enabled and SRTP Enabled flag in Unified
Communications Manager Admin User windows and establish TLS link between TSP and CTIManager.

Besides, during device registration, application can provide SRTP algorithm IDs for CTI port and CTI Route
Point in case of media termination by application. Application should use new Cisco extension for
Line_devSpecific -CciscoLineDevSpecificUserSetSRTPAlgorithmID to set supported SRTP algorithm IDs
after calling LineOpen with 0x80070000 version or higher negotiated, then followed by either
CCiscoLineDevSpecificUserControlRTPStream or CciscoLineDevSpecificPortRegistrationPerCall to allow
TSP to open device on CTI Manager.

When call arrives on an opened line, TSP will send LINE_CALLDEVSPECIFIC event to application with
secure media indicator; then, application should query LINECALLINFO to get detail SRTP information if
SRTP information is available. The SRTP information resides in the DevSpecific portion of the
LINECALLINFO structure.

In case of mid-call monitoring, Cisco TSPwill send LINE_CALLDEVSPECIFICwith secure media indicator,
however there will be no SRTP information available for retrieval under this scenario. The event is only sent
upon application request via PhoneDevSpecificwith CPDST_REQUEST_RTP_SNAPSHOT_INFOmessage
type.

To support SRTP that is using static registration, a generic mechanism for delayed device/line now exists.
The following ones apply:

• Extension version bit SELSIUSTSP_LINE_EXT_VER_FOR_DELAYED_OPEN = 0x40000000

• CiscoLineDevSpecificType -SLDST_SEND_LINE_OPEN

• CCiscoLineDevSpecific -CciscoLineDevSpecificSendLineOpen

If application negotiates with 0x00070000 in lineOpen against CTI port, TSP will do LineOpen/DeviceOpen
immediately. If application negotiates with 0x40070000 in LineOpen against CTI port, TSP will delay the
LineOpen/DeviceOpen. Application can specify SRTP algorithm ID by using
CciscoLineDevSpecificUserSetSRTPAlgorithmID (SLDST_USER_SET_SRTP_ALGORITHM_ID).However,
to trigger actual device/line open in TSP, application needs to send
CciscoLineDevSpecificSendLineOpen(SLDST_SEND_LINE_OPEN)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
88

Features Supported by TSP
Secure RTP

If application negotiates with 0x80070000 in LineOpen against CTI port/RP, TSP will delay the
LineOpen/DeviceOpen until application specifies media information in CCiscoLineDevSpecific; however,
application can use CciscoLineDevSpecificUserSetSRTPAlgorithmID
(SLDST_USER_SET_SRTP_ALGORITHM_ID) to specify SRTP algorithm ID before specifying the media
information.

If application negotiates with 0x40070000 in LineOpen against RP, TSP should fail
CciscoLineDevSpecificUserSetSRTPAlgorithmID (SLDST_USER_SET_SRTP_ALGORITHM_ID) request
because RP should have media terminated by application.

Currently, the SELSIUSTSP_LINE_EXT_VER_FOR_DELAYED_OPEN bit only gets used on CTI port
when TSP Wave Driver is used to terminate media. Under conference scenario, the SRTP information gets
stored in conference parent call for each party. An application that negotiates with correct version and is
interested in the SRTP information in a conference scenario should retrieve the SRTP information from
CONNECTED call of the particular conference party.

Backward Compatibility

CCiscoLineDevSpecific extension

CciscoLineDevSpecificUserSetSRTPAlgorithmID is defined.

CCiscoLineDevSpecific extension CciscoLineDevSpecificSendLineOpen is defined. An extra
LINE_CALLDEVSPECIFIC event gets sent if negotiated version of application supports this feature while
keeping existing LINE_CALLDEVSPECIFIC for reporting existing RTP parameters.

Wave driver (media terminating endpoint) uses the strip_policy to create a crypto context. It should match
the encrypt and decrypt packets sent/received by IPPhones/CTIPorts. Phone uses one hardcoded srtp_policy
for all phone types including phones that are using SIP.

policy->cipher_type = AES_128_ICM;

policy->cipher_key_len = 30;

policy->auth_type = HMAC_SHA1;

policy->auth_key_len = 20;

policy->auth_tag_len = 4;

policy->sec_serv = sec_serv_conf_and_auth;

Applications should not store key material and must use the proper security method to ensure confidentiality
of the key material. Applications must clear the memory after key information is processed. Be aware that
applications are subject to export control when they providemechanism to encrypt the data (SRTP). Applications
should get export clearance for that.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
89

Features Supported by TSP
Secure RTP

Presentation Indication

Secure TLS
Establishing secure connection to CTIManager involves application user to configure more information
through Cisco TSP UI. This information will help TSP to create its own client certificate. This certificate is
used to create a mutually authenticated secure channel between TSP and CTIManager.

TSP UI adds a new tab called Security and the options that are available on this tab follows:

• Check box for Secure Connection to CTIManager: If checked, TSP will connect over TLS CTIQBE port
(2749); otherwise, TSP will connect over CTIQBE port (2748).

• Default setting specifies non secure connection and the setting will remain unchecked.

Ensure that the security flag for the TSP user is enabled through Unified Communications Manager
Administration as well. CTIManager will perform a verification check whether a user who is connecting on
TLS is allowed to have secure access. CTIManager will allow only security enabled users to connect to TLS
port 2749 and only non secure users to connect to CTIQBE port 2748.

The user flag to enable security depends on the cluster security mode. If cluster security mode is set to secure,
user security settings will have a meaning; otherwise, the connection has to be non secure. If secure connection
to CTIManager is checked, the following settings will get enabled for editing.

• CAPF Server: CAPF server IP address from which to fetch the client certificate.

• CAPF Port: (Default 3804) – CAPF Server Port to connect to for Certificate download.

• Authorization Code (AuthCode): Required for Client authentication with CAPF Server and Private Key
storage on client machine.

• Instance ID(IID): Each secure connection to CTIManager must have its own certificate for authentication.
With the restriction of having a distinct certificate per connection, CAPF Server needs to verify that the
user with appropriate AuthCode and IID is requesting the certificate. CAPF server will use AuthCode
and IID to verify the user identity. After CAPF server provides a certificate, it clears the AuthCode to
make sure only one instance of an app requests a certificate based on a single AuthCode. CCM admin
will allow user configuration to provide multiple IID and AuthCode.

• TFTP Server: TFTP server IP address to fetch the CTL file. CTL, which file is required to verify the
server certificate, gets sent while mutually authenticating the TLS connection.

• Check box to Fetch Certificate: This setting is not stored anywhere, instead only gets used to update the
Client certificate when it is checked and will get cleared automatically.

• Number of Retries for Certificate Fetch: This indicates the number of retries TSP will perform to connect
to CAPF Server for certificate download in case an error. (Default -0) (Range – 0 to 3)

• Retry Interval for Certificate Fetch: This will be used when the retry is configured. It indicates the (secs)
for which TSP will wait during retries. (Default – 0) (Range – 0 to 15)

Because user is not expected to update the client certificate every time it changes, TSP UI will pop up a
message when this box is checked by user that says “This will trigger a certificate update. Please make sure
that you really want to update the TSP certificate now.” This will ensure that if user selects this check box in

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
90

Features Supported by TSP
Presentation Indication

an error. TSP will fail to establish a secure connection to CTIManager if a valid certificate cannot be obtained.
Each secure connection to CTIManager needs to have a unique certificate for authentication.

If an application tries to create more than one Provider simultaneously with the same certificate or when a
session with the same certificate already exists/is open, CTI Manager disconnects both providers. TSP will
try reconnecting to CTIManager to bring the provider in service. However, if both providers continuously try
to connect by using the same duplicated certificate, both providers will be closed after a certain number of
retries, and the certificate will be marked as compromised by CTIManager on Unified CM server. The number
of retries after which the certificate should be marked as compromised is configurable from the CTIManager
Service Parameter CTI InstanceId Retry Count. CTI manager rejects further attempt to open provider with
the certificate that is compromised. In this case, the CAPF profile of the compromised certificate should be
deleted and a new CAPF Profile must be created for the user. The new CAPF profile for the user should use
new instance ID. Otherwise, the old certificate, which was compromised previously, can be used again.

A new error code, TSPERR_INIT_CERTIFICATE_COMPROMISED, with value as 0x00000011 where
TSPERR_UNKNOWN is 0x00000010 now exists. Application should not have checks like “if (err <
TSPERR_UNKNOWN))” because error codes exists that have a value greater than that.

When TLS is used, the initial handshake will be slow as expected due to heavy use of public key cryptography.
After the initial handshake is complete and the session is established, the overhead gets significantly reduced.
The following profiling result applies on ProviderOpen for both secure and non-secure CTI connection.

CommentsDuration on
OpenAllLines

Duration on
ProviderOpen

Type of CTI ConnectionControlled Devices

N/A1 sec 382 msNon-Secure0

With certificate retrieval.N/A4 sec 987 msSecure

N/A3 sec 736 msSecure

3 sec 164ms1 sec 672 msNon-secure100

3 sec 445ms5 sec 758 msSecure

3 min 26 sec 728 ms29 sec 513 msNon-Secure2500

3 min 26 sec 928 ms34 sec 219 msSecure

Support for RSHA12 Algorithm
Prior to the11.5 release, Cisco TSP had hardcoded the digest algorithm used for validating the signature of
CTLFile to SHA1. From 11.5 release onwards, Cisco TSP is enhanced to use the digest algorithm based on
DigestAlgorithm Tag mentioned in CTLFile. This way Cisco TSP validates CTLFile signed with SHA1 or
SHA512.

Backward Compatibility Issues:

Cisco TSP versions prior to 11.5 will not be able to validate CTLFile signed using SHA512 if the parameter:
“TFTP File Signature Algorithm Required Field” (System-> Enterprise Parameters Configuration) in Cisco
Unified Communications Manager is set to RSASHA512. The secure connection fails as CiscoTSP supports
only SHA1 and not SHA512 algorithm.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
91

Features Supported by TSP
Support for RSHA12 Algorithm

Secured Monitoring and Recording
This feature enhances the ability to monitor or record calls in a secure environment. In Unified Communications
Manager (Cisco Unified CM), Release 8.0(1), Cisco Unified CM software has been enhanced to enable call
monitoring and recording in a secure environment. So, secured calls can be monitored and recorded.

The recording andmonitoring session is created in a secure mode only when the Supervisor/RecordingDevice
and the Agent has secure capabilities. Recording/Monitoring request is successful only when the
Supervisor/Recording Device has higher than or meets the security capabilities of the Agent.

TransactionID, which is unique for reach monitoring session, is exposed to the application in Call Attribute
information, DevSpecific part of Call Info for the call on supervisor and agent.

If the Silent Monitoring session is toned down when the Supervisor Security capabilities do not meet or exceed
the capabilities of the agent, LINE_DEVSPECIFIC event is delivered with Param1 =
SLDSMT_MONITORING_TERMINATED indicating the Monitoring Terminated event and Param2 =
TransactionID of the call that is terminated.

To receive theMonitoring Terminated event, the DEVSPECIFIC_SILENT_MONITORING_TERMINATED
message flag must be set in applications by using the lineDevSpecific SLDST_SET_STATUS_MESSAGES
request.

The application has to determine the monitoring session to be terminated based on the TransactionID that
TSP exposes in LINE_DEVSPECIFIC Event for the Monitoring Session Terminated Event:

• Monitoring Terminated event is delivered to the original supervisor that initiated the Monitoring session
and is longer present in monitoring the call.

• Recording: Cisco Unified CM does not support recording on Authenticated devices and also when the
Recording device is authenticated.

• If the applicationmonitors the Customer, Agent and Supervisor lines afterMonitoring/Recording sessions
start, CallReason will be LINECALLREASON_UNKNOWN for direct calls from the customer to the
agent. CallReason will be LINECALLREASON_DIRECT for the monitored call on Supervisor as CTI
reports the CallReason = CtiReasonSilentMonitoring/ CtiReasonRecording for respective Feature.

CallAttribute information in devspecific part of callInfo for a call on Supervisor is not cleared when the agent
drops the call, in case the Monitored call is being conferenced by two Supervisors.

Note

Interface Changes

New error Code – LINEERR_SECURITY_CAPABILITIES_MISMATCH 0xC000000E

Existing Cause Code – LINEDISCONNECTMODE_INCOMPATIBLE 0x00000400

NewLINE_DEVSPECIFICmessageType -SLDSMT_MONITORING_TERMINATED. Formore information,
see Silent Monitoring Session Terminated Event, on page 417.

New LineDevSpecificSetStatusMessage Flag -DEVSPECIFIC_SILENT_MONITORING_TERMINATED.
For more information, see Set Status Messages, on page 355.

In the CallAttributeInfo_ExtA0 field, LINECALLINFO::DEVSPECIFIC added the TransactionID field. For
more information, see Details, on page 332.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
92

Features Supported by TSP
Secured Monitoring and Recording

Message Sequences

See Secure Monitoring and Recording, on page 995.

Select Calls
The Select softkey on IP phones lets a user select call instances to perform feature activation, such as transfer
or conference, on those calls. The action of selecting a call on a line locks that call, so it cannot be selected
by any of the shared line appearances. Pressing the “Select” key on a selected call will deselect the call.

Cisco Unified TSP does not support the “Select” function to select calls because all transfer and conference
functions contain parameters that indicate on which calls the operation should be invoked.

Cisco Unified TSP supports the events that a user who selects a call on an application-monitored line causes.
When a call on a line is selected, all other lines that share the same line appearance will see the call state
change to dwCallState = CONNECTED and dwCallStateMode = INACTIVE.

Conference Changes

Transfer Changes

Set the Original Called Party Upon Redirect
Two extensions enable setting the original called party upon redirect as follows:

• CCiscoLineDevSpecificRedirectResetOrigCalled

• CCiscoLineDevSpecificRedirectSetOrigCalled

See lineDevSpecific, on page 152 for more information.

Shared Line Appearance
Cisco Unified TSP supports opening two different lines that each share the same DN. Each of these lines
represents a Shared Line Appearance.

The Unified CommunicationsManager allowsmultiple active calls to exist concurrently on each of the different
devices that share the same line appearance. The system still limits each device to, at most, one active call
and multiple hold or incoming calls at any given time. Applications that use the Cisco Unified TSP to monitor
and control shared line appearances can support this functionality.

If a call is active on a line that is a shared line appearance with another line, the call appears on the other line
with the dwCallState = CONNECTED and the dwCallStateMode = INACTIVE. Even though the call party
informationmay not display on the actual IP phone for the call at the other line, Cisco Unified TSP still reports
the call party information on the call at the other line. This gives the application the ability to decide whether

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
93

Features Supported by TSP
Select Calls

to block this information. Also, the system does not allow call control functions on a call that is in the
CONNECTED INACTIVE call state.

Cisco Unified TSP does not support shared lines on CTI Route Point devices.

In the scenario where a line is calling a DN that contains multiple shared lines, the dwCalledIDName in the
LINECALLINFO structure for the line with the outbound call may be empty or set randomly to the name of
one of the shared DNs. The reason for this should be obvious as Cisco Unified TSP and the Unified
Communications Manager cannot resolve which of the shared DN’s you are calling until the call is answered.

Silent Install
The Cisco TSP installer supports silent install, silent upgrade, and silent reinstall from the command prompt.
Users do not see any dialog boxes during the silent installation.

Silent Monitoring
Silent monitoring is a feature that enables a supervisor to listen to a conversation between an agent and a
customer without the agent detecting the monitoring session. TSP provides monitoring type in line DevSpecific
request for applications to monitor calls on a per call basis. Both monitored and monitoring party have to be
in controlled list of the user.

The Application is required to send permanent lineID, monitoring Mode and toneDirection as input to
CCiscoLineDevSpecificStartCallMonitoring. Only silent monitoring mode is supported and the supervisor
cannot talk to the agent.

The Application can specify if a tone should be played when monitoring starts. ToneDirection can be none
(no tone played), local (tone played to Agent only), remote (tone played to Customer and Supervisor), both
local and remote (tone played to agent, customer, and supervisor).

enum PlayToneDirection
{
PlayToneDirection_LocalOnly = 0,
PlayToneDirection_RemoteOnly,
PlayToneDirection_BothLocalAndRemote,
PlayToneDirection_NoLocalOrRemote
};

Monitoring of a call which is in connected state on that line will start if the request is successful. This will
result in a new call between supervisor and agent. However, the call will be automatically answered with
Built-in Bridge (BIB) and agent is not be aware of the call. The call established between supervisor and agent
will be one-way audio call. Supervisor will get the mixed stream of agent and customer voices. The application
can only invoke the monitoring session for a call after it becomes active.

TSP will send LINE_CALLDEVSPECIFIC (SLDSMT_MONITORING_STARTED) event to the agent call
when supervisor starts monitoring the call. TSP will provide monitored party’s call attribute information
(deviceName, DN, Partition) to the monitoring party in DEVSPECIFIC portion of LINECALLINFO after
monitoring has started. Similarly, TSP will provide monitoring party’s call attribute information (deviceName,
DN, Partition) to the monitored party in devspecific data of LINECALLINFO after monitoring has started.

The monitoring session will be terminated when the agent-customer call is ended by either the agent or the
customer. The supervisor can also terminate the monitoring session by dropping the monitoring call.TSP will

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
94

Features Supported by TSP
Silent Install

inform agent by sending LINE_CALLDEVSPECIFIC (SLDSMT_MONITORING_ENDED)when supervisor
drops the call. The event will not be sent if monitoring session has been ended after agent dropped the call.

SIP URL Address
As part of CTI support for phones that are using SIP, TSP will expose SIP URL that is received in Device/Call
event that is received from CTIManager. The SIP URL will get presented for each corresponding party in
extended call information structure of LINE_CALLINFO::dwDevSpecificData.

When a SIP trunk is involved in a call, the DN may not get presented in party information. Application then
needs to consider SIP URL information under this call scenario for information.

TSP will provide SIP URL information to user as part of LINE_CALLINFO::dwDevSpecificData if the
application negotiated extension version greater than or equal to 0x00070000.

CTI phones that are running SIP support the following features or functions:

• Call Initiate

• Call Answer

• Call Close/Disconnect

• Consult Transfer

• Direct Transfer

• Call Join

• Conference

• Hold/unhold

• Line Dial

• Redirect

• lineDevSpecific (SLDST_MSG_WAITING)

• lineDevSpecific (SLDST_MSG_WAITING_DIRN)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
95

Features Supported by TSP
SIP URL Address

Presentation Indication

Change Notification of SuperProvider and CallPark DN
Monitoring Flags

Super Provider
The Super Provider functionality allows a TSP application to control any CTI controllable device in the system
(IP Phones, CTI Ports, CTI Route Points etc). The TSP application has to have an associated list of devices
that it can control. It cannot control any devices that are outside of this list. However, certain applications
would want to control a large number (possibly all) of the CTI controllable devices in the system. Super
Provider enables the administrator to configure a CTI application as a “Super-Provider.” This will mean that
particular application can control absolutely any CTI controllable device in the system.

Previously, the Super Provider functionality was never exposed to TSP apps, that is the TSP application
needed to have the device in the controllable list. In this release, TSP apps can control any CTI controllable
device in the CallManager system. The Super-Provider apps need to explicitly “Acquire” the device before
opening them.

TSP exposes new interfaces to the apps to explicitly Acquire/Deacquire any device in the system. The device
information will be fetched for the explicitly acquired device using the SingleGetInfoFetch API exposed via
QBE by CTI. Later, TSP will fetch the line information for this device using the LineInfoFetch API. The lines
of this device are reported to the app using the LINE_CREATE/PHONE_CREATE events.

The apps can explicitly 'De-Acquire' the device. After the device is successfully de-acquired, TSP will fire
LINE_REMOVE/PHONE_REMOVE events to the apps.

TSP also supports Change Notification of Super-Provider flag. If the administrator has configured a User as
a Super-Provider in the admin pages, then the status of this is changed and the user is no more a Super-Provider,
then CTI will inform the same to TSP in ProviderUserChangedEvent.

If any device had been explicitly acquired and opened in super-provider mode, then TSP will fire
PHONE_REMOVE/LINE_REMOVE to the app indicating that the device/line is no more available for the
app to use.

In this release, TSP supports change notification of CallParkDN Monitoring as well. Say, the user has been
configured to allow monitoring of CallParkDN in the admin pages, now the status of this flag is disabled.
Then TSP will fire LINE_REMOVE for the CallParkDNs.

Say, initially the CallParkDN Monitoring is disabled, now the status is changed to enabled, then TSP will
fetch all the CallParkDNs from CTI and fire LINE_CREATE for each of the CallParkDNs.

SuperProvider
SuperProvider functionality allows a TSP application to control any CTI-controllable device in the system
(IP Phones, CTI Ports, CTI Route Points and so on). Normally, a TSP application must have an associated

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
96

Features Supported by TSP
Presentation Indication

list of devices that it can control. It cannot control any devices that are outside this list; however, certain
applications would want to control a large number (possibly all) the CTI controllable devices in the system.

SuperProvider functionality enables the administrator to configure a CTI application as a SuperProvider. This
will mean that particular application can control absolutely any CTI controllable device in the system.

The SuperProvider functionality never gets exposed to TSP apps; that is, TSP application needed to have the
device in the controllable list. In release 5.1 and later, TSP apps can control any CTI-controllable device in
the Unified CM system.

The SuperProvider apps need to explicitly acquire the device before opening them. TSP exposes new interfaces
to the apps to explicitly Acquire/Deacquire any device in the system. The device information is fetched for
the explicitly acquired device by using the SingleGetInfoFetch API exposed via QBE by CTI. Later, TSP will
fetch the line information for this device by using the LineInfoFetch API. The lines of this device are reported
to the app by using the LINE_CREATE/PHONE_CREATE events.

The apps can explicitly ‘De-Acquire’ the device. After the device is successfully de-acquired, TSP will fire
LINE_REMOVE/PHONE_REMOVE events to the apps.

TSP also supports Change Notification of “Super-Provider” flag. If the administrator has configured a User
as a “Super-Provider” in the Unified CM Administration, the status of this changes and the user no longer
represents a Super-Provider, then CTI will inform TSP in ProviderUserChangedEvent. If any device had been
explicitly acquired and opened in super-provider mode, TSP will fire PHONE_REMOVE/LINE_REMOVE
to the app and indicates that the device/line is no longer available for the app to use.

In release 5.1 and later, TSP supports change notification of CallParkDN Monitoring as well. If the user has
been configured to allow monitoring of CallParkDN in the Unified CM Administration, the status of this flag
is disabled. Then TSP will fire LINE_REMOVE for the CallParkDNs.

If the CallParkDN Monitoring is disabled, the status changes to enabled, TSP fetches all the CallParkDNs
from CTI and fire LINE_CREATE for each of the CallParkDNs.

Support for Cisco Unified IP Phone 6900 and 9900 Series
In this release, CiscoTSP exposes Max Calls, Busy Trigger / Line Label, Line Instance, and Voice Mail Pilot
Number in LineDevCap::DevSpecific interface.

TSP handles new device information -Device IP Address (IPv4 and IPv6) and NewCallRollOver/Consult call
rollover/Join/DT/JAL/DTAL flag. This device information is kept in Device object and exposed through
PhoneDevCap::DevSpecific, and also be exposed to Line App through LineDevCap::DevSpecific.

For NewCallRollOver/Consult call rollover/Join/DT/JAL/DTAL flag, there are two sets of information
representing device setting and application behavior.

TAPI reports any change in the information above through LineDevSpecific event or PhoneDevSpecific event:

• Max Calls

TAPI exposes Max Calls information in MaxCalls field of LineDevCaps::DevSpecific

When the information changes, TSP reports the LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_MAX_CALLS bit on.

• Busy Trigger

TAPI exposes busy trigger information in BusyTrigger field of LineDevCaps::DevSpecific

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
97

Features Supported by TSP
Support for Cisco Unified IP Phone 6900 and 9900 Series

When the information changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_BUSY_TRIGGER bit on.

• Line Instance ID

TAPI exposes Line Instance ID (Line Button number) of the line configured on the device in
LineInstanceNumber of LineDevCaps::DevSpecific

When the information changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_LINE_INSTANCE bit on.

• Line Label

TAPI exposes Label of the line in LineLabelASCII and LineLabelUnicode field of
LineDevCaps::DevSpecific

When the information changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_LINE_LABEL bit on.

• Voice Mail Pilot

TAPI exposes Voice Mail Box Pilot configured on the line in VoiceMailPilotDN field of
LineDevCaps::DevSpecific

When the information changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_VOICEMAIL_PILOT bit on.

• Registered Device IP address and IP address mode

TAPI exposes registered IP Address (IPv4 and IPv6) of the device in RegisteredIPv4Address and
RegisteredIPv6Address fields of PhoneDevCaps::DevSpecific interface as well as in
RegisteredIPv4Address and RegisteredIPv6Address fields of LineDevCaps::DevSpecific interface. Along
with registered IP address, RegisteredIPAddressMode interface indicates whether the device is registered
with IPv4 or IPv6 or IPv4 and IPv6. If the device is unregistered, the RegisteredIPAddressMode has a
value of IPAddress_Unknown. In case of IPAddress_Unknown, the RegisteredIPv4Address and
RegisteredIPv6Address can be used only for reference.

Device IP address applies only to IP phones and CTI Port and RP are not supported.When the information
is changed, TSP reports LineDevSpecific eventwith param1=SLDSMT_LINE_PROPERTY_CHANGED,
param2 has LPCT_DEVICE_IPADDRESS bit on. For phone application, TSP reports PhoneDevSpecific
event with param1 = CPDSMT_PHONE_PROPERTY_CHANGED_EVENT, param2 has
PPCT_DEVICE_IPADDRESS bit on

• New Call Rollover

TAPI exposes the new call rollover information configured on the device in NewCallRollOverEnabled
flag of PhoneDevCaps::DevSpecific interface as well as in NewCallRollOverEnabled flag of
LineDevCaps::DevSpecific interface. There are two sets of flags, one for device and one for application.

When the information is changed, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_NEWCALL_ROLLOVER bit on. For
phone application, TSP reports PhoneDevSpecific event with param1 =
CPDSMT_PHONE_PROPERTY_CHANGED_EVENT, param2 has PPCT_NEWCALL_ROLLOVER
bit on.

• Consult Call Rollover

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
98

Features Supported by TSP
Support for Cisco Unified IP Phone 6900 and 9900 Series

TAPI exposes new call rollover information configured on the device in ConsultCallRollOverEnabled
flag of PhoneDevCaps::DevSpecific interface as well as in ConsultCallRollOverEnabled flag of
LineDevCaps::DevSpecific interface. There are two sets of flags, one for device and one for application.

When the information changes, TSP reports LineDevSpecific event with par am1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2hasLPCT_CONSULTCALL_ROLLOVERbit on.
For phone application, TSP reports PhoneDevSpecific event with param1 =
CPDSMT_PHONE_PROPERTY_CHANGED_EVENT, param2 has
PPCT_CONSULTCALL_ROLLOVER bit on.

• Join On Same Line

TAPI exposes Join On Same Line information configured on the device in JoinOnSameLineEnabled flag
of PhoneDevCaps::DevSpecific interface as well as in JoinOnSameLineEnabled flag of
LineDevCaps::DevSpecific interface. There are two sets of flags, one for device and one for application.

When changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_JOIN_ON_SAME_LINE bit on. For
phone application, TSP reports PhoneDevSpecific event with param1 = CPDSMT_
PHONE_PROPERTY_CHANGED_EVENT, param2 has PPCT_JOIN_ON_SAME_LINE bit on.

• Join Across Line

TAPI exposes Join Across Line information configured on the device in JoinAcrossLineEnabled flag of
PhoneDevCaps::DevSpecific interface as well as in JoinAcrossLineEnabled flag of
LineDevCaps::DevSpecific interface. There are two set of flags, one for device and one for application.

When the information changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_JOIN_ACROSS_LINE bit on. For
phone application, TSP reports PhoneDevSpecific event with param1 = CPDSMT_
PHONE_PROPERTY_CHANGED_EVENT, param2 has PPCT_JOIN_ACROSS_LINE bit on.

• Direct Transfer On Same Line

TAPI exposes Direct Transfer On Same Line information configured on the device in
DirectTransferSameLineEnabled flag of PhoneDevCaps::DevSpecific interface as well as in
DirectTransferSameLineEnabled flag of LineDevCaps::DevSpecific interface. There are two sets of
flags, one for device and one for application.

When the information changes, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED,param2hasLPCT_DIRECTTRANSFER_ON_SAME_LINE
bit on. For phone application, TSP reports PhoneDevSpecific event with param1 =
CPDSMT_PHONE_PROPERTY_CHANGED_EVENT, param2 has
PPCT_DIRECTRANSFER_ON_SAME_LINE bit on.

• Direct Transfer Across Line

TAPI exposes Direct Transfer Across Line information configured on the device in
DirectTransferAcrossLineEnabled flag of PhoneDevCaps::DevSpecific interface as well as in
DirectTransferAcrossLineEnabled flag of LineDevCaps::DevSpecific interface. There are two set of
flags, one for device and one for application.

When the information is changed, TSP reports LineDevSpecific event with param1 =
SLDSMT_LINE_PROPERTY_CHANGED, param2 has LPCT_DIRECTTRANSFER_ACROSS_LINE
bit on. For phone application, TSP reports PhoneDevSpecific event with param1 =
CPDSMT_PHONE_PROPERTY_CHANGED_EVENT, param2 has
PPCT_DIRECTRANSFER_ACROSS_LINE bit on. To receive the

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
99

Features Supported by TSP
Support for Cisco Unified IP Phone 6900 and 9900 Series

PHONE_PROPERTY_CHANGED_EVENT, the application must use
CCiscoPhoneDevSpecificSetStatusMsgs to set the
DEVSPECIFIC_DEVICE_PROPERTY_CHANGED_EVENT bit.

For the change notification event described above, the event is delivered to the application by TAPI layer
only if the line or device is opened (even though CisoTSP sends the event to TAPI layer). If the line or phone
is not opened, the application should call LineGetDevCaps again to obtain latest information about the
line/device. The new extension 0x00090001 must be opened or negotiated for this feature.

Interface Changes

See LINEDEVCAPS, on page 321, Line Property Changed Events, on page 413, and Set StatusMsgs, on page
398.

Message Sequences

See Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases, on page 1035.

Backward Compatibility

This feature is backward compatible. To maintain backward compatibility new extension (0x00090001) is
added.

Support for 100 + Directory Numbers
This feature enables users to have more than 100 Directory Numbers associated with a Device (Phones, CTI
Ports and Route Points). TSP supports this feature and displays the corresponding Lines to the application.

Interface Changes

There are no interface changes.

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Swap and Cancel Softkeys
The following softkeys have been added to the Cisco Unified IP Phone 7900 Series:

• Swap

• Cancel

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
100

Features Supported by TSP
Support for 100 + Directory Numbers

Swap

The Swap softkey can be only be used when you use the Transfer or Conference feature. When you press
Swap, the phone puts the consultative call on hold and resumes the primary call. Swap operation breaks the
internal linkage between the primary and consultative calls, but you can still complete the transfer or conference
operation.

Cancel

When you press Cancel before completing the transfer operation, the TSP receives an event notification from
CTI and cancels any pending transfer or conference requests.

The Swap and Cancel features operate as follows:

• For swap operation, the primary call state is changed to CONNECTED, and the consult call state is
changed to ONHOLD.

• For cancel operation, the primary call state is changed to ONHOLD, and consult call state remains as
CONNECTED.

• To complete the transfer operation after swap or cancel, the application invokes LineCompleteTransfer
or CciscoLineDevSpecificDirectTransfer.

• To complete the conference operation after swap or cancel, the application invokes Cisco Join API –
CCiscoLineDevSpecificJoin.

When using the Swap and Cancel features, the Cisco Unified IP Phones maintain a consulting relationship
between the primary and the consulting calls, on invoking consult transfer or consult conference:

• The Swap operation puts the active call on hold and retrieves the held call.

• The Cancel operation breaks the consulting relationship between the primary and the consulting calls.

When users perform the swap operation, the behavior remains the same while resuming calls and all pending
transfer or conference operation are cancelled. Users can swap or toggle during consultative transfer or
conference transactions, and also swap or toggle between call sessions during the transaction to check the
status of each party.

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Refer and Replace Scenarios, on page 979.

Backward Compatibility

This feature is backward compatible.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
101

Features Supported by TSP
Swap and Cancel Softkeys

Translation Pattern

TSP does not support the translation pattern because it may cause a dangling call in a conference scenario.
The application needs to clear the call to remove this dangling call or simply close and reopen the line.

Warning

Presentation Indication

Change Notification of SuperProvider and CallPark DN
Monitoring Flags

Unicode
Cisco TSP supports unicode character sets. TSP will send unicode party names to the application in all call
events. The party name needs to be configured in Unified Communications Manager Administration. This
support is limited to only party names. The locale information also gets sent to the application. The UCS-2
encoding for unicode gets used.

The party names will exist in the DevSpecific portion of the LINECALLINFO structure. In SIP call scenarios,
where a call comes back into Unified CM from SIP proxy over a SIP trunk, only ASCII name will get passed
because SIP has no way of populating both ASCII and unicode. As the result, the Connected and Redirection
Unicode Name will get reported as empty to application.

Unrestricted Unified CM
Encryption is permanently disabled in Unrestricted Unified Communications Manager. In the current Unified
CommunicationsManager, signaling and media encryption are configurable. Upgrading from the Unrestricted
version to the Restricted version of Unified CommunicationsManager is not supported. Administrator cannot
create a new role with security groups and roles (“Standard CTI Secure Connection” and “Standard CTI Allow
Reception of SRTP Key Material”) as these roles are not available in Unrestricted Unified Communications
Manager.

Upgrade from unrestricted version to the restricted version is not supported.Note

In case of an upgrade from Restricted to Unrestricted Unified Communications Manager, all the security
features are disabled and Standard CTI Secure roles associated with the end user are removed. But the custom
administrative user roles created with the CTI secure privileges mentioned above are not disabled in the
Unified CommunicationsManager database. In such cases, the application can connect to Unrestricted Unified

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
102

Features Supported by TSP
Translation Pattern

CommunicationsManager as a non-secure application because CTIManager filters the information about CTI
secure roles.

Also, after an upgrade from Restricted Unified Communications Manager to Unrestricted Unified
Communications Manager, secure TAPI application cannot connect to Unrestricted Unified Communications
Manager. To connect to the Unrestricted Cisco Unified Communications Manager after an upgrade, the
application must disable secure connection from TSP UI.

If the application tries to register CTI Ports/Route Points as secure endpoints in an Unrestricted Unified
Communications Manager, then the request fails. However, in some scenarios the registration request may
pass, but the device remains closed and failure is reported to the application.

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Unrestricted Unified CM, on page 1062.

Backward Compatibility

This feature is backward compatible.

URI Dialing
Cisco TSP supports dialing using directory URIs as the destination address. Cisco TSP uses the @ symbol to
differentiate between directory URIs and directory numbers. If an @ symbol is present, the dialed address is
a directory URI. Directory URIs can now be returned in the dwDevSpecificData call structure.

URI dialing is also supported for CTI Remote Devices. Remote destinations can be configured with directory
URIs as the remote destination number.

Interface Changes

The following interfaces have changed to support directory URIs:

• lineMakeCall—lpszDestAddress parameter can contain a directory URI

• lineBlindTransfer—lpszDestAddress parameter can contain a directory URI

• lineForward—dwDestAddressOffset in the lineForward structure can now point at a destination address

• lineRedirect—lpszDestAddress parameter can contain a directory URI

Message Sequence Charts

There is no change to the message sequence.

Backwards Compatibility

No backwards compatibility issues.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
103

Features Supported by TSP
URI Dialing

Video On Hold Support
CiscoTSP is enhanced to provide capability for applications to select/Play Video file when call is placed on
Hold. This enhancement was designed for the Remote Expert solution. The newly added contentID is a pass
through from application (TAPI) to CCM. TAPI will not process or manipulate this value. The contentID
references a VoH stream to be played when the call is placed on hold.

The VoH files are housed externally on a media sense server. To have video on hold capability, the video on
hold server must be configured in CCMAdmin. This server coincides to the media sense server which houses
all the VoH files.

NewCCiscoLineDevSpecific extension - "CciscoLineDevSpecificHoldEx" is added to support this capability
for the applications.

Interface Changes

See lineHold Enhancement, on page 391.

Use Cases

See LineHold Enhancement, on page 1064.

Backward Compatibility

There are no backward compatibility issues for this feature.

Whisper Coaching
Silent Call Monitoring is a feature that allows a supervisor to discreetly listen to a conversation between an
agent and a customer without allowing the agent to detect the monitoring session. Whisper Coaching is an
enhancement to the Silent Call Monitoring feature. Whisper Coaching allows supervisors to talk to agents
during a monitoring session. This feature provides applications the ability to change the current monitoring
mode of a monitoring call from Silent Monitoring to Whisper Coaching and vice versa.

If the application opens the line while the whisper coaching session is already in progress, TSP exposes either
the TSPCallAttribute_WhisperCoachingCall or TSPCallAttribute_WhisperCoachingCall_Target bitmap in
the CallAttributeType field of LineCallInfo::DevSpecific. This indicates whether the call is a whisper coaching
call or the target of a whisper coaching call.

Support of this feature consists of the following:

• In the exiting CciscoLineDevSpecificStartCallMonitoringrequest, an m_MonitorMode parameter is
enhanced to support an enumeration for Whisper coaching.

• A new CCiscoLineDevSpecific extension, CciscoLineDevSpecificMonitoringUpdateMode, needs to be
added that allows the application to toggle between the silent monitoring and whisper coaching modes
and vice versa.

• A new LineCallDevSpecific event updates the application stating that the monitoring mode has changed.

• A new field, activeToneDirection, is added in the CallAttributeInfo_ExtA0 structure. This field specifies
the active tone direction that is being played for the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
104

Features Supported by TSP
Video On Hold Support

The behaviors of toneDirection are as follows:

• The existing service parameters for toneDirection are used for both silent and whisper coachingmonitoring
sessions. The service parameters are “Play Monitoring Notification Tone To Observed Target” (for a
local party or an agent) and “Play Monitoring Notification Tone To Observed Connected Parties” (for a
remote party or a customer).

• For CciscoLineDevSpecificStartCallMonitoring (monitoring mode = Silent) or
CciscoLineDevSpecificMonitoringUpdateMode (monitoring mode = Silent), the application specified
toneDirection is used in addition to the toneDirection configured with the service parameters.

• For CciscoLineDevSpecificStartCallMonitoring (monitoring mode = Whisper) or
CciscoLineDevSpecificMonitoringUpdateMode (monitoring mode =Whisper), the application specified
toneDirection for a remote side (customer only) is honored. This feature uses the service parameter that
configured play toneDirection and the application specified toneDirection to play the tone to the remote
side (customer only).

The following table lists effective toneDirection for StartSilentMonitoring/Toggle to SilentMonitoring.

Table 1: Effective ToneDirection for StartSilentMonitoring/Toggle to SilentMonitoring

Observed Target = true

Observed Connected
Parties = true

Observed Target = false

Observed Connected
Parties = true

Observed Target = true

Observed Connected
Parties = false

Observed Target = false

Observed Connected
Parties = false

BothRemote OnlyLocal OnlyNoneAppRequests
toneDirection = None

BothBothLocal OnlyLocal OnlyAppRequests
toneDirection = Local
Only

BothRemote OnlyBothRemote OnlyAppRequests
toneDirection = Remote
Only

BothBothBothBothAppRequests
toneDirection = Both

The following table lists effective toneDirection for Start WhisperCoaching/Toggle to WhisperCoaching.

Table 2: Effective ToneDirection for StartWhisperCoaching/Toggle to WhisperCoaching

Observed Target = true

Observed Connected
Parties = true

Observed Target = false

Observed Connected
Parties = true

Observed Target = true

Observed Connected
Parties = false

Observed Target = false

Observed Connected
Parties = false

Remote OnlyRemote OnlyNoneNoneAppRequests
toneDirection = None

Remote OnlyRemote OnlyNoneNoneAppRequests
toneDirection = Local
Only

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
105

Features Supported by TSP
Whisper Coaching

Observed Target = true

Observed Connected
Parties = true

Observed Target = false

Observed Connected
Parties = true

Observed Target = true

Observed Connected
Parties = false

Observed Target = false

Observed Connected
Parties = false

Remote OnlyRemote OnlyRemote OnlyRemote OnlyAppRequests
toneDirection = Remote
Only

Remote OnlyRemote OnlyRemote OnlyRemote OnlyAppRequests
toneDirection = Both

Due to the fix for CSCsb89374, the behavior for the toggle request using
CciscoLineDevSpecificMonitoringUpdateMode is different between SIP and SCCP phones. When
CciscoLineDevSpecificMonitoringUpdateMode is changed:

• For SCCP phones, no media break is reported
• For SIP phones, a media break is always reported

Consider the following example for toggle:

dwParam1 = 0x30403 represents StartReception
dwParam1 = 0x e0500401 represents StartTransmission
dwParam1 = 0x4 represents StopReception
dwParam1 = 0x2 represents StopTransmission

SCCPSIP

LINE_DEVSPECIFIC

dwParam1 = 0xe0500401

LINE_DEVSPECIFIC

dwParam1 = 0x4

LINE_DEVSPECIFIC

dwParam1 = 0x30403

LINE_DEVSPECIFIC

dwParam1 = 0x e0500401

Toggle from Silent to Whisper

LINE_DEVSPECIFIC

dwParam1 = 0x2

LINE_DEVSPECIFIC

dwParam1 = 0x4

LINE_DEVSPECIFIC

dwParam1 = 0x2

LINE_DEVSPECIFIC

dwParam1 = 0x30403

Toggle from Whisper to Silent

Interface Changes

SeeUpdateMonitorMode, on page 387,MonitorModeUpdate Event, on page 419, Details, on page 332, Details,
on page 332, and Details, on page 332.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
106

Features Supported by TSP
Whisper Coaching

Message Sequences

See Whisper Coaching, on page 1064.

Backward Compatibility

This feature is backward compatible.

XSI Object Pass Through
XSI-enabled IP phones allow applications to directly communicate with the phone and access XSI features,
such as manipulate display, get user input, play tone, and so on. To allow TAPI applications access to the XSI
capabilities without having to set up and maintain an independent connection directly to the phone, TAPI
provides the ability to send the device data through the CTI interface. The system exposes this feature as a
Cisco Unified TSP device-specific extension.

The system only supports the PhoneDevSpecificDataPassthrough request for IP phone devices.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
107

Features Supported by TSP
XSI Object Pass Through

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
108

Features Supported by TSP
XSI Object Pass Through

C H A P T E R 4
Cisco Unified TAPI Installation

This chapter describes how to install and configure the Cisco Unified Telephony Application Programming
Interface (TAPI) client software for Unified Communications Manager.

The upgraded TAPI client software does not work with previous releases of Unified CommunicationsManager.Note

• Required Software, on page 109
• Supported Windows Platforms, on page 109
• Installing the Cisco Unified CM TSP Client, on page 110
• Silent Installation of Cisco Unified CM TSP, on page 121
• Using Cisco TSP, on page 122
• Cisco Unified CM TSP Configuration Settings, on page 124
• Verify the Cisco Unified CM TSP Installation, on page 137
• Managing the Cisco Unified CM TSP, on page 137
• Cisco TSP Behavior on Windows Upgrade, on page 141

Required Software
Cisco TSP requires the following software:

• Unified Communications Manager

• Supported Windows Platforms, on page 109

Supported Windows Platforms
All Windows operating systems support Cisco TAPI. Depending on the type and version of your operating
system, you may need to install a service pack.

For a detailed breakdown of supported Windows platforms for Cisco Unified TAPI, see
https://developer.cisco.com/site/tapi/documents/supported-windows-os/ .

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
109

https://developer.cisco.com/site/tapi/documents/supported-windows-os/

You can install Cisco TSP on a system only where Windows is installed on C:\. If Windows is installed on a
drive other than C:\, an attempt to install Cisco TSP will fail.

Caution

Windows(64-bit) Operating Systems require native 64-bit Cisco TSP client. For more information on
availability, see http://developer.cisco.com/web/tapi/blogroll.

Note

Cisco TSP legacy wave driver is not supported under VMWare.

.

Note

Installing the Cisco Unified CM TSP Client
Download the Cisco TSP client software from the Cisco Unified CM Administration Plug-Ins page. For
information on installing plug-ins, refer to the Unified Communications Manager Administration Guide. The
Cisco TSP client installation wizard varies depending on whether previous versions have been installed.

If you are installing multiple TSPs, multiple copies of CiscoTSPXXX.tsp and CiscoTUISPXXX.dll files will
exist in the same Windows system directory.

Note

To begin installation of the Cisco TSP client from the Cisco Unified CMAdministration, perform the following
steps:

Procedure

1. Download the Cisco Telephony Service Provider plugin from Cisco Unified Communication Manager
Administration > Application > plugins.

2. Save it on the desired Desktop.

3. Double-click Cisco TSP.exe.

4. Follow the online instructions.

Cisco TSP Client Interaction with Windows Services
The Cisco TSP client is tightly coupled with the Microsoft Telephony and QWAVE Services. These services
should not be stopped as it will lead to unexpected and undesirable behaviour of CiscoTSP . By default the
Microsoft Telephony Service is dependent on the Microsoft Remote Connection Manager Service which
cannot be restarted manually. To ensure proper installation of the Cisco TSP client, reboot the computer
following Cisco TSP installation. Cisco also recommends rebooting the computer anytime the Cisco TSP
configuration settings are changed to ensure the Microsoft Telephony Service is updated properly. If the

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
110

Cisco Unified TAPI Installation
Installing the Cisco Unified CM TSP Client

http://developer.cisco.com/web/tapi/blogroll

Microsoft Remote Connection Service is disabled, computer reboot is not required; simply restart theMicrosoft
Telephony Service using the Windows Services Applet for the new settings to take effect.

Installation Setup Screen
Click on Cisco TSP.exe to begin the installation process. Specify the destination folder where the Cisco TSP
files must reside from the Choose Destination Location screen (shown below) and configure the number of
TSP instances desired.
Figure 11: Choose Destination Location Screen

Configure TSP Instance
For each desired TSP Instance, configure the User ID, Password, and CTIManager settings in the Configure
TSP Instance screen shown below. If the required information is not known during the installation, it can be
configured later using the Open Cisco TAPI Configuration icon found in the Programs Menu (available
after the installation).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
111

Cisco Unified TAPI Installation
Installation Setup Screen

Figure 12: Configure TSP Instance Screen

Configure Secure TSP Instance
To configure a secure CTI connection, click the Configure Security button on the desired Configure TSP
Instance. Populate the specified information from the Configure Secure TSP Instance screen as shown below.
Refer to the Unified CommunicationsManager Security Guide for the desired release for additional information
regarding Securing CTI.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
112

Cisco Unified TAPI Installation
Configure Secure TSP Instance

Figure 13: Configure Secure TSP Instance Screen

Cisco Media Driver Selection
Cisco introduced a new media driver in Unified Communications Manager 8.0(1). The TSP client may be
configured to install the Cisco Media Driver or the Cisco Wave Driver. Cisco Media and Wave Drivers are
used with TSP applications that play or record media. Refer to the Installation Guide provided by your vendor
to determine which driver may be required.

Cisco Media Driver settings apply to all configured TSP instances. Cisco Wave Driver settings are instance
specific.

Note

Cisco Media Driver

To install the Cisco Media Driver, select Cisco Media Driver from the installation screen. Set the desired start
and end ports used by CiscoMedia Driver. The port settings are used by all TSP instances. Each media channel
requires 4 ports (1 Channel = 4 ports). Refer to the Installation Guide provided by your application vendor to

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
113

Cisco Unified TAPI Installation
Cisco Media Driver Selection

determine the appropriate port settings. The Media Driver is ready for use after the installation completes and
the computer is rebooted.

Cisco Wave Driver

Select CiscoWave Driver from the installation screen. Complete the TSP installation and reboot the PC. After
the PC has rebooted, complete the installation of the Cisco Wave Driver by performing the following steps.

Cisco Wave Driver for Windows XP, Vista, 2003, 2008
Procedure for Windows XP / Windows Vista / Windows 2003 / Windows 2008

Procedure

Step 1 Open the Control Panel.
Step 2 Open Add Hardware. The Add Hardware Wizard window appears.
Step 3 Click Next.
Step 4 Select Yes, I have already connected the hardware.
Step 5 Select Add a New Hardware Device.
Step 6 Click Next.
Step 7 Select Install the Hardware that I manually select from a list.
Step 8 Click Next.
Step 9 For the hardware type, choose Sound, video and game controller.
Step 10 Click Next.
Step 11 Click Have Disk.
Step 12 Click Browse and navigate to the Wave Drivers folder in the folder where the Cisco Unified Communication

Manager TSP is installed.
Step 13 Choose OEMSETUP.INF and click Open.
Step 14 In the Install From Disk window, click OK.
Step 15 In the Select a Device Driver window, select the Cisco Unified Communication Manager TAPI Wave

Driver and click Next.
Step 16 In the Start Hardware Installation window, click Next.
Step 17 If Prompted for Digital signature Not Found, click Continue Anyway.
Step 18 The installation may issue the following prompt:

The avaudio32.dll file on Windows NT Setup Disk #1 is needed,

Type the path where the file is located and then click OK.

If so, navigate to the same location where you chose OEMSETUP.INF, select avaudio32.dll, and click OK.

Step 19 Click Yes.
Step 20 Click Finish.
Step 21 Click Yes to restart the computer.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
114

Cisco Unified TAPI Installation
Cisco Wave Driver for Windows XP, Vista, 2003, 2008

Cisco Wave Driver for Windows 7
Procedure for Windows 7

Procedure

Step 1 Right clickMy computer and selectManage. The Computer Management window appears.
Step 2 From System Tools, select Device Manager.
Step 3 Right click on the <Computer-Name> and select Install Legacy Wave Driver. This action pops up an Add

Hardware window.
Step 4 Select Install the Hardware that I manually select from a list.
Step 5 Click Next.
Step 6 For the hardware type, choose Sound, video and game controller.
Step 7 Click Next.
Step 8 Click Have Disk.
Step 9 Click Browse and navigate to the Wave Drivers folder in the folder where the Cisco Unified Communication

Manager TSP is installed.
Step 10 Choose OEMSETUP.INF and click Open.
Step 11 In the Install From Disk window, click OK.
Step 12 In the Select a Device Driver window, select the Cisco Unified Communication Manager TAPI Wave

Driver and click Next.
Step 13 In the Start Hardware Installation window, click Next.
Step 14 If Prompted for Digital signature Not Found, click Continue Anyway.
Step 15 The installation may issue the following prompt:

The avaudio32.dll file on Windows NT Setup Disk #1 is needed,

Type the path where the file is located and then click OK.

If so, navigate to the same location where you chose OEMSETUP.INF, select avaudio32.dll, and click OK.

Step 16 Click Yes.
Step 17 Click Finish.
Step 18 Click Yes to restart the computer.

Verifying the Cisco Wave Driver
Use these steps to verify the Cisco Wave Driver when performing install and uninstall operations.

Procedure

Step 1 Click Start > Run.
Step 2 In the text box, enter regedit.
Step 3 Click OK.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
115

Cisco Unified TAPI Installation
Cisco Wave Driver for Windows 7

Step 4 Choose the Drivers32 key that is located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

Step 5 If you are installing the Wave driver, make sure that the driver avaudio32.dll displays in the data column. If
you are uninstalling the Wave driver, make sure that the driver avaudio32.dll does not display in the data
column. This designates the Cisco Wave Driver.

Step 6 Verify that the previously existing Wave values appear in the data column for Wave1, Wave2, Wave3, and
so on. You can compare this registry list to the contents of the .reg file that you saved in the procedure by
opening the .reg file in a text editor and viewing it and the registry window side by side.

Step 7 If necessary, add the appropriate WaveX string values for any missing Wave values that should be installed
on the system. For each missing Wave value, choose Edit > New > String Value and enter a value name.
Then, choose Edit >Modify, enter the value data, and click OK.

Step 8 Close the registry by choosing Registry > Exit.

Configure the CiscoWave Driver settings using the Wave tab in the Cisco TAPI Configuration tool (available
after installation).

AutoUpgrade
The TSP client can be configured to detect and install new client versions automatically when Cisco Unified
CM is upgraded. When set to Always or Ask, the auto-upgrade service requires the login User to have local
Administrative rights to install applications. If the logged-in User is not permitted to install applications, set
Auto-upgrade to Never.

Update Credentials
Cisco TSP 8.0 introduces a new feature that enables the Administrator to allowUsers to update their credentials
(UserID and Password) without requiring the User to have local Administrative rights. When this option is
checked, all Standard Users can update their UserID and Password using the Cisco TAPI Configuration tool.
Configuring all other Cisco TSP options requires local Administrative rights. If the Administrator does not
want to allow Standard Users to update their credentials, leave this unchecked.

Cisco TSP Notifier
Cisco TSP 8.0 introduces a new feature that helps identify connectivity issues between Cisco Unified CM
CTI Manager and the PC where the TSP client has been installed. TSP Notifier is installed automatically and
can be configured to run during Windows start-up. The user must disable UAC to have the notifier run during
startup. TSP Notifier runs as a background application in the system tray.

The Cisco TAPI Notifier can detect the following errors:

• Unified CM TSP Authentication failed -Check UserID and Password

• Unified CM TSP Initialization failed -User not configured in Cisco Unified CM for CTI usage

• Unified CM TSP Initialization error -Check and update Cisco Unified CM TSP version

• Unified CM TSP Version is incompatible with Cisco Unified CM version

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
116

Cisco Unified TAPI Installation
AutoUpgrade

• Unified CM TSP Initialization failed -User not configured in Cisco Unified CM for secure CTI usage

• Unified CM TSP Initialization failed -Cisco Unified CM security configuration does not match with
Unified CM TSP

• Unified CM TSP Initialization failed -Invalid security certificate

• Unified CM TSP Initialization failed -Security certificate compromised

Multi-Language Settings
Populate the TFTP server where locale files have been installed. The locale files are downloaded after the
installation is completed and the PC rebooted. Use the Cisco TAPI Configuration tool to set the desired locale.
Figure 14: Media Driver/AutoUpgrade/TFTP Server IP Address Screen

Installation Completed
The following screen displays when the installation is complete. You must reboot your computer after the
installation. You can refer to the Release Notes for further details.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
117

Cisco Unified TAPI Installation
Multi-Language Settings

Figure 15: InstallShield Wizard Completed Screen

Reinstall or Add a New Instance
If a previous version of the Cisco TSP client is detected and the version of the existing client matches the
installer, the Setup Type screen, shown below, displays with the following options:

• Reinstall—Select this option to reinstall the TSP client. This option will be available only if the same
version of the TSP client is detected.

• Uninstall—Select this option to remove the Cisco TSP from the PC.

• Add TSP Instance—Select this option to add additional TSP instances. The drop-down menu controls
the number of instances to add. The number of instances is limited to 10, so the number of instances that
can be added is limited to the maximum number minus the number of instances already installed. If
additional instances are added, the installer prompts the Configure TSP Instance for all new instances.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
118

Cisco Unified TAPI Installation
Reinstall or Add a New Instance

Figure 16: Setup Type Screen

Upgrading CiscoTSP
If a previous version of the Cisco TSP client is detected and the version of the installer is newer than the one
already installed, the Setup Type screen, shown below, displays with the following options:

• Upgrade—Select this option to upgrade all existing TSP instances and client.

• Uninstall Cisco TSP—Select this option to remove the Cisco TSP from the PC.

• Upgrade and Add a New TSP Instance—Select this option to add additional TSP instances and upgrade
all instances to the newer version. The drop-down menu controls the number of instances to add. The
number of instances is limited to 10, so the number of instances that can be added is limited to the
maximum number minus the number of instances already installed. If additional instances are added, the
installer will prompt Configure TSP Instance for all new instances.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
119

Cisco Unified TAPI Installation
Upgrading CiscoTSP

Figure 17: Setup Type Screen

Downgrade or Uninstall of Cisco TSP
If a previous version of the Cisco TSP client is detected and the version of the installer is older than the one
already installed, the Setup Type screen, shown below, displays with this option:

• Uninstall—Select this option to remove the Cisco TSP from your computer.

Figure 18: Setup Type Screen - Uninstall Option

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
120

Cisco Unified TAPI Installation
Downgrade or Uninstall of Cisco TSP

Silent Installation of Cisco Unified CM TSP
Cisco TSP 8.0 introduces a new Silent Installation feature that allows the Cisco TSP to be remotely installed
usingMicrosoft Group Policy or other remote installation tools. Refer to the list of silent installation parameters
to determine the correct settings based on the desired configuration:

Example 1

New Cisco TSP installation which does not require Cisco Media Driver or Cisco Wave Driver:

USER ID = bob

PASSWORD = cisco123

CTIManager1 = 1.1.1.1

CTI1_TYPE = IPV4

Cisco TSP.exe /s /v"/qn PASS = \"cisco123\" USER = \"bob\" CTI1 = \"1.1.1.1\"
CTI1_TYPE = \"ipv4\""

Example 2

New Cisco TSP installation which requires the Cisco Media Driver:

USER ID = bob

PASSWORD = cisco123

CTIManager1 = 1.1.1.1

CTI1_TYPE = IPV4

DRIVER_TYPE = NEW

MDP_START = 30000

MDP_END = 31000

Cisco TSP.exe /s /v"/qn PASS = \"cisco123\" USER = \"bob\" CTI1 = \"1.1.1.1\"
CTI1_TYPE = \"ipv4\" DRIVER_TYPE = \"NEW\" MDP_START = \"30000\" MDP_END =
\"31000\""

Syntax Format

• No spaces between the parameter and the " = " sign

• "\" is used as an escape character, so \" is needed to indicate a double quote

• If no parameters are used:

• For Silent Install -CiscoTSP.exe /s /v/"qn"

• Silent Upgrade -CiscoTSP.exe /s /v"/qn [REINSTALL = \"ALL\" REBOOT = \"ReallySuppress\"]"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
121

Cisco Unified TAPI Installation
Silent Installation of Cisco Unified CM TSP

• Silent Reinstall -CiscoTSP.exe /s /v"/qn REINSTALL = \"ALL\" REBOOT = \"ReallySuppress\""

See the following table for the list of parameters that can be passed (default):

Table 3: Silent Install Parameters

Valid valuesCommentName

AllUser name used to during provider
initializing

USER

AllPassword used to during provider
initializing

PASS

AllCTIManager 1 IP addressCTI1

AllCTIManager 2 IP addressCTI2

"NO", "YES"Non-admin canmodify the userid/passwordNONAD

"NONE", "IPV4", "IPV6", "HOST"Ipv4, Ipv6, or hostnameCTI1

"NONE", "IPV4", "IPV6", "HOST"None, Ipv4, Ipv6, or hostnameCTI2_TYPE

"ASK", "NEVER", "ALWAYS"Ask, Always, NeverAUTOUPGRADE_TYPE

"WAVE", "MEDIA"Cisco Wave Driver, Cisco Media DriverDRIVER_TYPE

"NO", "YES"Start the TSP Notifier automatically during
login

NOTIFIER

0 -255Number of Legacy Wave Driver PortsNUM_WDP

0 -65535Media Driver Port Start RangeMDP_START

0 -65535Media Driver Port End RangeMDP_END

Upgrading Unified CM TSP Client to Release 8.5(1) Using Silent Installation
After the silent fresh installation or silent upgrade from previous versions of TSP to the 8.5(1) client, the
system must be rebooted for changes to take effect.

In a case where more than one TSP instance is installed, the client UI-based installation package must be used
when upgrading the TSP to maintain the existing configuration settings.

Note

Using Cisco TSP
The following section describes program group and program elements.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
122

Cisco Unified TAPI Installation
Upgrading Unified CM TSP Client to Release 8.5(1) Using Silent Installation

Program Group and Program Elements
There is a new program group called Cisco TAPI created during installation and contains the following
program elements:

• Cisco TAPI Configuration—Displays the configuration tool for all TSP instances. If the logged-in User
has local Administrative rights, then all settings can be changed. If the administrator selects Allow
Standard User to Update Credentials, then the Cisco TAPI Configuration tool only allows the
UserID/Password to be updated.

• Cisco TAPIMedia Driver Configuration—Displays the configuration settings for the CiscoMedia Driver.
The settings apply to all configured TSP instances.

• Launch Cisco TAPI Notifier—Starts the Cisco TSP Notifier tool to help detect communication issues
between Cisco Unified CM and the PC.

• Open Cisco TAPI Media Driver Readme—Displays the Cisco Media Driver Readme file.

• Open Cisco TAPI Readme—Displays the Cisco TSP Readme file.

• Open Cisco TAPI Release Notes—Displays the Cisco TSP Release Notes for the installed version.

• Uninstall Cisco TAPI—Removes Cisco TSP and Cisco Media Driver from the PC. The Cisco Wave
Driver (if installed) must be removed using the Telephony Services applet found in the Control Panel.

After installation is completed, the program group appears as shown below.
Figure 19: Cisco TAPI Menu From MS Windows

Invoking the uninstall of Cisco TAPI the removes both the TSP and the next generation Media Driver (the
old existingWave Driver is NOT removed). It removes the ProgramGroup from theWindows Task Bar along
with all the program elements.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
123

Cisco Unified TAPI Installation
Program Group and Program Elements

Modifying Cisco TSP Configuration
Select Cisco TAPI Configuration from the Cisco TSP Program Group as shown below in the CiscoConfig
dialog.
Figure 20: CiscoConfig Dialog

Cisco Unified CM TSP Configuration Settings
The following sections describe the tabs in the Cisco Unified CM TSP dialog box:

• General, on page 124

• User, on page 125

• CTI Manager, on page 126

• Security, on page 128

• Configuring Cisco Media Driver and Cisco Wave Driver, on page 130

• Trace, on page 133

• Advanced, on page 134

• Language, on page 136

General
The General Tab displays the Cisco TSP version and auto-update settings, as illustrated below.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
124

Cisco Unified TAPI Installation
Modifying Cisco TSP Configuration

Figure 21: Cisco Unified Communications Manager TSP General Tab

The following table lists the General tab fields that must be set and their descriptions.

Table 4: Auto Update Information Fields

DescriptionField

Auto-upgrade service prompts the User to upgrade the TSP client.Ask Before Update

Select this to disable the auto-update service.Never AutoUpdate

Select this to enable automatic updates when new TSP client
versions are detected.

Always AutoUpdate

Select this to allow the Cisco TSP to auto update only when the
local TSP version is incompatible with the Unified CM version.

AutoUpdate on Incompatible QBEProtocolVersion

User
The User tab allows you to set the user name and password, as illustrated in below.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
125

Cisco Unified TAPI Installation
User

Figure 22: Cisco Unified Communications Manager TSP User Tab

The table below describes the fields for the User tab that must be set.

Table 5: User Tab Configuration Fields

DescriptionField

Enter the user name of the user. The TSP instance will access
devices and lines that are associated with this User in Cisco
Unified CM. Make sure that this User is enabled for CTI using
the Cisco Unified CM Administration UI

You can designate only one user name and password
to be active at any time for any one TSP instance.

Note

User Name

Enter the password that is associated with the user. The computer
encrypts the password and stores it in the registry.

Password

Reenter the user password.Verify Password

CTI Manager
The CTIManager tab allows you to configure primary and secondary CTIManager information, as illustrated
in below.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
126

Cisco Unified TAPI Installation
CTI Manager

Figure 23: Cisco Unified Communications Manager TSP CTI Manager Tab

The table below describes the CTI Manager tab fields that must be set.

Table 6: CTI Manager Configuration Fields

DescriptionField

Use this field to specify the CTI Manager to which the TSP
attempts to connect to first. Select any of these options:

• Select IPv4 Address radio button and use the text box to
provide the IPv4 address of the Primary CTI Manager, or

• Use IPv6 Address radio button and use the text box to
provide the IPv6 address, if application needs to connect
using IPv6 with Primary CTIManager, or

• Select the Host Name radio button and enter the host name
of Primary CTI Manager.

Primary CTI Manager Location

Use this field to specify the CTI Manager to which the TSP
attempts to connect to first. Select any of these options:

• Select the IPv4 Address radio button and use the text box to
provide the IPv4 address of the Backup CTI Manager, or

• Select IPv6 Address radio button and use the text box to
provide the IPv6 address of the Backup CTI Manager, or

• Select the Host Name radio button and enter the host name
of the Backup CTI Manager.

Backup CTI Manager Location

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
127

Cisco Unified TAPI Installation
CTI Manager

DescriptionField

Preferred addressing mode with which the application tries to
connect with the CTIManager when IPv4 or IPv6 address is
available.

If the TSP fails to connect, it will retry with the other IP addressing
modes.

IP Addressing Preference

Security
The Security tab allow you to configure the security settings for the selected TSP instance, as illustrated in
below.
Figure 24: Cisco Unified Communications Manager TSP Security Tab

The table below describes the Security tab fields that must be set.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
128

Cisco Unified TAPI Installation
Security

Table 7: Security Tab Configuration Fields

DescriptionField

If selected, TSP will secure the connection with CTIManager.
Default setting is a non-secure connection, so the setting is
unchecked.

It is important that the security flag for the TSP User must be
enabled through the Cisco Unified CM Administration UI.
CTIManager performs a verification to check whether the User
connecting via TLS is allowed to have secure access. CTIManager
allows only security-enabled users to connect using TLS.

The User flag to enable security requires the cluster security to
also be enabled/set, otherwise the connection has to be non-secure.

Secure Connection to CTIManager

Select this option for the Cisco TSP to download certificate files
if they are not already available or installed. This is performed
when the certificate status is Need Update.

This setting is not stored anywhere and is used only to update the
Client certificate when checked and is cleared automatically.

Fetch Certificates

Provide the authentication (authorization) string generated under
the CAPF profile.

To install or upgrade a locally stored certificate, the User must
enter the authentication (authorization) string. This string supports
one-time use only; after you use the string for an instance, you
cannot use it again.

This is required for Client authentication with CAPF Server and
Private Key storage on client machine.

Authorization String

Provide Instance ID for CAPF end User profile:

Each secure connection to CTIManager must have its own
certificate for authentication. With the restriction of a distinct
certificate per connection, CAPF Server must verify that the user
with appropriate AuthCode and InstanceID is requesting the
certificate. CAPF server uses the AuthCode and InstanceID to
verify the User's identity. Once CAPF server provides a certificate
it clears the AuthCode to ensure that only one instance of an
application requests a certificate based on a single AuthCode.
Cisco Unified CM Administration UI allows User configuration
to provide multiple InstanceID and AuthCode.

Instance Identifier

Provide the CAPF server IP address fromwhich to fetch the client
certificate.

IP Address

Provide the CAPF Server Port to connect for Certificate download
(Default :3804).

Port

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
129

Cisco Unified TAPI Installation
Security

DescriptionField

Indicates the number of retries TSP will perform to connect to
the CAPF Server for certificate download in case of an error.

This value is used when a communication failure occurs while
the certificate installation is taking place.

Default value is 0 and range is 0 to 3.

Number of Retries for Certificate Fetch

Indicates the number of seconds the TSP should wait between
re-attempting to retrieve the certificate.

Default value is 0 and range is 0 to 15.

Retry Interval for Certificate Fetch

Indicates the TFTP server IP address fromwhich to fetch the CTL
file. CTL file is required to verify the server certificate, sent while
mutually authenticating the TLS connection.

TFTP IP Address

Configuring Cisco Media Driver and Cisco Wave Driver

Cisco Media Driver

The CiscoMedia Driver configuration can be changed by selecting Configure Cisco TAPI Media Driver from
the Cisco TSP Program Group. The user can choose to use the Cisco Wave Driver or the new Cisco Media
Driver, as show below. When the Cisco Media Driver is selected, the Udp Port Range Start and End settings
appear. The media driver settings are used by all TSP instances. If the Cisco Wave Driver is desired, select
Cisco Wave Driver and refer to Cisco Media Driver Selection, on page 113.
Figure 25: Driver and UDP Port Setting

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
130

Cisco Unified TAPI Installation
Configuring Cisco Media Driver and Cisco Wave Driver

Cisco Wave Driver

The Cisco Wave Media configuration can be changed by selecting Cisco TAPI Configuration from the Cisco
TSP Program Group. Select the desired Instance and click Configure. Choose the Wave tab, see the following
figure, to configure the Wave driver settings for the specified instance.
Figure 26: Cisco Unified Communications Manager TSP Wave Tab

The table below describes the Wave tab fields that must be set.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
131

Cisco Unified TAPI Installation
Configuring Cisco Media Driver and Cisco Wave Driver

Table 8: Wave Tab Configuration Fields

DescriptionField

The number of Cisco Wave devices determines the number of
automated voice lines. (The default value is 5.) The application
can open as many CTI ports as the number of CiscoWave devices
that are configured. For example, if you enter "5," you need to
create five CTI port devices in Cisco Unified Communications
Manager. If you change this number, you need to remove and
then reinstall any Cisco Wave devices which were installed.

A maximum of 255 Wave devices for all installed TSP instances
can be configured. TheWave device limit is specific to Microsoft
TAPI which limits the number of Wave devices per Wave driver
to 255. The Cisco Media Driver does not have this limitation.

When you configure 256 or more Wave devices (including Cisco
or otherWave devices), Windows displays the following message
when you access the Sounds and Multimedia control panel: "An
Error occurred while Windows was working with the Control
Panel file C:\Winnt\System32\MMSYS.CPL."

The current number of possible automated voice lines designates
the maximum number of lines that can be simultaneously opened
by using both LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE.

If you are not developing a third-party call control application,
check the Enumerate only lines that support automated voice
check box, so the Cisco TSP detects only lines that are associated
with a CTI port device.

Automated Voice Calls

If you use silence detection, this check box notifies the Wave
driver to detect silence on lines that support automated voice calls
that are using the Cisco Wave Driver. If the check box is selected
(default), theWave driver searches for the absence of audio-stream
RTP packets. As all devices on the network suppress silence and
stop sending packets, this method provides a very efficient way
for the Wave driver to detect silence.

However, if some phones or gateways do not perform silence
suppression, the Wave driver must analyze the content of the
media stream and, at some threshold, declare that silence is in
effect. This CPU-intensive method handles media streams from
any type of device.

If some phones or gateways on your network do not perform
silence suppression, you must specify the energy level at which
the Wave driver declares that silence is in effect. This value of
the 16-bit linear energy level ranges from 0 to 32767, and the
default value is 200. If all phones and gateways perform silence
suppression, the system ignores this value.

Silence Detection

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
132

Cisco Unified TAPI Installation
Configuring Cisco Media Driver and Cisco Wave Driver

Trace
The Trace tab allows you to configure various trace settings, as illustrated below. Changes to trace parameters
take effect immediately and do not require a computer reboot, even if the TSP is running.
Figure 27: Cisco Unified Communications Manager TSP Trace Tab

The table below describes the Trace tab fields that must be set.

Table 9: Trace Tab Configuration Fields

DescriptionField

This setting allows you to enable Global Cisco TSP trace.

Select the check box to enable Cisco TSP trace.When you enable
trace, you can modify other trace parameters in the dialog box.
The Cisco TSP trace depends on the values that you enter in these
fields.

Clear the check box to disable Cisco TSP trace.When you disable
trace, you cannot choose any trace parameters in the dialog box,
and TSP ignores the values that are entered in these fields.

On

Default file size is 1 MB.File size

Use this field to specify the maximum number of trace files. The
default value is 10. File numbering occurs in a rotating sequence
starting at 0. The counter restarts at 0 after it reaches the maximum
number of files minus one.

No. of files

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
133

Cisco Unified TAPI Installation
Trace

DescriptionField

Use this field to specify the location in which trace files for all
CiscoTSPs are stored.

The system creates a subdirectory for each instance of CiscoTSP.
For example, the CiscoTSP001Log directory stores Cisco TSP 1
log files. The system creates trace files with filename
TSP001Debug000xxx.txt for each TSP in its respective
subdirectory.

Directory

This setting activates internal TSP tracing. When you activate
TSP tracing, Cisco Unified TSP logs internal debug information
that you can use for debugging purposes. You can choose one of
the following levels:

Error—Logs only TSP errors.

Detailed—Logs all TSP details (such as log function calls in the
order that they are called).

The system checks the TSP Trace check box and chooses the
Error radio button by default.

TSP Trace

This setting traces messages that flow between Cisco TSP and
CTIManager. By default, CTI Trace is not selected.

CTI Trace

This setting traces all messages and function calls between
Microsoft TAPI and the Cisco TSP. By default, TSPI Trace is not
selected.

If TSPI Trace is enabled, Cisco TSP traces all the function calls
that Microsoft TAPI makes to the Cisco TSP with parameters and
messages (events) from Cisco TSP to MS TAPI.

TSPI Trace

Advanced
The Advanced tab allows you to configure timer settings, as illustrated in below.

Timer settings should only be changed when necessary and recommended by Cisco Technical Assistance
Center (TAC).

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
134

Cisco Unified TAPI Installation
Advanced

Figure 28: Cisco Unified Communications Manager TSP Advanced Tab

The table below describes the Advanced tab fields that must be set.

Table 10: Advanced Configuration Fields

DescriptionField

Use this field to designate the time that the TSP waits to receive
a response to a synchronous message. The value displays in
seconds, and the default value is 15. Range goes from 5 to 60
seconds.

Synchronous Message Timeout (secs)

Use this field to designate the interval at which the heartbeat
messages are sent from TSP to detect whether the CTI Manager
connection is still alive. TSP sends heartbeats when no traffic
exists between the TSP and CTIManager for 30 seconds or more.
The default interval is 30 seconds. Range goes from 30 to 300
seconds.

Requested Heartbeat Interval (secs)

Use this field to designate the interval between reconnection
attempts after a CTI Manager connection failure. The default
value is 30 seconds. Range goes from 15 to 300 seconds.

Connect Retry Interval (secs)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
135

Cisco Unified TAPI Installation
Advanced

DescriptionField

Use this field to designate the time that Cisco Unified TSP waits
for a Provider Open Completed Event, which indicates the CTI
Manager is initialized and ready to serve TSP requests. Be aware
that CTI initialization time is directly proportional to the number
of devices that are configured in the system. The default value is
50 seconds. Range goes from 5 to 900 seconds.

Provider Open Completed Timeout (secs)

Language
The Language tab displays the installed locales and allows for localization of the client user interface, as
illustrated in below.
Figure 29: Cisco Unified Communications Manager TSP Language Tab

The following table desctribes the Language tab fields.

Table 11: Language Configuration Fields

DescriptionField

Configure the TFTP server IP where the COP files are installed
for the desired Locales.

TFTP Server IP Address

Downloads the locale files from the configured TFTP server and
extracts those files to the resources directory in the client machine

Update Locale Files

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
136

Cisco Unified TAPI Installation
Language

DescriptionField

Choose a language and click this to reload the tabs with the text
in that language.

Change Language

Verify the Cisco Unified CM TSP Installation
Use the Microsoft Windows Phone Dialer Application to verify that the Cisco TSP client has been installed
and is configured correctly. Locate the dialer application by performing a search for dialer.exe.

Procedure

Step 1 Open the Dialer application by locating it in Windows Explorer and double-clicking it
Step 2 Choose Edit > Options.
Step 3 Choose Phone as the Preferred Line for Calling.
Step 4 In the Line Used For area, choose one Cisco Line in the Phone Calls drop-down menu.
Step 5 Click OK.
Step 6 Click Dial.
Step 7 Enter a number to dial, choose Phone Call in the Dial as box, and then click Place Call.

What to do next

If the call is successful, the Cisco TSP client is installed correctly.

If you encounter problems during this procedure, or if no lines appear in the line drop-down list on the dialer
application, check the following items:

• Verify the Cisco TSP configuration settings by opening the Cisco TAPI Configuration tool and verifying
the configured parameters.

• Reboot the computer to ensure all configuration options and installation processes have completed and
are updated successfully.

• Test the network link between the Cisco TSP client machine and Cisco Unified CM by using the ping
command to check connectivity.

• Ensure that the Cisco Unified CM CTIManager is running.

Managing the Cisco Unified CM TSP
You can perform the following actions on all installed TSPs:

• Reinstall the existing Cisco Unified TSP client (same version)

• Upgrade to the newer version of the Cisco TSP client

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
137

Cisco Unified TAPI Installation
Verify the Cisco Unified CM TSP Installation

• Remove Cisco TSP from the Telephone Service Provider List

• Uninstall the Cisco TSP client

• Uninstall the Cisco Wave Driver

Related Topics
Reinstall the Cisco Unified TSP, on page 138
Upgrade the Cisco Unified TSP, on page 138
Remove Cisco Unified TSP From the Provider List, on page 139
Uninstall the Cisco TSP Client, on page 139
Uninstall the Cisco Wave Driver, on page 139
Auto Update for Cisco Unified TSP Upgrades, on page 140

Reinstall the Cisco Unified TSP
Use the following procedure to reinstall the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Open the Control Panel and double-click Add/Remove Programs.
Step 2 Choose Cisco Unified TSP and click Change.

The Cisco Unified TSP maintenance install dialog box displays.

Step 3 Click the Reinstall TSP radio button and click Next.
Step 4 Follow the online instructions.
Step 5 Restart the computer

Upgrade the Cisco Unified TSP
Use the following procedure to upgrade the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Download and save the new TSP client on the target PC and double-click the installer.
Step 2 Select the Upgrade from TSP radio button and click Next.
Step 3 Follow the online instructions.
Step 4 Restart the computer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
138

Cisco Unified TAPI Installation
Reinstall the Cisco Unified TSP

Remove Cisco Unified TSP From the Provider List
This process removes the Cisco TSP from the Microsoft provider list but does not uninstall the TSP client.
To make these changes, perform the following steps.

Procedure

Step 1 Open the Control Panel.
Step 2 Double-click the Phone and Modem icon.
Step 3 Click the Advanced tab.
Step 4 Choose the Cisco Unified TSP that you want to remove.
Step 5 To delete the Cisco Unified TSP from the list, click Remove.

Uninstall the Cisco TSP Client
To remove the Cisco TSP client, choose Uninstall Cisco TAPI from the Cisco TSP Program Group.

Alternatively, use the following procedure to uninstall the Cisco TSP on all supported platforms.

Procedure

Step 1 Open the Control Panel and double-click Add/Remove Programs.
Step 2 Choose the Cisco Unified TSP that you want to remove and click Remove.

The Cisco TSP maintenance install dialog box displays.

Step 3 Select the Uninstall: Remove the installed TSP radio button and click Next.
Step 4 Follow the online instructions.
Step 5 Restart the computer

Uninstall the Cisco Wave Driver
To remove the Cisco Wave Driver, perform one of the following procedures.

Uninstall the Cisco Wave Driver for Windows 2003
To remove the Cisco Wave Driver for Windows 2003, perform the following steps.

Procedure

Step 1 Open the Control Panel.
Step 2 Select Sound and Audio Devices.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
139

Cisco Unified TAPI Installation
Remove Cisco Unified TSP From the Provider List

Step 3 Click the Hardware tab.
Step 4 Select Cisco Unified Communications Manager TSP Wave Driver.
Step 5 Click Properties.
Step 6 Click the Driver tab.
Step 7 Click Uninstall and OK to remove.
Step 8 If the Cisco TAPI Wave Driver entry is still displayed, close and open the window again to verify that it has

been removed.
Step 9 Restart the computer.

Uninstall the Cisco Wave Driver for Windows 2008
To remove the Cisco Wave Driver for Windows 2008, perform the following steps.

Procedure

Step 1 Open the Control Panel.
Step 2 Select Device Manager.
Step 3 Click the Sounds, Video, and Game Controllers tab.
Step 4 Select Cisco Unified Communications Manager TSP Wave Driver.
Step 5 Right click and select Uninstall.
Step 6 Restart the computer.

Auto Update for Cisco Unified TSP Upgrades
Cisco TSP supports an auto update feature, so the latest client is downloaded and installed on the client machine
automatically. When Cisco Unified Communications Manager is upgraded to a higher version and the Cisco
TSP client Auto-Upgrade option is set to Ask or Always, the latest Cisco TSP client will be downloaded to
the computer automatically. If Ask is configured, the user will be prompted to upgrade the client. If Always
is configured, the client will upgrade automatically. The logged-in user must have local Administrative rights
to install applications to use the auto-upgrade feature.

Auto Update Behavior
As part of the Cisco TSP initialization when the application issues lineInitializeEx, Cisco TSP queries the
current TSP client version information that is available from the Cisco Unified CM server running CTIManager.
Cisco TSP compares the installed Cisco TSP version with the client version available on the server. If a newer
version is available and Auto-Upgrade is enabled, the Cisco TSP triggers the auto-update process. As part of
Auto-Upgrade, Cisco TSP behaves in the following ways on different platforms.

After Cisco TSP detects that an upgradeable version is available, Cisco TSP reports 0 lines to the application
and removes the Cisco TSP provider from the provider list. If a new TSP client version is detected during the
reconnect time, the running applications receive LINE_REMOVE for all lines, which are already initialized
and are in an OutOfService state. Cisco TSP silently upgrades to the new version that was downloaded from

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
140

Cisco Unified TAPI Installation
Uninstall the Cisco Wave Driver for Windows 2008

Cisco Unified CM and puts the Cisco TSP provider back on the provider list. All the running applications
receive LINE_CREATE messages.

Windows XP supports multiple user logon sessions (as part of fast user switching), however, the system
supports Auto Upgrade only for the first logged-on User. If multiple User sessions are active, Cisco TSP only
supports the Auto Upgrade functionality for the first logged-on user.

If a User has multiple Cisco TSPs installed on the client machine, the system enables only the first Cisco TSP
instance to set up the Auto Upgrade configuration. All Cisco TSP clients are upgraded to a common version
upon version mismatch. From Control Panel, select Phone & Modem Options>Advanced>Cisco TSP001,
the General window displays the options for Auto Upgrade.

Note

The Cisco TSP client plug-in location can be changed to a different machine other than the Cisco Unified CM
server (if desired). The default location is //<Cisco Unified CM Server IP address or
hostname>//ccmpluginsserver.

If Silent upgrade fails on any listed platforms for any reason, the old Cisco TSP provider(s) do not get put
back on the provider list to avoid any looping of the Auto Upgrade process. Ensure that the update options
are cleared and the providers added to provider list manually. Update the Cisco TSP manually or fix the
issue(s) encountered during Auto Upgrade and reinitialize the Cisco TSP client to re-trigger the Auto Upgrade
process.

TSPAutoinstall.exe requires the Telephony Service LocalSystem logon option to Allow Service to interact
with Desktop. If the logon option is not set as LocalSystem or logon option is LocalSystem but Allow Service
to interact with Desktop is disabled (not selected), then Cisco TSP cannot launch the AutoInstall UI windows
and will not succeed.

Note

In the 8.5(1) release, the above services are not enabled as TSPAutoInstall.exe runs as an independent
background process. Following the installation, upgrade, or reinstall of Cisco TSP, you must disable the User
Account Control before the reboot.

Note

Ensure that the following logon options are set for the telephony service.

1. Logon as: LocalSystem.

2. Enable the check box Allow Service to interact with Desktop.

These telephony service settings, when changed, require manual restart of the service to take effect. If the
Microsoft Remote Connection Manager service is not disabled, reboot the PC for the changes to take effect.

Cisco TSP Behavior on Windows Upgrade
On upgrade of windows to a higher version, for example from Windows 8 to Windows 10, Cisco TSP must
be reinstalled to retain all the previous instances of data present in CiscoTSP Configuration.

Perform the following procedure to reinstall the Cisco Unified TSP.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
141

Cisco Unified TAPI Installation
Cisco TSP Behavior on Windows Upgrade

Reinstall the Cisco Unified TSP, on page 138

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
142

Cisco Unified TAPI Installation
Cisco TSP Behavior on Windows Upgrade

C H A P T E R 5
Basic TAPI Implementation

This chapter outlines the TAPI 2.1 functions, events, and messages that the Cisco Unified TAPI Service
Provider (TSP) supports. This chapter contains functions in the following sections:

• Overview, on page 143
• TAPI Line Functions, on page 143
• TAPI Line Messages, on page 199
• TAPI Line Device Structures, on page 216
• TAPI Phone Functions, on page 274
• TAPI Phone Messages, on page 290
• TAPI Phone Structures, on page 298
• Wave Functions, on page 305

Overview
TAPI comprises a set of classes that expose the functionality of the Cisco Unified Communications Solutions.
TAPI enables developers to create customized IP telephony applications for Unified CommunicationsManager
without specific knowledge of the communication protocols between the Unified Communications Manager
and the service provider. For example, a developer could create a TAPI application that communicates with
an external voice-messaging system.

TAPI Line Functions
The number of TAPI devices that are configured in the Unified Communications Manager determines the
number of available lines. CiscoMedia Driver is used to terminate a media stream in the first-party call control
models.

Table 12: TAPI Line Functions Supported

TAPI line functions supported

lineAccept, on page 146

lineAddProvider, on page 146

lineAddToConference, on page 147

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
143

TAPI line functions supported

lineAnswer, on page 148

lineBlindTransfer, on page 148

lineCallbackFunc, on page 149

lineClose, on page 150

lineCompleteTransfer, on page 150

lineConfigProvider, on page 151

lineDeallocateCall, on page 152

lineDevSpecific, on page 152

lineDevSpecificFeature, on page 154

lineDial, on page 155

lineDrop, on page 156

lineForward, on page 157

lineGenerateDigits, on page 159

lineGenerateTone, on page 160

lineGetAddressCaps, on page 161

lineGetAddressID, on page 162

lineGetAddressStatus, on page 163

lineGetCallInfo, on page 163

lineGetCallStatus, on page 164

lineGetConfRelatedCalls, on page 164

lineGetDevCaps, on page 165

lineGetID, on page 166

lineGetLineDevStatus, on page 167

lineGetMessage, on page 167

lineGetNewCalls, on page 168

lineGetNumRings, on page 169

lineGetProviderList, on page 170

lineGetRequest, on page 171

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
144

Basic TAPI Implementation
TAPI Line Functions

TAPI line functions supported

lineGetStatusMessages, on page 172

lineGetTranslateCaps, on page 172

lineHandoff, on page 173

lineHold, on page 174

lineInitialize, on page 175

lineInitializeEx, on page 176

lineMakeCall, on page 177

lineMonitorDigits, on page 178

lineMonitorTones, on page 178

lineNegotiateAPIVersion, on page 179

lineNegotiateExtVersion, on page 180

lineOpen, on page 181

linePark, on page 182

linePrepareAddToConference, on page 183

lineRedirect, on page 185

lineRegisterRequestRecipient, on page 185

lineRemoveFromConference, on page 186

lineSetAppPriority, on page 188

lineSetCallPrivilege, on page 189

lineSetNumRings, on page 190

lineSetStatusMessages, on page 191

lineSetTollList, on page 192

lineSetupConference, on page 193

lineSetupTransfer, on page 194

lineShutdown, on page 194

lineTranslateAddress, on page 195

lineTranslateDialog, on page 196

lineUnhold, on page 198

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
145

Basic TAPI Implementation
TAPI Line Functions

TAPI line functions supported

lineUnpark, on page 198

lineAccept
The lineAccept function accepts the specified offered call.

Function Details

LONG lineAccept(HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize
);

Parameters

hCall

A handle to the call to be accepted. The application must be an owner of the call. Call state of hCall must
be offering.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the call
accept. Leave this pointer NULL if you do not want to send user-user information. User-user information
is sent only if supported by the underlying network. The protocol discriminator member for the user-user
information, if required, should appear as the first byte of the buffer that is pointed to by lpsUserUserInfo
and must be accounted for in dwSize.

The Cisco Unified TSP does not support user-user information.Note

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineAddProvider
The lineAddProvider function installs a new telephony service provider into the telephony system.

Function Details

LONG WINAPI lineAddProvider(LPCSTR lpszProviderFilename,
HWND hwndOwner,
LPDWORD lpdwPermanentProviderID

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
146

Basic TAPI Implementation
lineAccept

Parameters

lpszProviderFilename

A pointer to a null-terminated string that contains the path of the service provider to be added.

hwndOwner

A handle to a window in which dialog boxes that need to be displayed as part of the installation process
(for example, by the service provider's TSPI_providerInstall function) would be attached. Can be NULL
to indicate that any window created during the function should have no owner window.

lpdwPermanentProviderID

A pointer to a DWORD-sizedmemory location into which TAPI writes the permanent provider identifier
of the newly installed service provider.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values are:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_NOMULTIPLEINSTANCE

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

lineAddToConference
This function takes the consult call that is specified by hConsultCall and adds it to the conference call that is
specified by hConfCall.

Function Details

LONG lineAddToConference(HCALL hConfCall,
HCALL hConsultCall

);

Parameters

hConfCall

A pointer to the conference call handle. The state of the conference call must be
OnHoldPendingConference or OnHold.

hConsultCall

A pointer to the consult call that will be added to the conference call. The application must be the owner
of this call, and it cannot be a member of another conference call. The allowed states of the consult call
comprise connected, onHold, proceeding, or ringback

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
147

Basic TAPI Implementation
lineAddToConference

lineAnswer
The lineAnswer function answers the specified offering call.

CallProcessing requires previous calls on the device to be in connected call state before answering further
calls on the same device. If calls are answered without checking for the call state of previous calls on the same
device, then Cisco Unified TSPmight return a successful answer response but the call will not go to connected
state and needs to be answered again.

Note

Function Details

LONG lineAnswer(HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

);

Parameters

hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of hCall
must be offering or accepted.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party at the time the call
is answered. You can leave this pointer NULL if no user-user information will be sent.

User-user information only gets sent if supported by the underlying network. The protocol discriminator
field for the user-user information, if required, should be the first byte of the buffer that is pointed to by
lpsUserUserInfo and must be accounted for in dwSize.

The Cisco Unified TSP does not support user-user information.Note

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineBlindTransfer
The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the specified
destination address.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
148

Basic TAPI Implementation
lineAnswer

The lineBlindTransfer function that is implemented until Cisco Unified TSP 3.3 does not comply with the
TAPI specification. This function actually gets implemented as a consultation transfer and not a single-step
transfer. FromCisco Unified TSP 4.0, the lineBlindTransfer complies with the TAPI specs wherein the transfer
is a single-step transfer.

Note

If the application tries to blind transfer a call to an address that requires a FAC, CMC, or both, then the
lineBlindTransfer function will return an error. If a FAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If a CMC is required, the TSPwill return the error LINEERR_CMCREQUIRED.
If both a FAC and a CMC are required, the TSP will return the error LINEERR_FACANDCMCREQUIRED.
An application that wants to blind transfer a call to an address that requires a FAC, CMC, or both, should use
the lineDevSpecific -BlindTransferFACCMC function.

Function Details

LONG lineBlindTransfer(HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be connected.

lpszDestAddress

A pointer to a NULL-terminated string that identifies the location to which the call is to be transferred.
The destination address uses the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this parameter to select the call progress
protocols for the destination address. If a value of 0 is specified, the defined default call-progress protocol
is used.

lineCallbackFunc
The lineCallbackFunc function provides a placeholder for the application-supplied function name.

Function Details

VOID FAR PASCAL lineCallbackFunc(DWORD hDevice,
DWORD dwMsg,
DWORD dwCallbackInstance,
DWORD dwParam1,
DWORD dwParam2,
DWORD dwParam3

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
149

Basic TAPI Implementation
lineCallbackFunc

Parameters

hDevice

A handle to either a line device or a call that is associated with the callback. The context that dwMsg
provides determines the nature of this handle (line handle or call handle). Applications must use the
DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed back to the application in the callback. TAPI does not interpret
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For information about parameter values that are passed to this function, see TAPI Line Functions, on page
143.

lineClose
The lineClose function closes the specified open line device.

Function Details

LONG lineClose(HLINE hLine
);

Parameter

hLine

A handle to the open line device to be closed. After the line has been successfully closed, this handle no longer
remains valid.

lineCompleteTransfer
The lineCompleteTransfer function completes the transfer of the specified call to the party that is connected
in the consultation call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
150

Basic TAPI Implementation
lineClose

Function Details

LONG lineCompleteTransfer(HCALL hCall,
HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application must
be comprise an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or
proceeding.

lphConfCall

A pointer to a memory location where an hCall handle can be returned. If dwTransferMode is
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in lphConfCall
and the application becomes the sole owner of the conference call. Otherwise, TAPI ignores this parameter.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE_constant:

• LINETRANSFERMODE_TRANSFER—Resolve the initiated transfer by transferring the initial
call to the consultation call.

• LINETRANSFERMODE_CONFERENCE—The transfer gets resolved by establishing a three-way
conference among the application, the party connected to the initial call, and the party connected
to the consultation call. Selecting this option creates a conference call.

lineConfigProvider
The lineConfigProvider function causes a service provider to display its configuration dialog box. This basically
provides a straight pass-through to TSPI_providerConfig.

Function Details

LONG WINAPI lineConfigProvider(HWND hwndOwner,
DWORD dwPermanentProviderID

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
151

Basic TAPI Implementation
lineConfigProvider

Parameters

hwndOwner

A handle to a window to which the configuration dialog box (displayed by TSPI_providerConfig) is
attached. This parameter can equal NULL to indicate that any window that is created during the function
should have no owner window.

dwPermanentProviderID

The permanent provider identifier of the service provider to be configured.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_OPERATIONFAILED

lineDeallocateCall
The lineDeallocateCall function deallocates the specified call handle.

Function Details

LONG lineDeallocateCall(HCALL hCall
);

Parameter

hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always deallocate
its handle for that call. An application with owner privilege for a call can deallocate its handle unless it is the
sole owner of the call and the call is not in the idle state. The call handle is invalid after it is deallocated.

lineDevSpecific
The lineDevSpecific function enables service providers to provide access to features that other TAPI functions
do not offer. The extensions are device-specific and the applications must be able to read the extensions to
take advantage of these extensions.

When used with the Cisco Unified TSP, lineDevSpecific can be used to:

• Enable the message waiting lamp for a particular line.

• Handle the audio stream (instead of using the provided Cisco wave driver).

• Turn On or Off the reporting of media streaming messages for a particular line.

• Register a CTI port or route point for dynamic media termination.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
152

Basic TAPI Implementation
lineDeallocateCall

• Set the IP address and the UDP port of a call at a CTI port or route point with dynamic media termination.

• Redirect a Call and Reset the OriginalCalledID of the call to the party that is the destination of the redirect.

• Redirect a call and set the OriginalCalledID of the call to any party.

• Join two or more calls into one conference call.

• Redirect a Call to a destination that requires a FAC, CMC, or both.

• Blind Transfer a Call to a destination that requires a FAC, CMC, or both.

• Open a CTI port in third party mode.

• Set the SRTP algorithm IDs that a CTI port supports.

• Acquire any CTI-controllable device in the Cisco Unified Communications Manager system, which
needs to be opened in super provider mode.

• Deacquire any CTI-controllable device in the Cisco Unified Communications Manager system.

• Trigger the actual line open from the TSP side. This is used for the delayed open mechanism.

• Initiate TalkBack on the Intercom Whisper call of the Intercom line

• Query SpeedDial and Label setting of a Intercom line.

• Set SpeedDial and Label setting of a Intercom line.

• Start monitoring a call

• Start recording of a call

• Stop recording of a call

• Direct call with feature priority (see Secure Conference, on page 87 for more information.

• Transfer without media

• Direct Transfer

• Message Summary

• Register call pickup group for notification
• Unregister call pickup group for notification
• Call pickup request
• Start send media to BIB
• Stop send media to BIB
• Agent zip tone
• Enable feature
• Add remote destination
• Remove remote destination
• Update remote destination
• Hold enhancement

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
153

Basic TAPI Implementation
lineDevSpecific

In Cisco Unified TSP Releases 4.0 and later, the TSP no longer supports the ability to perform a
SwapHold/SetupTransfer on two calls on a line in the CONNECTED and the ONHOLD call states. Therefore,
these calls can be transferred by using lineCompleteTransfer. Cisco Unified TSP Releases 4.0 and later enable
to transfer these calls using the lineCompleteTransfer function without having to perform the
SwapHold/SetupTransfer beforehand.

Note

Function Details

LONG lineDevSpecific(HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
LPVOID lpParams,
DWORD dwSize

);

Parameters

hLine

A handle to a line device. This parameter is required.

dwAddressID

An address identifier on the given line device.

hCall

A handle to a call. Although this parameter is optional, if it is specified, the call that it represents must
belong to the hLine line device. The call state of hCall is device specific.

lpParams

A pointer to a memory area that is used to hold a parameter block. The format of this parameter block
specifies device specific, and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

lineDevSpecificFeature
The lineDevSpecificFeature function enables service providers to provide access to features that other TAPI
functions do not offer. The extensions are device-specific and the applications must be able to read the
extensions to take advantage of these extensions. When used with the Cisco TSP, lineDevSpecificFeature can
be used to enable/disable Do-Not-Disturb feature on a device.

Function Details

LONG lineDevSpecificFeature(HLINE hLine,
DWORD dwFeature,
LPVOID lpParams,
DWORD dwSize
);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
154

Basic TAPI Implementation
lineDevSpecificFeature

Parameters

hLine

A handle to a line device. This parameter is required.

dwFeature

Feature to invoke on the line device. This parameter uses the PHONEBUTTONFUNCTION_TAPI
constants. When used with the Cisco TSP, the only value that is considered valid is
PHONEBUTTONFUNCTION_DONOTDISTURB (0x0000001A).

lpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device-specific and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

Return Values

Returns a positive request identifier if the function is completed asynchronously or a negative number if an
error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if the function
succeeds or it is a negative number if an error occurs.

Possible return values follow:

• LINEERR_INVALFEATURE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED.

Error Codes

The following new error can be returned by Cisco TSP for Do-Not-Disturb feature:

LINERR_ALREADY_IN_REQUESTED_STATE 0xC0000009

lineDial
The lineDial function dials the specified number on the specified call.

The application can use this function to enter a FAC or CMC. The FAC or CMC can be entered one digit at
a time or multiple digits at a time. The application may also enter both the FAC and CMC if required in one
lineDial() request as long as the FAC and CMC are separated by a “#” character. If sending both a FAC and

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
155

Basic TAPI Implementation
lineDial

CMC in one lineDial() request, Cisco recommends that you terminate the lpszDestAddress with a “#” character
to avoid waiting for the T.302 interdigit time-out.

You cannot use this function to enter a dial string along with a FAC and/or a CMC. You must enter the FAC
and/or CMC in a separate lineDial request.

Function Details

LONG lineDial(HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call on which a number is to be dialed. Ensure the application is an owner of the call.
The call state of hCall can be any state except idle and disconnected.

lpszDestAddress

The destination to be dialed by using the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this code to select the call progress protocols
for the destination address. If a value of 0 is specified, the default call progress protocol is used.

lineDrop
The lineDrop function drops or disconnects the specified call. The application can specify user-user information
to be transmitted as part of the call disconnect.

Function Details

LONG lineDrop(HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

);

Parameters

hCall

A handle to the call to be dropped. Ensure the application is an owner of the call. The call state of hCall
can be any state except an Idle state.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the call
disconnect. You can leave this pointer NULL if no user-user information is to be sent. User-user
information is sent only if it is supported by the underlying network. The protocol discriminator field
for the user-user information, if required, should appear as the first byte of the buffer that is pointed to
by lpsUserUserInfo and must be accounted for in dwSize.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
156

Basic TAPI Implementation
lineDrop

The Cisco Unified TSP does not support user-user information.Note

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineForward
The lineForward function forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions.When an originating address (dwAddressID) is forwarded,
the switch deflects the specified incoming calls for that address to the other number. This function provides
a combination of forward all feature. This API allows calls to be forwarded unconditionally to a forwarded
destination. This function can also cancel forwarding that is currently in effect.

To indicate that the forward is set/reset, upon completion of lineForward, TAPI fires LINEADDRESSSTATE
events that indicate the change in the line forward status.

Change forward destination with a call to lineForward without canceling the current forwarding set on that
line.

lineForward implementation of Cisco Unified TSP allows user to set up only one type for forward as
dwForwardMode = UNCOND. The lpLineForwardList data structure accepts LINEFORWARD entry with
dwForwardMode = UNCOND.

Note

Function Details

LONG lineForward(HLINE hLine,
DWORD bAllAddresses,
DWORD dwAddressID,
LPLINEFORWARDLIST const lpForwardList,
DWORD dwNumRingsNoAnswer,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

);

Parameters

hLine

A handle to the line device.

bAllAddresses

Specifies whether all originating addresses on the line or just the one that is specified gets forwarded. If
TRUE, all addresses on the line get forwarded, and dwAddressID is ignored; if FALSE, only the address
that is specified as dwAddressID gets forwarded.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
157

Basic TAPI Implementation
lineForward

dwAddressID

The address of the specified line whose incoming calls are to be forwarded. This parameter gets ignored
if bAllAddresses is TRUE.

If bAllAddresses is FALSE, dwAddressID must equal 0.Note

lpForwardList

A pointer to a variably sized data structure that describes the specific forwarding instructions of type
LINEFORWARDLIST.

To cancel the forwarding that currently is in effect, ensure lpForwardList Parameter is set to NULL.Note

dwNumRingsNoAnswer

The number of rings before a call is considered a no answer. If dwNumRingsNoAnswer is out of range,
the actual value gets set to the nearest value in the allowable range.

This parameter is not used because this version of Cisco Unified TSP does not support call forward no
answer.

Note

lphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a handle
to a consultation call that is used to consult the party to which the call is being forwarded, and the
application becomes the initial sole owner of this call. This pointer must be valid even in environments
where call forwarding does not require a consultation call. This handle is set to NULL if no consultation
call is created.

This parameter is also ignored because a consult call is not created for setting up lineForward.Note

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer gets ignored unless lineForward
requires the establishment of a call to the forwarding destination (and lphConsultCall is returned; in
which case, lpCallParams is optional). If NULL, default call parameters get used. Otherwise, the specified
call parameters get used for establishing hConsultCall.

This parameter must be NULL for this version of Cisco Unified TSP because we do not create a consult
call.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
158

Basic TAPI Implementation
lineForward

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCOUNTRYCODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPARAM

• LINEERR_UNINITIALIZED

For lpForwardList[0].dwForwardMode other than UNCOND, lineForward returns
LINEERR_OPERATIONUNAVAIL. For lpForwardList.dwNumEntries more than 1, lineForward returns
LINEERR_INVALPARAM

Note

lineGenerateDigits
The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
out-of-band tones by using the specified signaling mode.

The Cisco Unified TSP supports neither invoking this function with a NULL value for lpszDigits to abort a
digit generation that is currently in progress nor invoking lineGenerateDigits while digit generation is in
progress. Cisco Unified IP Phones pass DTMF digits out of band. This means that the tone is not injected into
the audio stream (in-band) but is sent as a message in the control stream. The phone on the far end then injects
the tone into the audio stream to present it to the user. CTI port devices do not inject DTMF tones. Also, be
aware that some gateways will not inject DTMF tones into the audio stream on the way out of the LAN.

Note

Function Details

LONG lineGenerateDigits(HCALL hCall,
DWORD dwDigitMode,
LPCSTR lpszDigits,
DWORD dwDuration

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
159

Basic TAPI Implementation
lineGenerateDigits

Parameters

hCall

A handle to the call. The application must be an owner of the call. Call state of hCall can be any state.

dwDigitMode

The format to be used for signaling these digits. The dwDigitMode can have only a single flag set. This
parameter uses the following LINEDIGITMODE_constant:

• LINEDIGITMODE_DTMF -Uses DTMF tones for digit signaling. Valid digits for DTMF mode
include ‘0’ -‘9’, ‘*’, ‘#’.

lpszDigits

Valid characters for DTMF mode in the Cisco Unified TSP include ‘0’ through ‘9’, ‘*’, and ‘#’.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Cisco Unified TSP does not support dwDuration.Note

lineGenerateTone
The lineGenerateTone function generates the specified tone over the specified call.

The Cisco Unified TSP supports neither invoking this function with a 0 value for dwToneMode to abort a
tone generation that is currently in progress nor invoking lineGenerateTone while tone generation is in progress.
Cisco Unified IP Phones pass tones out of band. This means that the tone is not injected into the audio stream
(in-band) but is sent as a message in the control stream. The phone on the far end then injects the tone into
the audio stream to present it to the user. Also, be aware that some gateways will not inject tones into the
audio stream on the way out of the LAN.

Note

Function Details

LONG lineGenerateTone(HCALL hCall,
DWORD dwToneMode,
DWORD dwDuration,
DWORD dwNumTones,
LPLINEGENERATETONE const lpTones

);

Parameters

hCall

A handle to the call on which a tone is to be generated. The application must be an owner of the call.
The call state of hCall can be any state.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
160

Basic TAPI Implementation
lineGenerateTone

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom tones. A custom tone comprises
a set of arbitrary frequencies. A small number of standard tones are predefined. The duration of the tone
gets specified with dwDuration for both standard and custom tones. The dwToneMode parameter can
have only one bit set. If no bits are set (the value 0 is passed), tone generation gets canceled.

This parameter uses the following LINETONEMODE_constant:

• LINETONEMODE_BEEP -The tone is a beep, as used to announce the beginning of a recording.
The service provider defines the exact beep tone.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Cisco Unified TSP does not support dwDuration.Note

dwNumTones

The number of entries in the lpTones array. This parameter is ignored if dwToneMode ≠ CUSTOM.

lpTones

A pointer to a LINEGENERATETONE array that specifies the components of the tone. This parameter
gets ignored for non-custom tones. If lpTones is a multifrequency tone, the various tones play
simultaneously.

lineGetAddressCaps
The lineGetAddressCaps function queries the specified address on the specified line device to determine its
telephony capabilities.

Function Details

LONG lineGetAddressCaps(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAddressID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEADDRESSCAPS lpAddressCaps

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device that contains the address to be queried. Only one address gets supported per line, so
dwAddressID must be zero.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
161

Basic TAPI Implementation
lineGetAddressCaps

dwAddressID

The address on the given line device whose capabilities are to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API that is to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.

dwExtVersion

The version number of the extensions to be used. This number can be left zero if no device-specific
extensions are to be used. Otherwise, the high-order word contains the major version number and the
low-order word contains the minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion of
the request, this structure gets filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotalSize member of this structure to indicate the
amount of memory that is available to TAPI for returning information.

lineGetAddressID
The lineGetAddressID function returns the address identifier that is associated with an address in a different
format on the specified line.

Function Details

LONG lineGetAddressID(HLINE hLine,
LPDWORD lpdwAddressID,
DWORD dwAddressMode,
LPCSTR lpsAddress,
DWORD dwSize

);

Parameters

hLine

A handle to the open line device.

lpdwAddressID

A pointer to a DWORD-sized memory location that returns the address identifier.

dwAddressMode

The address mode of the address that is contained in lpsAddress. The dwAddressMode parameter can
have only a single flag set. This parameter uses the following LINEADDRESSMODE_constant:

• LINEADDRESSMODE_DIALABLEADDR -The address is specified by its dialable address. The
lpsAddress parameter represents the dialable address or canonical address format.

lpsAddress

A pointer to a data structure that holds the address that is assigned to the specified line device.
dwAddressMode determines the format of the address. Because the only valid value equals

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
162

Basic TAPI Implementation
lineGetAddressID

LINEADDRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable number format and
is NULL-terminated.

dwSize

The size of the address that is contained in lpsAddress.

lineGetAddressStatus
The lineGetAddressStatus function allows an application to query the specified address for its current status.

Function Details

LONG lineGetAddressStatus(HLINE hLine,
DWORD dwAddressID,
LPLINEADDRESSSTATUS lpAddressStatus

);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the given open line device. This parameter specifies the address to be queried.

lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

lineGetCallInfo
The lineGetCallInfo function enables an application to obtain fixed information about the specified call.

Function Details

LONG lineGetCallInfo(HCALL hCall,
LPLINECALLINFO lpCallInfo

);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion of
the request, call-related information fills this structure. Prior to calling lineGetCallInfo, the application

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
163

Basic TAPI Implementation
lineGetAddressStatus

should set the dwTotalSize member of this structure to indicate the amount of memory that is available
to TAPI for returning information.

lineGetCallStatus
The lineGetCallStatus function returns the current status of the specified call.

Function Details

LONG lineGetCallStatus(HCALL hCall,
LPLINECALLSTATUS lpCallStatus

);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful completion
of the request, call status information fills this structure. Prior to calling lineGetCallStatus, the application
should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI
for returning information.

lineGetConfRelatedCalls
The lineGetConfRelatedCalls function returns a list of call handles that are part of the same conference call
as the specified call. The specified call represents either a conference call or a participant call in a conference
call. New handles get generated for those calls for which the application does not already have handles, and
the application receives monitor privilege to those calls.

Function Details

LONG WINAPI lineGetConfRelatedCalls(HCALL hCall,
LPLINECALLLIST lpCallList

);

Parameters

hCall

A handle to a call. This represents either a conference call or a participant call in a conference call. For
a conference parent call, the call state of hCall can be any state. For a conference participant call, it must
be in the conferenced state.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of the
request, call handles to all calls in the conference call return in this structure. The first call in the list
represents the conference call, the other calls represent the participant calls. The application receives
monitor privilege to those calls for which it does not already have handles; the privileges to calls in the

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
164

Basic TAPI Implementation
lineGetCallStatus

list for which the application already has handles remains unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_NOCONFERENCE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineGetDevCaps
The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information applies for all addresses on the line device.

Function Details

LONG lineGetDevCaps(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEDEVCAPS lpLineDevCaps

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order word
contains the major version number; the low-order word contains the minor version number.

dwExtVersion

The version number, obtained by lineNegotiateExtVersion, of the extensions to be used. It can be zero
if no device-specific extensions are to be used. Otherwise, the high-order word contains the major version
number; the low-order word contains the minor version number.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
165

Basic TAPI Implementation
lineGetDevCaps

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the
request, this structure gets filled with line device capabilities information. Prior to calling lineGetDevCaps,
the application should set the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

lineGetID
The lineGetID function returns a device identifier for the specified device class that is associated with the
selected line, address, or call.

Function Details

LONG lineGetID(HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
DWORD dwSelect,
LPVARSTRING lpDeviceID,
LPCSTR lpszDeviceClass

);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device.

hCall

A handle to a call.

dwSelect

Specifies whether the requested device identifier is associated with the line, address or a single call. The
dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT_constants:

• LINECALLSELECT_LINE Selects the specified line device. The hLine parameter must be a valid
line handle; hCall and dwAddressID are ignored.

• LINECALLSELECT_ADDRESS Selects the specified address on the line. Both hLine and
dwAddressID must be valid; hCall is ignored.

• LINECALLSELECT_CALLSelects the specified call. hCall must be valid; hLine and dwAddressID
are both ignored.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device identifier is returned. Upon
successful completion of the request, the device identifier fills this location. The format of the returned
information depends on the method that the device class API uses for naming devices. Before calling

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
166

Basic TAPI Implementation
lineGetID

lineGetID, the application must set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose identifier
is requested. Device classes include wave/in, wave/out and tapi/line.

Valid device class strings are those that are used in the SYSTEM.INI section to identify device classes.

lineGetLineDevStatus
The lineGetLineDevStatus function enables an application to query the specified open line device for its
current status.

Function Details

LONG lineGetLineDevStatus(HLINE hLine,
LPLINEDEVSTATUS lpLineDevStatus

);

Parameters

hLine

A handle to the open line device to be queried.

lpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion of
the request, the device status of the line fills this structure. Prior to calling lineGetLineDevStatus, the
application should set the dwTotalSize member of this structure to indicate the amount of memory that
is available to TAPI for returning information.

lineGetMessage
The lineGetMessage function returns the next TAPI message that is queued for delivery to an application that
is using the Event Handle notification mechanism (see lineInitializeEx, on page 176 for more information).

Function Details

LONG WINAPI lineGetMessage(HLINEAPP hLineApp,
LPLINEMESSAGE lpMessage,
DWORD dwTimeout

);

Parameters

hLineApp

The handle that lineInitializeEx returns. Ensure that the application has set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
167

Basic TAPI Implementation
lineGetLineDevStatus

lpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure contains
the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns immediately.
If dwTimeout is INFINITE, the function time-out interval never elapses.

Return Values

Returns zero if the request succeeds or returns a negative number if an error occurs. Possible return values
follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_NOMEM

lineGetNewCalls
The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application receives monitor privilege for these calls.

An application can use lineGetNewCalls to obtain handles to calls for which it currently has no handles. The
application can select the calls for which handles are to be returned by basing this selection on scope (calls
on a specified line, or calls on a specified address). For example, an application can request call handles to
all calls on a given address for which it currently has no handle.

Function Details

LONG WINAPI lineGetNewCalls(HLINE hLine,
DWORD dwAddressID,
DWORD dwSelect,
LPLINECALLLIST lpCallList

);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device. An address identifier permanently associates with an address;
the identifier remains constant across operating system upgrades.

dwSelect

The selection of calls that are requested. This parameter uses one and only one of the
LINECALLSELECT_Constants.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
168

Basic TAPI Implementation
lineGetNewCalls

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of the
request, call handles to all selected calls get returned in this structure. Prior to calling lineGetNewCalls,
the application should set the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSELECT

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALLINEHANDLE

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPOINTER

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineGetNumRings
The lineGetNumRings function determines the number of rings that an incoming call on the given address
should ring before the call is answered.

Function Details

LONG WINAPI lineGetNumRings(HLINE hLine,
DWORD dwAddressID,
LPDWORD lpdwNumRings

);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the identifier
remains constant across operating system upgrades.

lpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings requests.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
169

Basic TAPI Implementation
lineGetNumRings

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALLINEHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineGetProviderList
The lineGetProviderList function returns a list of service providers that are currently installed in the telephony
system.

Function Details

LONG WINAPI lineGetProviderList(DWORD dwAPIVersion,
LPLINEPROVIDERLIST lpProviderList

);

Parameters

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpProviderList

A pointer to a memory location where TAPI can return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NOMEM

• LINEERR_INIFILECORRUPT

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
170

Basic TAPI Implementation
lineGetProviderList

lineGetRequest
The lineGetRequest function retrieves the next by-proxy request for the specified request mode.

Function Details

LONG WINAPI lineGetRequest(HLINEAPP hLineApp,
DWORD dwRequestMode,
LPVOID lpRequestBuffer

);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRequestMode

The type of request that is to be obtained. dwRequestMode can have only one bit set. This parameter
uses one and only one of the LINEREQUESTMODE_Constants.

lpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the buffer
and the interpretation of the information that is placed in the buffer depends on the request mode. The
application-allocated buffer provides sufficient size to hold the request. If dwRequestMode is
LINEREQUESTMODE_MAKECALL, interpret the content of the request buffer by using the
LINEREQMAKECALL structure. If dwRequestMode is LINEREQUESTMODE_MEDIACALL,
interpret the content of the request buffer by using the LINEREQMEDIACALL structure.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_NOTREGISTERED

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

• LINEERR_INVALREQUESTMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

• LINEERR_NOREQUEST

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
171

Basic TAPI Implementation
lineGetRequest

lineGetStatusMessages
The lineGetStatusMessages function enables an application to query the notification messages that the
application receives for events related to status changes for the specified line or any of its addresses.

Function Details

LONG WINAPI lineGetStatusMessages(HLINE hLine,
LPDWORD lpdwLineStates,
LPDWORD lpdwAddressStates

);

Parameters

hLine

Handle to the line device.

lpdwLineStates

A bit array that identifies the line device status changes for which a message is to be sent to the application.
If a flag is TRUE, that message is enabled; if FALSE, it is disabled. This parameter uses one or more
LINEDEVSTATE_Constants.

lpdwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application. If
a flag is TRUE, that message is enabled; if FALSE, disabled. This parameter uses one or more
LINEADDRESSSTATE_Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineGetTranslateCaps
The lineGetTranslateCaps function returns address translation capabilities.

Function Details

LONG WINAPI lineGetTranslateCaps(HLINEAPP hLineApp,
DWORD dwAPIVersion,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
172

Basic TAPI Implementation
lineGetStatusMessages

LPLINETRANSLATECAPS lpTranslateCaps
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the lineInitializeEx
function, it can set the hLineApp parameter to NULL.

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure is loaded. Prior to calling
lineGetTranslateCaps, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NOMEM

• LINEERR_INIFILECORRUPT

• LINEERR_OPERATIONFAILED

• LINEERR_INVALAPPHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_NODRIVER.

lineHandoff
The lineHandoff function gives ownership of the specified call to another application. Specify the application
either directly by its file name or indirectly as the highest priority application that handles calls of the specified
media mode.

Function Details

LONG WINAPI lineHandoff(HCALL hCall,
LPCSTR lpszFileName,
DWORD dwMediaMode

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
173

Basic TAPI Implementation
lineHandoff

Parameters

hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of hCall
can be any state.

lpszFileName

A pointer to a null-terminated string. If this pointer parameter is non-NULL, it contains the file name of
the application that is the target of the handoff. If NULL, the handoff target represents the highest priority
application that has opened the line for owner privilege for the specified media mode. A valid file name
does not include the path of the file.

dwMediaMode

The media mode that is used to identify the target for the indirect handoff. The dwMediaMode parameter
indirectly identifies the target application that is to receive ownership of the call. This parameter gets
ignored if lpszFileName is not NULL. This parameter uses one and only one of the
LINEMEDIAMODE_Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALMEDIAMODE

• LINEERR_TARGETNOTFOUND

• LINEERR_INVALPOINTER

• LINEERR_TARGETSELF

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

• LINEERR_NOTOWNER

lineHold
The lineHold function places the specified call on hold.

Function Details

LONG lineHold(HCALL hCall
);

Parameter

hCall

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
174

Basic TAPI Implementation
lineHold

A handle to the call that is to be placed on hold. Ensure that the application is an owner of the call and the
call state of hCall is connected.

lineInitialize
Although the lineInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using API versions 1.3 and 1.4.

Function Details

LONG WINAPI lineInitialize(LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszAppName,
LPDWORD lpdwNumDevs

);

Parameters

lphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls. For more information, see lineCallbackFunc.

lpszAppName

A pointer to a null-terminated text string that contains only displayable characters. If this parameter is
not NULL, it contains an application-supplied name for the application. The LINECALLINFO structure
provides this name to indicate, in a user-friendly way, which application originated, originally accepted,
or answered the call. This information can prove useful for call logging purposes. If lpszAppName is
NULL, the application's file name gets used instead.

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location gets
filled with the number of line devices that is available to the application.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALAPPNAME

• LINEERR_OPERATIONFAILED

• LINEERR_INIFILECORRUPT

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
175

Basic TAPI Implementation
lineInitialize

• LINEERR_REINIT

• LINEERR_NODRIVER

• LINEERR_NODEVICE

• LINEERR_NOMEM

• LINEERR_NOMULTIPLEINSTANCE.

lineInitializeEx
The lineInitializeEx function initializes the use of TAPI by the application for the subsequent use of the line
abstraction. It registers the specified notification mechanism of the application and returns the number of line
devices that are available. A line device represents any device that provides an implementation for the
line-prefixed functions in the telephony API.

Function Details

LONG lineInitializeEx(LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams

);

Parameters

lphLineApp

A pointer to a location that is filled with the TAPI usage handle for the application.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for this
parameter, in which case TAPI uses the module handle of the root executable of the process (for purposes
of identifying call handoff targets and media mode priorities).

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the “hidden window”method of event notification. This
parameter gets ignored and should be set to NULLwhen the application chooses to use the “event handle”
or “completion port” event notification mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only standard ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. The LINECALLINFO
structure provides this name to indicate, in a user-friendly way, which application originated, originally
accepted, or answered the call. This information can prove useful for call-logging purposes. If
lpszFriendlyAppName is NULL, the module filename of the application gets used instead (as returned
by the Windows API GetModuleFileName).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
176

Basic TAPI Implementation
lineInitializeEx

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location gets
filled with the number of line devices that are available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling this
function, to the highest API version that it is designed to support (for example, the same value that it
would pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Make sure that artificially
high values are not used; ensure that the value is set to 0x00020000. TAPI translates any newer messages
or structures into values or formats that the application supports. Upon successful completion of this
request, this location is filled with the highest API version that TAPI supports, which allows the application
to adapt to being installed on a system with an older TAPI version.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS that contains additional parameters that
are used to establish the association between the application and TAPI (specifically, the selected event
notification mechanism of the application and associated parameters).

lineMakeCall
The lineMakeCall function places a call on the specified line to the specified destination address. Optionally,
you can specify call parameters if anything but default call setup parameters are requested.

Function Details

LONG lineMakeCall(HLINE hLine,
LPHCALL lphCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode,
LPLINECALLPARAMS const lpCallParams
);
typedef struct LineParams {
DWORD FeaturePriority;

Parameters

hLine

A handle to the open line device on which a call is to be originated.

lphCall

A pointer to an HCALL handle. The handle is only valid after the application receives LINE_REPLY
message that indicates that the lineMakeCall function successfully completed. Use this handle to identify
the call when you invoke other telephony operations on the call. The application initially acts as the sole
owner of this call. This handle registers as void if the reply message returns an error (synchronously or
asynchronously).

lpszDestAddress

A pointer to the destination address. This parameter follows the standard dialable number format. This
pointer can be NULL for non-dialed addresses or when all dialing is performed by using lineDial. In the
latter case, lineMakeCall allocates an available call appearance that would typically remain in the dial
tone state until dialing begins.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
177

Basic TAPI Implementation
lineMakeCall

dwCountryCode

The country code of the called party. If a value of 0 is specified, the implementation uses a default.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if specified as non-zero,
automatically disconnects a call if not answered after the specified time. For more information, see
LINECALLPARAMS, on page 343.

lineMonitorDigits
The lineMonitorDigits function enables and disables the unbuffered detection of digits that are received on
the call. Each time that a digit of the specified digit mode is detected, a message gets sent to the application
to indicate which digit has been detected.

Function Details

LONG lineMonitorDigits(HCALL hCall,
DWORD dwDigitModes

);

Parameters

hCall

A handle to the call on which digits are to be detected. The call state of hCall can be any state except
idle or disconnected.

dwDigitModes

The digit mode or modes that are to be monitored. If dwDigitModes is zero, the system cancels digit
monitoring. This parameter which can have multiple flags set, uses the following
LINEDIGITMODE_constant:

LINEDIGITMODE_DTMF -Detect digits as DTMF tones. Valid digits for DTMF include ‘0’ through
‘9’, ‘*’, and ‘#’.

lineMonitorTones
The lineMonitorTones function enables and disables the detection of inband tones on the call. Each time that
a specified tone is detected, a message gets sent to the application.

Function Details

LONG lineMonitorTones(HCALL hCall,
LPLINEMONITORTONE const lpToneList,
DWORD dwNumEntries

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
178

Basic TAPI Implementation
lineMonitorDigits

Parameters

hCall

A handle to the call on which tones are to be detected. The call state of hCall can be any state except
idle.

lpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in this list has an
application-defined tag field that is used to identify individual tones in the list to report a tone detection.
Calling this operation with either NULL for lpToneList or with another tone list cancels or changes tone
monitoring in progress.

dwNumEntries

The number of entries in lpToneList. This parameter gets ignored if lpToneList is NULL.

lineNegotiateAPIVersion
The lineNegotiateAPIVersion function allows an application to negotiate an API version to use. The Cisco
Unified TSP supports TAPI 2.0 and 2.1.

Function Details

LONG lineNegotiateAPIVersion(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPLINEEXTENSIONID lpExtensionID

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word specifies the
major version number; the low-order word specifies the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word specifies the
major version number; the low-order word specifies the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number that was negotiated. If
negotiation succeeds, this number falls in the range between dwAPILowVersion and dwAPIHighVersion.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
179

Basic TAPI Implementation
lineNegotiateAPIVersion

lpExtensionID

Apointer to a structure of type LINEEXTENSIONID. If the service provider for the specified dwDeviceID
supports provider-specific extensions, upon a successful negotiation, this structure gets filled with the
extension identifier of these extensions. This structure contains all zeros if the line provides no extensions.
An application can ignore the returned parameter if it does not use extensions.

The Cisco Unified TSP extensionID specifies 0x8EBD6A50, 0x138011d2, 0x905B0060, 0xB03DD275.

lineNegotiateExtVersion
The lineNegotiateExtVersion function allows an application to negotiate an extension version to use with the
specified line device. Do not call this operation if the application does not support extensions.

Function Details

LONG lineNegotiateExtVersion(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtLowVersion,
DWORD dwExtHighVersion,
LPDWORD lpdwExtVersion

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The API version number that was negotiated for the specified line device by using
lineNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the extension identifier that lineNegotiateAPIVersion returns and
with which the application is compliant. The high-order word specifies the major version number; the
low-order word specifies the minor version number.

dwExtHighVersion

The most recent extension version of the extension identifier that lineNegotiateAPIVersion returns and
with which the application is compliant. The high-order word specifies the major version number; the
low-order word specifies the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version number that was negotiated.
If negotiation succeeds, this number falls between dwExtLowVersion and dwExtHighVersion.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
180

Basic TAPI Implementation
lineNegotiateExtVersion

lineOpen
The lineOpen function opens the line device that its device identifier specifies and returns a line handle for
the corresponding opened line device. Subsequent operations on the line device use this line handle.

Function Details

LONG lineOpen(HLINEAPP hLineApp,
DWORD dwDeviceID,
LPHLINE lphLine,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivileges,
DWORD dwMediaModes,
LPLINECALLPARAMS const lpCallParams

);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

Identifies the line device to be opened. It can either be a valid device identifier or the value LINEMAPPER

The Cisco Unified TSP does not support LINEMAPPER at this time.Note

lphLine

A pointer to an HLINE handle that is then loaded with the handle that represents the opened line device.
Use this handle to identify the device when you are invoking other functions on the open line device.

dwAPIVersion

The API version number under which the application and Telephony API operate. Obtain this number
with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider operate. This number
remains zero if the application does not use any extensions. Obtain this number with
lineNegotiateExtVersion.

dwCallbackInstance

User-instance data that is passed back to the application with each message that is associated with this
line or with addresses or calls on this line. The Telephony API does not interpret this parameter.

dwPrivileges

The privilege that the application wants for the calls for which it is notified. This parameter can be a
combination of the LINECALLPRIVILEGE_ constants. For applications that are using TAPI version
2.0 or later, values for this parameter can also be combined with the LINEOPENOPTION_constants:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
181

Basic TAPI Implementation
lineOpen

• LINECALLPRIVILEGE_NONE -The application can make only outgoing calls.

• LINECALLPRIVILEGE_MONITOR -The application can monitor only incoming and outgoing
calls.

• LINECALLPRIVILEGE_OWNER -The application can own only incoming calls of the types that
are specified in dwMediaModes.

• LINECALLPRIVILEGE_MONITOR + LINECALLPRIVILEGE_OWNER -The application can
own only incoming calls of the types that are specified in dwMediaModes, but if the application
does not represent an owner of a call, it acts as a monitor.

• Other flag combinations return the LINEERR_INVALPRIVSELECT error.

dwMediaModes

The media mode or modes of interest to the application. Use this parameter to register the application as
a potential target for incoming call and call handoff for the specified media mode. This parameter proves
meaningful only if the bit LINECALLPRIVILEGE_OWNER in dwPrivileges is set (and ignored if it is
not).

This parameter uses the following LINEMEDIAMODE_constant:

• LINEMEDIAMODE_INTERACTIVEVOICE -The application can handle calls of the interactive
voice media type; that is, it manages voice calls with the user on this end of the call. Use this
parameter for third-party call control of physical phones and CTI port and CTI route point devices
that other applications opened.

• LINEMEDIAMODE_AUTOMATEDVOICE -Voice energy exists on the call. An automated
application locally handles the voice. This represents first-party call control and is used with CTI
port and CTI route point devices.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if it is non-zero, automatically
disconnects a call if it is not answered after the specified time.

linePark
The linePark function parks the specified call according to the specified park mode.

Function Details

LONG WINAPI linePark(HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress
);

Parameters

hCall

Handle to the call to be parked. The application must act as an owner of the call. The call state of hcall
must be connected.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
182

Basic TAPI Implementation
linePark

dwParkMode

Park mode with which the call is parked. This parameter can have only a single flag set and uses one of
the LINEPARKMODE_Constants.

Ensure that LINEPARKMODE_Constants is set to LINEPARKMODE_NONDIRECTED.Note

lpszDirAddress

Pointer to a null-terminated string that indicates the address where the call is to be parked when directed
park is used. The address specifies in dialable number format. This parameter gets ignored for nondirected
park.

This parameter gets ignored.Note

lpNonDirAddress

Pointer to a structure of type VARSTRING. For nondirected park, the address where the call is parked
gets returned in this structure. This parameter gets ignored for directed park. Within the VARSTRING
structure, ensure that dwStringFormat is set to STRINGFORMAT_ASCII (an ASCII string buffer that
contains a null-terminated string), and the terminating NULLmust be accounted for in the dwStringSize.
Before calling linePark, the application must set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

linePrepareAddToConference
The linePrepareAddToConference function prepares an existing conference call for the addition of another
party.

If LINEERR_INVALLINESTATE is returned, that means that the line is currently not in a state in which this
operation can be performed. The dwLineFeatures member includes a list of currently valid operations (of the
type LINEFEATURE) in the LINEDEVSTATUS structure. (Calling lineGetLineDevStatus updates the
information in LINEDEVSTATUS.)

Obtain a conference call handle with lineSetupConference or with lineCompleteTransfer that is resolved as
a three-way conference call. The linePrepareAddToConference function typically places the existing conference
call in the onHoldPendingConference state and creates a consultation call that can be added later to the existing
conference call with lineAddToConference.

You can cancel the consultation call by using lineDrop. You may also be able to swap an application between
the consultation call and the held conference call with lineSwapHold.

Function Details

LONG WINAPI linePrepareAddToConference(HCALL hConfCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
183

Basic TAPI Implementation
linePrepareAddToConference

Parameters

hConfCall

A handle to a conference call. The application must act as an owner of this call. Ensure that the call state
of hConfCall is connected.

lphConsultCall

A pointer to an HCALL handle. This location then gets loaded with a handle that identifies the consultation
call to be added. Initially, the application serves as the sole owner of this call.

lpCallParams

A pointer to call parameters that gets used when the consultation call is established. You can set this
parameter to NULL if no special call setup parameters are desired.

Return Values

Returns a positive request identifier if the function completes asynchronously, or a negative number if an
error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message specifies zero if the
function succeeds, or it is a negative number if an error occurs.

Possible return values follow:

• LINEERR_BEARERMODEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_CALLUNAVAIL

• LINEERR_INVALRATE

• LINEERR_CONFERENCEFULL

• LINEERR_NOMEM

• LINEERR_INUSE

• LINEERR_NOTOWNER

• LINEERR_INVALADDRESSMODE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALBEARERMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLPARAMS

• LINEERR_RATEUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCONFCALLHANDLE

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALLINESTATE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
184

Basic TAPI Implementation
linePrepareAddToConference

• LINEERR_USERUSERINFOTOOBIG

• LINEERR_INVALMEDIAMODE

• LINEERR_UNINITIALIZED

lineRedirect
The lineRedirect function redirects the specified offered or accepted call to the specified destination address.

If the application tries to redirect a call to an address that requires a FAC, CMC, or both, the lineRedirect
function returns an error. If a FAC is required, the TSP returns the message LINEERR_FACREQUIRED. If
a CMC is required, the TSP returns the message LINEERR_CMCREQUIRED. If both a FAC and a CMC
are required, the TSP returns the message LINEERR_FACANDCMCREQUIRED. An application that wants
to redirect a call to an address that requires a FAC, CMC, or both, should use the lineDevSpecific
RedirectFACCMC function.

Note

Function Details

LONG lineRedirect(HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call to be redirected. The application must act as an owner of the call. The call state of
hCall must be offering, accepted, or connected.

The Cisco Unified TSP supports redirecting of calls in the connected call state.Note

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format.

dwCountryCode

The country code of the party to which the call is redirected. If a value of 0 is specified, the implementation
uses a default.

lineRegisterRequestRecipient
The lineRegisterRequestRecipient function registers the invoking application as a recipient of requests for
the specified request mode.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
185

Basic TAPI Implementation
lineRedirect

Function Details

LONG WINAPI lineRegisterRequestRecipient(HLINEAPP hLineApp,
DWORD dwRegistrationInstance,
DWORD dwRequestMode,
DWORD bEnable

);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRegistrationInstance

An application-specific DWORD that is passed back as a parameter of the LINE_REQUEST message.
This message notifies the application that a request is pending. This parameter gets ignored if bEnable
is set to zero. TAPI examines this parameter only for registration, not for deregistration. The
dwRegistrationInstance value that is used while deregistering need not match the dwRegistrationInstance
that is used while registering for a request mode.

dwRequestMode

The type or types of request for which the application registers. This parameter uses one or more
LINEREQUESTMODE_Constants.

bEnable

If TRUE, the application registers the specified request modes; if FALSE, the application deregisters for
the specified request modes.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALREQUESTMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineRemoveFromConference
The lineRemoveFromConference function removes a specified call from the conference call to which it
currently belongs. The remaining calls in the conference call are unaffected.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
186

Basic TAPI Implementation
lineRemoveFromConference

Function Details

LONG WINAPI lineRemoveFromConference(HCALL hCall
);

Parameters

hCall

Handle to the call that is to be removed from the conference. The application must be an owner of this
call. The call state of hCall must be conference.

Return Values

Returns a positive request identifier if the function is completed asynchronously, or a negative number if an
error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if the function
succeeds or it is a negative number if an error occurs. The following table shows the return values for this
function:

DescriptionValue

The handle to the call that is to be removed is invalid.LINEERR_INVALCALLHANDLE

The operation is unavailable.LINEERR_OPERATIONUNAVAIL

The call state is something other than conferenced.LINEERR_INVALCALLSTATE

The operation failed.LINEERR_OPERATIONFAILED

Not enough memory.LINEERR_NOMEM

The resources are unavailable.LINEERR_RESOURCEUNAVAIL

The application is not the owner of this call.LINEERR_NOTOWNER

A parameter is uninitialized.LINEERR_UNINITIALIZED

lineRemoveProvider
The lineRemoveProvider function removes an existing telephony service provider from the system.

Function Details

LONG WINAPI lineRemoveProvider(DWORD dwPermanentProviderID,
HWND hwndOwner

);

Parameters

dwPermanentProviderID

The permanent provider identifier of the service provider that is to be removed.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
187

Basic TAPI Implementation
lineRemoveProvider

hwndOwner

A handle to a window to which any dialog boxes that need to be displayed as part of the removal process
(for example, a confirmation dialog box by the service provider's TSPI_providerRemove function) would
be attached. The parameter can be a NULL value to indicate that any window that is created during the
function should have no owner window.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_OPERATIONFAILED

lineSetAppPriority
The lineSetAppPriority function allows an application to set its priority in the handoff priority list for a
particular media type or Assisted Telephony request mode or to remove itself from the priority list.

Function Details

LONG WINAPI lineSetAppPriority(LPCSTR lpszAppFilename,
DWORD dwMediaMode,
LPLINEEXTENSIONID lpExtensionID,
DWORD dwRequestMode,
LPCSTR lpszExtensionName,
DWORD dwPriority

);

Parameters

lpszAppFilename

A pointer to a string that contains the application executable module filename (without directory
information). In TAPI version 2.0 or later, the parameter can specify a filename in either long or 8.3
filename format.

dwMediaMode

The media type for which the priority of the application is to be set. The value can be one
LINEMEDIAMODE_Constant; only a single bit may be on. Use the value zero to set the application
priority for Assisted Telephony requests.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. This parameter gets ignored.

dwRequestMode

If the dwMediaMode parameter is zero, this parameter specifies the Assisted Telephony request mode
for which priority is to be set. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter gets ignored if dwMediaMode is nonzero.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
188

Basic TAPI Implementation
lineSetAppPriority

lpszExtensionName

This parameter gets ignored.

dwPriority

The new priority for the application. If the value 0 is passed, the application gets removed from the
priority list for the specified media or request mode (if it was already not present, no error gets generated).
If the value 1 is passed, the application gets inserted as the highest priority application for the media or
request mode (and removed from a lower-priority position, if it was already in the list). Any other value
generates an error.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INIFILECORRUPT

• LINEERR_INVALREQUESTMODE

• LINEERR_INVALAPPNAME

• LINEERR_NOMEM

• LINEERR_INVALMEDIAMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPARAM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

lineSetCallPrivilege
The lineSetCallPrivilege function sets the application privilege to the specified privilege.

Function Details

LONG WINAPI lineSetCallPrivilege(HCALL hCall,
DWORD dwCallPrivilege

);

Parameters

hCall

A handle to the call whose privilege is to be set. The call state of hCall can be any state.

dwCallPrivilege

The privilege that the application can have for the specified call. This parameter uses one and only one
LINECALLPRIVILEGE_Constant.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
189

Basic TAPI Implementation
lineSetCallPrivilege

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCALLPRIVILEGE

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineSetNumRings
The lineSetNumRings function sets the number of rings that must occur before an incoming call is answered.
Use this function to implement a toll saver-style function. It allows multiple, independent applications to each
register the number of rings. The function lineGetNumRings returns the minimum number of rings that are
requested. The application that answers incoming calls can use it to determine the number of rings that it
should wait before answering the call.

Function Details

LONG WINAPI lineSetNumRings(HLINE hLine,
DWORD dwAddressID,
DWORD dwNumRings

);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the identifier
remains constant across operating system upgrades.

dwNumRings

The number of rings before a call should be answered to honor the toll saver requests from all applications.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALADDRESSID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
190

Basic TAPI Implementation
lineSetNumRings

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineSetStatusMessages
The lineSetStatusMessages function enables an application to specify the notification messages to receive for
events that are related to status changes for the specified line or any of its addresses.

Function Details

LONG lineSetStatusMessages(HLINE hLine,
DWORD dwLineStates,
DWORD dwAddressStates

);

Parameters

hLine

A handle to the line device.

dwLineStates

A bit array that identifies for which line-device status changes a message is to be sent to the application.
This parameter uses the following LINEDEVSTATE_constants:

• LINEDEVSTATE_OTHER -Device-status items other than the following ones changed. The
application should check the current device status to determine which items changed.

• LINEDEVSTATE_RINGING -The switch tells the line to alert the user. Service providers notify
applications on each ring cycle by sending LINE_LINEDEVSTATE messages that contain this
constant. For example, in the United States, service providers send a message with this constant
every 6 seconds.

• LINEDEVSTATE_NUMCALLS -The number of calls on the line device changed.

• LINEDEVSTATE_REINIT -Items changed in the configuration of line devices. To become aware
of these changes (as with the appearance of new line devices) the application should reinitialize its
use of TAPI. New lineInitialize, lineInitializeEx, and lineOpen requests get denied until applications
have shut down their usage of TAPI. The hDevice parameter of the LINE_LINEDEVSTATE
message remains NULL for this state change as it applies to any lines in the system. Because of the
critical nature of LINEDEVSTATE_REINIT, such messages cannot be masked, so the setting of
this bit is ignored, and the messages always get delivered to the application.

• LINEDEVSTATE_REMOVED -Indicates that the service provider is removing the device from
the system (most likely through user action, through a control panel or similar utility). Normally, a
LINE_CLOSEmessage on the device immediately follows LINE_LINEDEVSTATEmessage with
this value. Subsequent attempts to access the device prior to TAPI being reinitialized result in
LINEERR_NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message that contains this value to TAPI, TAPI passes it along to
applications that have negotiated TAPI version 1.4 or later; applications that negotiate a previous
TAPI version do not receive any notification.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
191

Basic TAPI Implementation
lineSetStatusMessages

dwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
This parameter uses the following LINEADDRESSSTATE_constant:

• LINEADDRESSSTATE_NUMCALLS -The number of calls on the address changed. This change
results from events such as a new incoming call, an outgoing call on the address, or a call changing
its hold status.

lineSetTollList
The lineSetTollList function manipulates the toll list.

Function Details

LONG WINAPI lineSetTollList(HLINEAPP hLineApp,
DWORD dwDeviceID,
LPCSTR lpszAddressIn,
DWORD dwTollListOption

);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the lineInitializeEx
function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations in
dialing procedures on different lines can be applied to the translation process.

lpszAddressIn

A pointer to a null-terminated string that contains the address from which the prefix information is to be
extracted for processing. Ensure that this parameter is not NULL, and also ensure that it is in the canonical
address format.

dwTollListOption

The toll list operation to be performed. This parameter uses one and only one of the
LINETOLLLISTOPTION_Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_BADDEVICEID

• LINEERR_NODRIVER

• LINEERR_INVALAPPHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
192

Basic TAPI Implementation
lineSetTollList

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPARAM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INIFILECORRUPT

• LINEERR_UNINITIALIZED

• LINEERR_INVALLOCATION

lineSetupConference
The lineSetupConference function initiates a conference for an existing two-party call that the hCall parameter
specifies. A conference call and consult call are established, and the handles return to the application. Use the
consult call to dial the third party and the conference call replaces the initial two-party call. The application
can also specify the destination address of the consult call that will allow the PBX to dial the call for the
application.

Function Details

LONG lineSetupConference (HCALL hCall,
HLINE hLine,
LPHCALL lphConfCall,
LPHCALL lphConsultCall,
DWORD dwNumParties,
LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the existing two-party call. Ensure that the application is the owner of the call.

hLine

The line on which the initial two-party call was made. This parameter is not used because hCall must be
set.

lphConfCall

A pointer to the conference call handle. The service provider allocates this call and returns the handle to
the application.

lphConsultCall

A pointer to the consult call. If the application does not specify the destination address in the call
parameters, it should use this call handle to dial the consult call. If the destination address is specified,
the consult call will be made using this handle.

dwNumParties

The number of parties in the conference call. Currently the Cisco Unified TAPI Service Provider supports
a three-party conference call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
193

Basic TAPI Implementation
lineSetupConference

lpCallParams

The call parameters that are used to set up the consult call. The application can specify the destination
address if it wants the consult call to be dialed for it in the conference setup.

lineSetupTransfer
The lineSetupTransfer function initiates a transfer of the call that the hCall parameter specifies. It establishes
a consultation call, lphConsultCall, on which the party can be dialed that can become the destination of the
transfer. The application acquires owner privilege to the lphConsultCall parameter.

Function Details

LONG lineSetupTransfer(HCALL hCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

);

Parameters

hCall

The handle of the call to be transferred. Ensure that the application is an owner of the call and ensure
that the call state of hCall is connected.

lphConsultCall

A pointer to an hCall handle. This location is then loaded with a handle that identifies the temporary
consultation call. When setting up a call for transfer, a consultation call automatically gets allocated that
enables lineDial to dial the address that is associated with the new transfer destination of the call. The
originating party can carry on a conversation over this consultation call prior to completing the transfer.
The call state of hConsultCall does not apply.

This transfer procedure may not be valid for some line devices. The application may need to ignore the
new consultation call and remove the hold on an existing held call (using lineUnhold) to identify the
destination of the transfer. On switches that support cross-address call transfer, the consultation call can
exist on a different address than the call that is to be transferred. It may also be necessary to set up the
consultation call as an entirely new call, by lineMakeCall, to the destination of the transfer. The address
capabilities of the call specifies which forms of transfer are available.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and, if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

lineShutdown
The lineShutdown function shuts down the usage of the line abstraction of the API.

Function Details

LONG lineShutdown(HLINEAPP hLineApp
);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
194

Basic TAPI Implementation
lineSetupTransfer

Parameters

hLineApp

The usage handle of the application for the line API.

lineTranslateAddress
The lineTranslateAddress function translates the specified address into another format.

Function Details

LONG WINAPI lineTranslateAddress(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
LPCSTR lpszAddressIn,
DWORD dwCard,
DWORD dwTranslateOptions,
LPLINETRANSLATEOUTPUT lpTranslateOutput

);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If a TAPI 2.0 application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL. TAPI 1.4 applications must still
call lineInitialize first.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations in
dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that is
negotiated by lineNegotiateAPIVersion on some particular line device).

lpszAddressIn

Pointer to a null-terminated string that contains the address from which the information is to be extracted
for translation. This parameter must either use the canonical address format or an arbitrary string of
dialable digits (non-canonical). This parameter must not be NULL. If the AddressIn contains a subaddress
or name field, or additional addresses separated from the first address by CR and LF characters, only the
first address gets translated.

dwCard

The credit card to be used for dialing. This parameter proves valid only if the CARDOVERRIDE bit is
set in dwTranslateOptions. This parameter specifies the permanent identifier of a Card entry in the [Cards]
section in the registry (as obtained from lineTranslateCaps) that should be used instead of the
PreferredCardID that is specified in the definition of the CurrentLocation. It does not cause the
PreferredCardID parameter of the current Location entry in the registry to be modified; the override
applies only to the current translation operation. This parameter gets ignored if the CARDOVERRIDE
bit is not set in dwTranslateOptions.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
195

Basic TAPI Implementation
lineTranslateAddress

dwTranslateOptions

The associated operations to be performed prior to the translation of the address into a dialable string.
This parameter uses one of the LINETRANSLATEOPTION_Constants.

If you have set the LINETRANSLATEOPTION_CANCELCALLWAITING bit, also set the
LINECALLPARAMFLAGS_SECUREbit in the dwCallParamFlagsmember of the LINECALLPARAMS
structure (passed in to lineMakeCall through the lpCallParams parameter). This action prevents the line
device from using dialable digits to suppress call interrupts.

Note

lpTranslateOutput

A pointer to an application-allocated memory area to contain the output of the translation operation, of
type LINETRANSLATEOUTPUT. Prior to calling lineTranslateAddress, the application should set the
dwTotalSize member of this structure to indicate the amount of memory that is available to TAPI for
returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_BADDEVICEID

• LINEERR_INVALPOINTER

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NODRIVER

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALAPPHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCARD

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPARAM

lineTranslateDialog
The lineTranslateDialog function displays an application-modal dialog box that allows the user to change the
current location of a phone number that is about to be dialed, adjust location and calling card parameters, and
see the effect.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
196

Basic TAPI Implementation
lineTranslateDialog

Function Details

LONG WINAPI lineTranslateDialog(HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
HWND hwndOwner,
LPCSTR lpszAddressIn

);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the lineInitializeEx
function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations in
dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on the line device that dwDeviceID indicates).

hwndOwner

A handle to a window to which the dialog box is to be attached. Can be a NULL value to indicate that
any window that is created during the function should have no owner window.

lpszAddressIn

A pointer to a null-terminated string that contains a phone number that is used, in the lower portion of
the dialog box, to show the effect of the user's changes on the location parameters. Ensure that the number
is in canonical format; if noncanonical, the phone number portion of the dialog box does not display.
You can leave this pointer NULL, in which case the phone number portion of the dialog box does not
display. If the lpszAddressIn parameter contains a subaddress or name field, or additional addresses
separated from the first address by CR and LF characters, only the first address gets used in the dialog
box.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

• LINEERR_BADDEVICEID

• LINEERR_INVALPARAM

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_INVALPOINTER

• LINEERR_INIFILECORRUPT

• LINEERR_NODRIVER

• LINEERR_INUSE

• LINEERR_NOMEM

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
197

Basic TAPI Implementation
lineTranslateDialog

• LINEERR_INVALADDRESS

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

lineUnhold
The lineUnhold function retrieves the specified held call.

Function Details

LONG lineUnhold(HCALL hCall
);

Parameters

hCall

The handle to the call to be retrieved. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.

lineUnpark
The lineUnpark function retrieves the call that is parked at the specified address and returns a call handle for
it.

Function Details

LONG WINAPI lineUnpark(HLINE hLine,
DWORD dwAddressID,
LPHCALL lphCall,
LPCSTR lpszDestAddress
);

Parameters

hLine

Handle to the open line device on which a call is to be unparked.

dwAddressID

Address on hLine at which the unpark is to be originated. An address identifier permanently associates
with an address; the identifier remains constant across operating system upgrades.

lphCall

Pointer to the location of type HCALL where the handle to the unparked call is returned. This handle is
unrelated to any other handle that previously may have been associated with the retrieved call, such as
the handle that might have been associated with the call when it was originally parked. The application
acts as the initial sole owner of this call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
198

Basic TAPI Implementation
lineUnhold

lpszDestAddress

Pointer to a null-terminated character buffer that contains the address where the call is parked. The address
displays in standard dialable address format.

TAPI Line Messages
This section describes the line messages that the Cisco Unified TSP supports. These messages notify the
application of asynchronous events such as a new call arriving in the Cisco Unified CommunicationsManager.
The messages get sent to the application by the method that the application specifies in lineInitializeEx

.

Table 13: TAPI Line Messages

TAPI Line Messages

LINE_ADDRESSSTATE, on page 200

LINE_APPNEWCALL, on page 201

LINE_CALLDEVSPECIFIC, on page 202

LINE_CALLINFO, on page 202

LINE_CALLSTATE, on page 203

LINE_CLOSE, on page 207

LINE_CREATE, on page 207

LINE_DEVSPECIFIC, on page 208

LINE_DEVSPECIFICFEATURE, on page 209

LINE_GATHERDIGITS, on page 210

LINE_GENERATE, on page 211

LINE_LINEDEVSTATE, on page 212

LINE_MONITORDIGITS, on page 213

LINE_MONITORTONE, on page 213

LINE_REMOVE, on page 214

LINE_REPLY, on page 215

LINE_REQUEST, on page 216

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
199

Basic TAPI Implementation
TAPI Line Messages

LINE_ADDRESSSTATE
The LINE_ADDRESSSTATE message gets sent when the status of an address changes on a line that is
currently open by the application. The application can invoke lineGetAddressStatus to determine the current
status of the address.

Function Details

LINE_ADDRESSSTATE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idAddress;
dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device.

dwCallbackInstance

The callback instance supplied when the line is opened.

dwParam1

The address identifier of the address that changed status.

dwParam2

The address state that changed. Can be a combination of these values:

LINEADDRESSSTATE_OTHER

Address-status items other than those that are in the following list changed. The application should
check the current address status to determine which items changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status changed.

LINEADDRESSSTATE_INUSEZERO

The address changed to idle (it is now in use by zero stations).

LINEADDRESSSTATE_INUSEONE

The address changed from idle or from being used by many bridged stations to being used by just
one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address changed from being used by one station to being used by more
than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This change results from events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
200

Basic TAPI Implementation
LINE_ADDRESSSTATE

LINEADDRESSSTATE_FORWARD

The forwarding status of the address changed, including the number of rings for determining a
no-answer condition. The application should check the address status to determine details about the
current forwarding status of the address.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address changed.

LINEADDRESSSTATE_CAPSCHANGE

Indicates that due to configuration changes that the user made, or other circumstances, one or more
of the members in the LINEADDRESSCAPS structure for the address changed. The application
should use lineGetAddressCaps to read the updated structure. Applications that support API versions
earlier than 1.4 receive a LINEDEVSTATE_REINIT message that requires them to shut down and
reinitialize their connection to TAPI to obtain the updated information.

dwParam3

This parameter is not used.

LINE_APPNEWCALL
The LINE_APPNEWCALLmessage informs an application when a new call handle is spontaneously created
on its behalf (other than through an API call from the application, in which case the handle would have been
returned through a pointer parameter that passed into the function).

Function Details

LINE_APPNEWCALL
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) dwInstanceData;
dwParam1 = (DWORD) dwAddressID;
dwParam2 = (DWORD) hCall;
dwParam3 = (DWORD) dwPrivilege;

Parameters

dwDevice

The handle of the application to the line device on which the call was created.

dwCallbackInstance

The callback instance that is supplied when the line belonging to the call is opened.

dwParam1

Identifier of the address on the line on which the call appears.

dwParam2

The handle of the application to the new call.

dwParam3

The privilege of the application to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
201

Basic TAPI Implementation
LINE_APPNEWCALL

LINE_CALLDEVSPECIFIC
The TSPI LINE_CALLDEVSPECIFICmessage is sent to notify TAPI about device-specific events that occur
on a call. The meaning of the message and the interpretation of the dwParam1 through dwParam3 parameters
are device specific.

Function Details

LINE_CALLDEVSPECIFIC
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) hCallDevice;
dwMsg = (DWORD) LINE_CALLDEVSPECIFIC;
dwParam1 = (DWORD) DeviceData1;
dwParam2 = (DWORD) DeviceData2;
dwParam3 = (DWORD) DeviceData3;

Parameters

htLine

The TAPI opaque object handle to the line device.

htCall

The TAPI opaque object handle to the call device.

dwMsg

The value LINE_CALLDEVSPECIFIC.

dwParam1

Device specific

dwParam2

Device specific

dwParam3

Device specific

LINE_CALLINFO
The TAPI LINE_CALLINFOmessage gets sent when the call information about the specified call has changed.
The application can invoke lineGetCallInfo to determine the current call information.

Function Details

LINE_CALLINFO
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallInfoState;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
202

Basic TAPI Implementation
LINE_CALLDEVSPECIFIC

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the call's line is opened.

dwParam1

The call information item that changed. Can be one or more of the

LINECALLINFOSTATE_constants.

dwParam2

This parameter is not used.

dwParam3

This parameter is not used.

LINE_CALLSTATE
The LINE_CALLSTATE message gets sent when the status of the specified call changes. Typically, several
such messages occur during the lifetime of a call. Applications get notified of new incoming calls with this
message; the new call exists in the offering state. The application can use the lineGetCallStatus function to
retrieve more detailed information about the current status of the call.

Function Details

LINE_CALLSTATE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallState;
dwParam2 = (DWORD) CallStateDetail;
dwParam3 = (DWORD) CallPrivilege;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line that belongs to this call is opened.

dwParam1

The new call state. Cisco Unified TSP supports only the following LINECALLSTATE_values:

LINECALLSTATE_IDLE

The call remains idle; no call actually exists.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
203

Basic TAPI Implementation
LINE_CALLSTATE

LINECALLSTATE_OFFERING

The call gets offered to the station, which signals the arrival of a new call. In some environments,
a call in the offering state does not automatically alert the user. The switch that instructs the line to
ring does alerts; it does not affect any call states.

LINECALLSTATE_ACCEPTED

The system offered the call and it has been accepted. This indicates to other (monitoring) applications
that the current owner application claimed responsibility for answering the call. In ISDN, this also
indicates that alerting to both parties started.

LINECALLSTATE_CONFERENCED

The call is a member of a conference call and is logically in the connected state.

LINECALLSTATE_DIALTONE

The call receives a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is sent to the switch over the call. The
lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call receives ringback from the called address. Ringback indicates that the call has reached the
other station and is being alerted.

LINECALLSTATE_ONHOLDPENDCONF

The call currently remains on hold while it gets added to a conference.

LINECALLSTATE_CONNECTED

The call is established and the connection is made. Information can flow over the call between the
originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing completes and the call proceeds through the switch or telephone network.

LINECALLSTATE_ONHOLD

The switch keeps the call on hold.

LINECALLSTATE_ONHOLDPENDTRANSFER

The call that is currently on hold awaits transfer to another number.

LINECALLSTATE_DISCONNECTED

The remote party disconnected from the call.

LINECALLSTATE_UNKNOWN

The state of the call is not known. This state may occur due to limitations of the call-progress
detection implementation.

Cisco Unified TSP supports two new call states that indicate more information about the call state
within the Cisco Unified Communications Manager setup. The standard TAPI call state is set to

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
204

Basic TAPI Implementation
LINE_CALLSTATE

LINECALLSTATE_UNKNOWN and the following call states will be ORed with the unknown
call state.

#define CLDSMT_CALL_PROGRESSING_STATE 0x0100000

The Progressing state indicates that the call is in progress over the network. The application must
negotiate extension version 0x00050001 to receive this call state.

#define CLDSMT_CALL_WAITING_STATE 0x02000000

The waiting state indicates that the REFER request is in progress on Referrer's line and the application
should not request any other function on this call. All the requests will result in
LINEERR_INVALCALLSTATE. Application has to negotiate extension version 0x00070000 to
receive this call state.

#define CLDSMT_CALL_WHISPER_STATE 0x03000000

The whisper state indicates that the Intercom call is connected in one-way audio mode. The Intercom
originator cannot issue other function other that to drop the Intercom call. While at destination side,
the system allows only Talkback and dropping call. All other requests result in
LINEERR_OPERATIONUNAVAIL.

dwParam2

Call-state-dependent information.

• If dwParam1 is LINECALLSTATE_CONNECTED, dwParam2 contains details about the connected
mode. This parameter uses the following LINECONNECTEDMODE_constants:

LINECONNECTEDMODE_ACTIVE

Call connects at the current station (the current station acts as a participant in the call).

LINECONNECTEDMODE_INACTIVE

Call stays active at one or more other stations, but the current station does not participate in the call.

When a call is disconnected with cause code = DISCONNECTMODE_TEMPFAILURE and the
lineState = LINEDEVSTATE_INSERVICE, applications must take care of dropping the call. If the
application terminates media for a device, then it is also takes the responsibility to stop the RTP
streams for the same call. Cisco Unified TSP will not provide Stop Transmission/Reception events
to applications in this scenario. The behavior is exactly the same with IP phones. The user must
hang up the disconnected -temp fail call on IP phone to stop the media. The application is also
responsible for stopping the RTP streams in case the line goes out of service
(LINEDEVSTATE_OUTOFSERVICE) and the call on a line is reported as IDLE.

If an applicationwith negotiated extension version 0x00050001 or greater receives
device-specific CLDSMT_CALL_PROGRESSING_STATE = 0x01000000with
LINECALLSTATE_UNKNOWN, the cause code is reported as the standard
Q931 cause codes in dwParam2.

Note

• If dwParam1 specifies LINECALLSTATE_DIALTONE, dwParam2 contains the details about the
dial tone mode. This parameter uses the following LINEDIALTONEMODE_constant:

LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and cannot become known.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
205

Basic TAPI Implementation
LINE_CALLSTATE

• If dwParam1 specifies LINECALLSTATE_OFFERING, dwParam2 contains details about the
connected mode. This parameter uses the following LINEOFFERINGMODE_constants:

LINEOFFERINGMODE_ACTIVE

The call alerts at the current station (accompanied by LINEDEVSTATE_RINGINGmessages) and,
if an application is set up to automatically answer, it answers. For TAPI versions 1.4 and later, if
the call state mode is ZERO, the application assumes that the value is active (which represents the
situation on a non-bridged address).

The Cisco Unified TSP does not send LINEDEVSTATE_RINGING messages
until the call is accepted and moves to the LINECALLSTATE_ACCEPTED
state. IP_phones auto-accept calls. CTI ports and CTI route points do not
auto-accept calls. Call the lineAccept() function to accept the call at these types
of devices.

Note

• If dwParam1 specifies LINECALLSTATE_DISCONNECTED, dwParam2 contains details about
the disconnect mode. This parameter uses the following LINEDISCONNECTMODE_constants:

LINEDISCONNECTMODE_NORMAL

This specifies a normal disconnect request by the remote party; call terminated normally.

LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request remains unknown.

LINEDISCONNECTMODE_REJECT

The remote user rejected the call.

LINEDISCONNECTMODE_BUSY

The station that belongs to the remote user is busy.

LINEDISCONNECTMODE_NOANSWER

The station that belongs to the remote user does not answer.

LINEDISCONNECTMODE_CONGESTION

This message indicates that the network is congested.

LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect remains unavailable and cannot become known later.

LINEDISCONNECTMODE_FACCMC

Indicates that the FAC/CMC feature disconnected the call.

LINEDISCONNECTMODE_FACCMC is returned only if the extension version
that is negotiated on the line is 0x00050000 (6.0(1)) or higher. If the negotiated
extension version is not at least 0x00050000, TSP sets the disconnect mode to
LINEDISCONNECTMODE_UNAVAIL.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
206

Basic TAPI Implementation
LINE_CALLSTATE

dwParam3

If zero, this parameter indicates that no change in the privilege occurred for the call to this application.

If nonzero, this parameter specifies the privilege for the application to the call. This occurs in the following
situations: (1) The first time that the application receives a handle to this call; (2) When the application
is the target of a call hand-off (even if the application already was an owner of the call). This parameter
uses the following LINECALLPRIVILEGE_ constants:

LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.

LINECALLPRIVILEGE_OWNER

The application has owner privilege.

LINE_CLOSE
The LINE_CLOSEmessage gets sent when the specified line device has been forcibly closed. The line device
handle or any call handles for calls on the line no longer remains valid after this message is sent.

Function Details

LINE_CLOSE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device that was closed. This handle is no longer valid

dwCallbackInstance

The callback instance that is supplied when the line that belongs to this call is opened.

dwParam1

This parameter is not used.

dwParam2

This parameter is not used.

dwParam3

This parameter is not used.

LINE_CREATE
The LINE_CREATE message informs the application of the creation of a new line device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
207

Basic TAPI Implementation
LINE_CLOSE

CTI Manager cluster support, extension mobility, change notification, and user addition to the directory can
generate LINE_CREATE events.

Note

Function Details

LINE_CREATE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

This parameter is not used.

dwCallbackInstance

This parameter is not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2

This parameter is not used.

dwParam3

This parameter is not used.

LINE_DEVSPECIFIC
The LINE_DEVSPECIFIC message notifies the application about device-specific events that occur on a line,
address, or call. The meaning of the message and interpretation of the parameters are device specific.

Function Details

LINE_DEVSPECIFIC
dwDevice = (DWORD) hLineOrCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceSpecific1;
dwParam2 = (DWORD) DeviceSpecific2;
dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

This device-specific parameter specifies a handle to either a line device or call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
208

Basic TAPI Implementation
LINE_DEVSPECIFIC

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

is device specific

dwParam2

is device specific

dwParam3

is device specific

LINE_DEVSPECIFICFEATURE
This line message, added in Cisco Unified Communications Manager Release 6.0, enables a Do Not Disturb
(DND) change notification event. Cisco TSP notifies applications by using the LINE_DEVSPECIFICFEATURE
message about changes in the DND configuration or status. In order to receive change notifications an
application needs to enable DEVSPECIFIC_DONOTDISTURB_CHANGED message flag by using
lineDevSpecific SLDST_SET_STATUS_MESSAGES request.

LINE_DEVSPECIFICFEATURE message is sent to notify the application about device-specific events
occurring on a line device. In case of a DND change notification, the message includes information about the
type of change that occurred on a device and resulted feature status or configured option.

Function Details

dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PHONEBUTTONFUNCTION_DONOTDISTURB;
dwParam2 = (DWORD) typeOfChange;
dwParam3 = (DWORD) currentValue;

enum CiscoDoNotDisturbOption {
DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,
DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

enum CiscoDoNotDisturbNotification {
DoNotDisturb_STATUS_CHANGED = 1,
DoNotDisturb_OPTION_CHANGED = 2

};

Parameters

dwDevice

A handle to a line device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
209

Basic TAPI Implementation
LINE_DEVSPECIFICFEATURE

dwCallbackInstance

The callback instance supplied when opening the line.

dwParam1

Always equal to PHONEBUTTONFUNCTION_DONOTDISTURB for the Do-Not-Disturb change
notification

dwParam2

Indicates the type of change and can have one of the following enum values:

enum CiscoDoNotDisturbNotification {
DoNotDisturb_STATUS_CHANGED = 1,
DoNotDisturb_OPTION_CHANGED = 2

};

dwParam3

If the dwParm2 indicates status change (is equal to DoNotDisturb_STATUS_CHANGED) this parameter
can have one of the following enum values:

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,
DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

If the dwParm2 indicates option change (is equal to DoNotDisturb_OPTION_CHANGED) this parameter
can have one of the following enum values:

enum CiscoDoNotDisturbOption {
DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

LINE_GATHERDIGITS
The TAPI LINE_GATHERDIGITS message is sent when the current buffered digit-gathering request is
terminated or canceled. You can examine the digit buffer after the application receives this message.

Function Details

LINE_GATHERDIGITS
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GatherTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
210

Basic TAPI Implementation
LINE_GATHERDIGITS

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

The reason why digit gathering terminated. This parameter must be one and only one of the
LINEGATHERTERM_constants.

dwParam2
Unused.

dwParam3

The tick count (number of milliseconds since Windows started) at which the digit gathering completes.
For TAPI versions earlier than 2.0, this parameter is not used.

LINE_GENERATE
The TAPI LINE_GENERATE message notifies the application that the current digit or tone generation
terminated. Only one such generation request can be in progress an a given call at any time. This message
also gets sent when digit or tone generation is canceled.

Function Details

LINE_GENERATE
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GenerateTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

The reason that digit or tone generation terminates. This parameter must be the only one of the
LINEGENERATETERM_constants.

dwParam2

This parameter is not used.

dwParam3

The tick count (number of milliseconds since Windows started) at which the digit or tone generation
completes. For API versions earlier than 2.0, this parameter is not used.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
211

Basic TAPI Implementation
LINE_GENERATE

LINE_LINEDEVSTATE
The TAPI LINE_LINEDEVSTATEmessage gets sent when the state of a line device changes. The application
can invoke lineGetLineDevStatus to determine the new status of the line.

Function Details

LINE_LINEDEVSTATE
hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceState;
dwParam2 = (DWORD) DeviceStateDetail1;
dwParam3 = (DWORD) DeviceStateDetail2;

Parameters

hDevice

A handle to the line device. This parameter is NULL when dwParam1 is LINEDEVSTATE_REINIT.

dwCallbackInstance

The callback instance that is supplied when the line is opened. If the dwParam1 parameter is
LINEDEVSTATE_REINIT, the dwCallbackInstance parameter is not valid and is set to zero.

dwParam1

The line device status item that changed. The parameter can be one or more of the
LINEDEVSTATE_constants.

LINEDEVSTATE_OUTOFSERVICE

Indicates the line device unregisters as it enters Energywise DeepSleep/PowersavePlus mode

dwParam2

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs the
line to ring. Valid ring modes include numbers in the range one to dwNumRingModes, where
dwNumRingModes specifies a line device capability.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation of a
new API message into a REINIT message, dwParam2 contains the dwMsg parameter of the original
message (for example, LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2 is zero, this indicates
that the REINIT message represents a real REINIT message that requires the application to call
lineShutdown at its earliest convenience.

If dw Param1 is LINEDEVSTATE_OUTOFSERVICE, dwParam2 contains the reason
EnergyWisePowerSavePlus when the line device unregisters as it enters EnergywiseDeepSleep.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation of a
new API message into a REINIT message, dwParam3 contains the dwParam1 parameter of the original
message (for example, LINEDEVSTATE_TRANSLATECHANGE or some other

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
212

Basic TAPI Implementation
LINE_LINEDEVSTATE

LINEDEVSTATE_value, if dwParam2 is LINE_LINEDEVSTATE, or the new device identifier, if
dwParam2 is LINE_CREATE).

LINE_MONITORDIGITS
The LINE_MONITORDIGITS message gets sent when a digit is detected. The lineMonitorDigits function
controls the sending of this message.

Function Details

LINE_MONITORDIGITS
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) Digit;
dwParam2 = (DWORD) DigitMode;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line for this call is opened.

dwParam1

The low-order byte contains the last digit that is received in ASCII.

dwParam2

The digit mode that was detected. This parameter must be one and only one of the following
LINEDIGITMODE_constant:

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF include ‘0’ through ‘9’, ‘*’, and ‘#’.

dwParam3

The “tick count” (number of milliseconds afterWindows started) at which the specified digit was detected.
For API versions earlier than 2.0, this parameter is not used.

LINE_MONITORTONE
The LINE_MONITORTONE message gets sent when a tone is detected. The lineMonitorTones function
controls the sending of this message.

Cisco Unified TSP supports only silent detection through LINE_MONITORTONE.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
213

Basic TAPI Implementation
LINE_MONITORDIGITS

Function Details

LINE_MONITORTONE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) dwAppSpecific;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) tick count;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance supplied when the line opens for this call.

dwParam1

The application-specific dwAppSpecific member of the LINE_MONITORTONE structure for the tone
that was detected.

dwParam2

This parameter is not used.

dwParam3

The “tick count” (number of milliseconds afterWindows started) at which the specified digit was detected.

LINE_REMOVE
The LINE_REMOVE message informs an application of the removal (deletion from the system) of a line
device. Generally, this parameter is not used for temporary removals, such as extraction of PCMCIA devices,
but only for permanent removals in which, the service provider would no longer report the device, if TAPI
were reinitialized.

CTI Manager cluster support, extension mobility, change notification, and user deletion from the directory
can generate LINE_REMOVE events.

Note

Function Details

LINE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
214

Basic TAPI Implementation
LINE_REMOVE

Parameters

dwDevice

Reserved. Set to zero.

dwCallbackInstance

Reserved. Set to zero.

dwParam1

Identifier of the line device that was removed.

dwParam2

Reserved. Set to zero.

dwParam3

Reserved. Set to zero.

LINE_REPLY
The LINE_REPLY message reports the results of function calls that completed asynchronously.

Function Details

LINE_REPLY
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

This parameter is not used.

dwCallbackInstance

Returns the callback instance for this application.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a long integer:

• Zero indicates success.

• A negative number indicates an error.

dwParam3

This parameter is not used.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
215

Basic TAPI Implementation
LINE_REPLY

LINE_REQUEST
The TAPI LINE_REQUEST message reports the arrival of a new request from another application.

Function Details

LINE_REQUEST
hDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hRegistration;
dwParam1 = (DWORD) RequestMode;
dwParam2 = (DWORD) RequestModeDetail1;
dwParam3 = (DWORD) RequestModeDetail2;

Parameters

hDevice

This parameter is not used.

dwCallbackInstance

The registration instance of the application that is specified on lineRegisterRequestRecipient.

dwParam1

The request mode of the newly pending request. This parameter uses the
LINEREQUESTMODE_constants.

dwParam2

If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 contains the hWnd of the application
that requests the drop. Otherwise, dwParam2 is not used.

dwParam3

If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3 contains the
wRequestID as specified by the application requesting the drop. Otherwise, dwParam3 is not used.

TAPI Line Device Structures
The following table lists the TAPI line device structures that the Cisco Unified TSP supports. This section
lists the possible values for the structure members as set by the TSP, and provides a cross reference to the
functions that use them. If the value of a structure member is device, line, or call specific, the system notes
the value for each condition.

Table 14: TAPI Line Device Structures

TAPI Line Device Structures

LINEADDRESSCAPS, on page 217

LINEADDRESSSTATUS, on page 228

LINEAPPINFO, on page 229

LINECALLINFO, on page 231

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
216

Basic TAPI Implementation
LINE_REQUEST

TAPI Line Device Structures

LINECALLLIST, on page 239

LINECALLPARAMS, on page 240

LINECALLSTATUS, on page 242

LINECARDENTRY, on page 248

LINECOUNTRYENTRY, on page 250

LINECOUNTRYLIST, on page 251

LINEDEVCAPS, on page 252

LINEDEVSTATUS, on page 257

LINEEXTENSIONID, on page 259

LINEFORWARD, on page 259

LINEFORWARDLIST, on page 263

LINEGENERATETONE, on page 263

LINEINITIALIZEEXPARAMS, on page 264

LINELOCATIONENTRY, on page 265

LINEMESSAGE, on page 267

LINEMONITORTONE, on page 268

LINEPROVIDERENTRY, on page 269

LINEPROVIDERLIST, on page 269

LINEREQMAKECALL, on page 270

LINETRANSLATECAPS, on page 271

LINETRANSLATEOUTPUT, on page 272

LINEADDRESSCAPS

Members

ValuesMembers

For All Devices:The device identifier of the line device with which
this address is associated.

dwLineDeviceID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
217

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices:The size, in bytes, of the variably sized address
field and the offset, in bytes, from the beginning of this data
structure

dwAddressSizedwAddressOffset

For All Devices:0dwDevSpecificSize

dwDevSpecificOffset

For All Devices:0dwAddressSharing

For All Devices (except Park
DNs):LINEADDRESSSTATE_FORWARD

dwAddressStates

For Park DNs:0

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
218

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices (except Park
DNs):LINECALLINFOSTATE_CALLEDID

LINECALLINFOSTATE_CALLERID

LINECALLINFOSTATE_CALLID

LINECALLINFOSTATE_CONNECTEDID

LINECALLINFOSTATE_MEDIAMODE

LINECALLINFOSTATE_MONITORMODES

LINECALLINFOSTATE_NUMMONITORS

LINECALLINFOSTATE_NUMOWNERDECR

LINECALLINFOSTATE_NUMOWNERINCR

LINECALLINFOSTATE_ORIGIN

LINECALLINFOSTATE_REASON

LINECALLINFOSTATE_REDIRECTINGID

LINECALLINFOSTATE_REDIRECTIONID

dwCallInfoStates

For Park DNs:

LINECALLINFOSTATE_CALLEDID

LINECALLINFOSTATE_CALLERID

LINECALLINFOSTATE_CALLID

LINECALLINFOSTATE_CONNECTEDID

LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR

LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN

LINECALLINFOSTATE_REASON

LINECALLINFOSTATE_REDIRECTINGID

LINECALLINFOSTATE_REDIRECTIONID

For All Devices:LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwCallerIDFlags

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
219

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwCalledIDFlags

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwConnectedIDFlags

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwRedirectionIDFlags

For All Devices:LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwRedirectingIDFlags

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
220

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones and CTI Ports:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallStates

For CTI Route Points (without
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

For CTI Route Points (with
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_ONHOLD

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
221

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For Park DNs:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_UNKNOWN

For IP Phones and CTI
Ports:LINEDIALTONEMODE_UNAVAIL

dwDialToneModes

For CTI Route Points and Park DNs:0

For All Devices:0dwBusyModes

For All Devices:0dwSpecialInfo

ForAll Devices:LINEDISCONNECTMODE_BADDADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_FACCMC (if negotiated extension
version is 0x00050000 or greater)

dwDisconnectModes

For IP Phones, CTI Ports, and Park DNs:1dwMaxNumActiveCalls

For CTI Route Points (without media): 0

For CTI Route Points (with media):Cisco Unified
Communications Manager Administration configuration

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
222

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones, CTI Ports:200dwMaxNumOnHoldCalls

For CTI Route Points:0

For CTI Route Points (with media):Cisco Unified
Communications Manager Administration configuration (same
configuration as dwMaxNumActiveCalls)

For Park DNs:

1

For IP Phones and CTI Ports:1dwMaxNumOnHoldPendingCalls

For CTI Route Points and Park DNs:0

For IP Phones, CTI Ports, and Park DNs:16dwMaxNumConference

For CTI Route Points:0

For All Devices:0dwMaxNumTransConf

For IPPhones:LINEADDRCAPFLAGS_CONFERENCEHELD

LINEADDRCAPFLAGS_DIALED

LINEADDRCAPFLAGS_FWDSTATUSVALID

LINEADDRCAPFLAGS_PARTIALDIAL

LINEADDRCAPFLAGS_TRANSFERHELD

dwAddrCapFlags

For CTI Ports:LINEADDRCAPFLAGS_CONFERENCEHELD

LINEADDRCAPFLAGS_DIALED

LINEADDRCAPFLAGS_ACCEPTTOALERT

LINEADDRCAPFLAGS_FWDSTATUSVALID

LINEADDRCAPFLAGS_PARTIALDIAL

LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Route
Points:LINEADDRCAPFLAGS_ACCEPTTOALERT

LINEADDRCAPFLAGS_FWDSTATUSVALID

LINEADDRCAPFLAGS_ROUTEPOINT

ForParkDNs:LINEADDRCAPFLAGS_NOEXTERNALCALLS

LINEADDRCAPFLAGS_NOINTERNALCALLS

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
223

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones (except VG248 and ATA186) and CTI
Ports:LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_UNPARK

dwCallFeatures

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
224

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For VG248 and ATA186
Devices:LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

INECALLFEATURE_UNPARK

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
225

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For CTI Route Points (without
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_DROP

LINECALLFEATURE_REDIRECT

For CTI Route Points (with
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ANSWER

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_UNHOLD

dwCallFeatures (continued)

For Park DNs:0

For All Devices:0dwRemoveFromConfCaps

For All Devices:0dwRemoveFromConfState

For IP Phones and CTI
Ports:LINETRANSFERMODE_TRANSFER

LINETRANSFERMODE_CONFERENCE

dwTransferModes

For CTI Route Points and Park DNs:0

For IP Phones and CTI
Ports:LINEPARKMODE_NONDIRECTED

dwParkModes

For CTI Route Points and Park DNs:0

For All Devices (except
ParkDNs):LINEFORWARDMODE_UNCOND

dwForwardModes

For Park DNs:0

For All Devices (except ParkDNs):1dwMaxForwardEntries

For Park DNs:0

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
226

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For All Devices:0dwMaxSpecificEntries

For All Devices:0dwMinFwdNumRings

For All Devices:0dwMaxFwdNumRings

For All Devices:0dwMaxCallCompletions

For All Devices:0dwCallCompletionConds

For All Devices:0dwCallCompletionModes

For All Devices:0dwNumCompletionMessages

For All Devices:0dwCompletionMsgTextEntrySize

For All Devices:0dwCompletionMsgTextSize

dwCompletionMsgTextOffset

For IP Phones andCTI Ports:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

LINEADDRFEATURE_MAKECALL

dwAddressFeatures

For CTI Route Points:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

For Park DNs:0

For All Devices:0dwPredictiveAutoTransferStates

For All Devices:0dwNumCallTreatments

For All Devices:0dwCallTreatmentListSizedwCallTreatmentListOffset

For All Devices (except Park DNs):

"tapi/line"

"tapi/phone"

"wave/in"

"wave/out"

dwDeviceClassesSize

dwDeviceClassesOffset

For Park DNs :

"tapi/line"

For All Devices:0dwMaxCallDataSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
227

Basic TAPI Implementation
LINEADDRESSCAPS

ValuesMembers

For IP Phones and CTI
Ports:LINECALLFEATURE2_TRANSFERNORM

LINECALLFEATURE2_TRANSFERCONF

dwCallFeatures2

For CTI Route Points and Park DNs:0

For IP Phones and CTI Ports:

4294967295 (0xFFFFFFFF)

dwMaxNoAnswerTimeout

For CTI Route Points and Park DNs:0

For IP Phones, CTI Ports

LINECONNECTEDMODE_ACTIVE

LINECONNECTEDMODE_INACTIVE

dwConnectedModes

For Park DNs:

LINECONNECTEDMODE_ACTIVE

For CTI Route Points (without media):0

For CTI Route Points (with
media)LINECONNECTEDMODE_ACTIVE

For All Devices:

LINEOFFERINGMODE_ACTIVE

dwOfferingModes

For All Devices:0dwAvailableMediaModes

LINEADDRESSSTATUS

Members

ValuesMembers

For All Devices:1dwNumInUse

For All Devices:

The number of calls on the address that are in call states other
than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumActiveCalls

For All Devices:

The number of calls on the address in the onhold state.

dwNumOnHoldCalls

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
228

Basic TAPI Implementation
LINEADDRESSSTATUS

ValuesMembers

For All Devices:

The number of calls on the address in the onholdpendingtransfer
or the onholdpendingconference state.

dwNumOnHoldPendCalls

For IP Phones andCTI Ports:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

LINEADDRFEATURE_MAKECALL

dwAddressFeatures

For CTI Route Points:LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_FORWARDFWD

For Park DNs:0

For All Devices:0dwNumRingsNoAnswer

For All Devices (except Park DNs):

The number of entries in the array to which dwForwardSize and
dwForwardOffset refer.

dwForwardNumEntries

For Park DNs:0

For All Devices (except Park DNs):

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of the variably sized field that describes the
address forwarding information. This information appears as an
array of dwForwardNumEntries elements, of type
LINEFORWARD. Consider the offsets of the addresses in the
array relative to the beginning of the LINEADDRESSSTATUS
structure. The offsets dwCallerAddressOffset and
dwDestAddressOffset in the variably sized field of type
LINEFORWARD towhich dwForwardSize and dwForwardOffset
point are relative to the beginning of the LINEADDRESSSTATUS
data structure (the root container).

dwForwardSize

dwForwardOffset

For Park DNs:0

For All Devices:0dwTerminalModesSizedwTerminalModesOffset

For All Devices:0dwDevSpecificSizedwDevSpecificOffset

LINEAPPINFO
The LINEAPPINFO structure contains information about the application that is currently running. The
LINEDEVSTATUS structure can contain an array of LINEAPPINFO structures.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
229

Basic TAPI Implementation
LINEAPPINFO

Structure Details

typedef struct lineappinfo_tag {
DWORD dwMachineNameSize;
DWORD dwMachineNameOffset;
DWORD dwUserNameSize;
DWORD dwUserNameOffset;
DWORD dwModuleFilenameSize;
DWORD dwModuleFilenameOffset;
DWORD dwFriendlyNameSize;
DWORD dwFriendlyNameOffset;
DWORD dwMediaModes;
DWORD dwAddressID;

} LINEAPPINFO, *LPLINEAPPINFO;

Members

ValuesMembers

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the name of the computer on which the
application is executing.

dwMachineNameSize

dwMachineNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the user name under whose account the
application is running.

dwUserNameSize

dwUserNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the module filename of the application. You
can use this string in a call to lineHandoff to perform a directed
handoff to the application.

dwModuleFilenameSize

dwModuleFilenameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
the string that the application provides to lineInitialize or
lineInitializeEx, which should be used in any display of
applications to the user.

dwFriendlyNameSize

dwFriendlyNameOffset

Themedia types for which the application has requested ownership
of new calls; zero if the line dwPrivileges did not include
LINECALLPRIVILEGE_OWNER when it opened.

dwMediaModes

If the line handle that was opened by using
LINEOPENOPTION_SINGLEADDRESS contains the address
identifier that is specified, set to 0xFFFFFFFF if the single address
option was not used.

An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

dwAddressID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
230

Basic TAPI Implementation
LINEAPPINFO

LINECALLINFO

Members

ValuesMembers

For All Devices:

The handle for the line device with which this call is associated.

hLine

For All Devices:

The device identifier of the line device with which this call is
associated.

dwLineDeviceID

For All Devices:0dwAddressID

For All Devices:

LINEBEARERMODE_SPEECH

LINEBEARERMODE_VOICE

dwBearerMode

For All Devices:0dwRate

For IP Phones and Park
DNs:LINEMEDIAMODE_INTERACTIVEVOICE

dwMediaMode

For CTI Ports and CTI Route
Points:LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

For All Devices:

Not interpreted by the API implementation and service provider.
Any owner application of this call can set it with the
lineSetAppSpecific function.

dwAppSpecific

For All Devices:

In some telephony environments, the switch or service provider
can assign a unique identifier to each call. This allows the call to
be tracked across transfers, forwards, or other events. The domain
of these call IDs and their scope is service provider-defined. The
dwCallID member makes this unique identifier available to the
applications. The Cisco Unified TSP uses dwCallID to store the
“GlobalCallID” of the call. The “GlobalCallID” represents a
unique identifier that allows applications to identify all call handles
that are related to a call.

dwCallID

For All Devices:0dwRelatedCallID

For All Devices:0dwCallParamFlags

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
231

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For IP Phones and CTI Ports:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallStates

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
232

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For CTI Route Points (without
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

For CTI Route Points (with
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_BUSY

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallStates (continued)

For Park DNs:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_UNKNOWN

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINEDIGITMODE_DTMF

dwMonitorDigitModes

For CTI Route Points and Park DNs:0

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
233

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For IP Phones and Park
DNs:LINEMEDIAMODE_INTERACTIVEVOICE

dwMonitorMediaModes

For CTI Ports and CTI Route
Points:LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

For All Devices:0DialParams

For All Devices:LINECALLORIGIN_CONFERENCE

LINECALLORIGIN_EXTERNAL

LINECALLORIGIN_INTERNAL

LINECALLORIGIN_OUTBOUND

LINECALLORIGIN_UNAVAIL

LINECALLORIGIN_UNKNOWN

dwOrigin

For All Devices:

LINECALLREASON_DIRECT

LINECALLREASON_FWDBUSY

LINECALLREASON_FWDNOANSWER

LINECALLREASON_FWDUNCOND

LINECALLREASON_PARKED

LINECALLREASON_PICKUP

LINECALLREASON_REDIRECT

LINECALLREASON_REMINDER

LINECALLREASON_TRANSFER

LINECALLREASON_UNKNOWN

LINECALLREASON_UNPARK

dwReason

For All Devices:0dwCompletionID

For All Devices:

The number of application modules with different call handles
with owner privilege for the call.

dwNumOwners

For All Devices:

The number of application modules with different call handles
with monitor privilege for the call.

dwNumMonitors

For All Devices:0dwCountryCode

For All Devices:0xFFFFFFFFdwTrunk

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
234

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices:LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwCallerIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
caller party ID number information and the offset, in bytes, from
the beginning of this data structure.

dwCallerIDSize

dwCallerIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
caller party ID name information and the offset, in bytes, from
the beginning of this data structure.

dwCallerIDNameSize

dwCallerIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwCalledIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
called-party ID number information and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDSize

dwCalledIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
called-party ID name information and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDNameSize

dwCalledIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwConnectedIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
connected party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedIDSize

dwConnectedIDOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
235

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices:

The size, in bytes, of the variably sized field that contains the
connected party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedIDNameSize

dwConnectedIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_BLOCKED

dwRedirectionIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirection party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionIDSize

dwRedirectionIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirection party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionIDNameSize

dwRedirectionIDNameOffset

For All Devices:

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

dwRedirectingIDFlags

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirecting party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingIDSize

dwRedirectingIDOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirecting party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingIDNameSize

dwRedirectingIDNameOffset

For All Devices:

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of the variably sized field that holds the
user-friendly application name of the application that first
originated, accepted, or answered the call. This specifies the name
that an application can specify in lineInitializeEx. If the application
specifies no such name, the applicationmodule filename gets used
instead.

dwAppNameSize

dwAppNameOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
236

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices: 0dwDisplayableAddressSize

dwDisplayableAddressOffset

For All Devices: 0dwCalledPartySize

dwCalledPartyOffset

For All Devices: 0dwCommentSize

dwCommentOffset

For All Devices: 0dwDisplaySize

dwDisplayOffset

For All Devices: 0dwUserUserInfoSize

dwUserUserInfoOffset

For All Devices: 0dwHighLevelCompSize

dwHighLevelCompOffset

For All Devices: 0dwLowLevelCompSize

dwLowLevelCompOffset

For All Devices: 0dwChargingInfoSize

dwChargingInfoOffset

For All Devices: 0dwTerminalModesSize

dwTerminalModesOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
237

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices:

If dwExtVersion > = 0x00060000 (6.0), this field will point to
TSP_Unicode_Party_Names structure,

If dwExtVersion > = 0x00070000 (7.0), this field will also point
to a common structure that has a pointer to SRTP structure,
DSCPValueForAudioCalls value, and Partition information. The
LINECALLINFO, on page 324 defines the structure.

The ExtendedCallInfo structure contains ExtendedCallReason
that represents the last feature-related reason that caused a change
in the callinfo/callstatus for this call. The ExtendedCallInfo will
also provide SIP URL information for all call parties.

If dwExtVersion > = 0x00080000 (8.0), this field will also point
to common structure which has pointer to CallSecurityStatus
structure.

For IP Phones: If dwExtVersion > = 0x00080000 (8.0), this field
will also point to common structure that has pointer to
CallAtributeInfo and CCMCallID structure. The structures are
defined below.

If dwExtVersion > = 0x00080000 (8.0), this field will also point
to common structure which has pointer to CallSecurityStatus
structure.

dwDevSpecificSize

dwDevSpecificOffset

CallAttributeType: This field holds information about
DN.Partition.DeviceName for regular calls, monitoring calls,
monitored calls, and recording calls.

PartyDNOffset, PartyDNSize, provides the size, in bytes, of the
variably sized field that contains the
Monitoring/Monitored/Recorder party DN information and the
offset, in bytes, from the beginning of LINECALLINFO data
structure. PartyPartitionOffset PartyPartitionSize, provides the
size, in bytes, of the variably sized field that contains the
Monitoring/Monitored/Recorder party Partition information and
the offset, in bytes, from the beginning of LINECALLINFO data
structure.

DevcieNameSizeprovides the size, in bytes, of the variably sized
field that contains the Monitoring/Monitored/Recorder party
Device Name and the offset, in bytes, from the beginning of
LINECALLINFO data structure. OverallCallSecurityStatus holds
the security status of the call for two-party call as well for
conference call. CCMCallID field holds the CCM call Id for each
call leg.

For All Devices: 0dwCallTreatment

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
238

Basic TAPI Implementation
LINECALLINFO

ValuesMembers

For All Devices: 0dwCallDataSize

dwCallDataOffset

For All Devices: 0dwSendingFlowspecSize

dwSendingFlowspecOffset

For All Devices: 0dwReceivingFlowspecSize

dwReceivingFlowspecOffset

LINECALLLIST
The LINECALLLIST structure describes a list of call handles. The lineGetNewCalls and
lineGetConfRelatedCalls functions return a structure of this type.

You must not extend this structure.Note

Structure Details

typedef struct linecalllist_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwCallsNumEntries;
DWORD dwCallsSize;
DWORD dwCallsOffset;

} LINECALLLIST, FAR *LPLINECALLLIST;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

The number of handles in the hCalls array.dwCallsNumEntries

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of the variably sized field (which is an array of
HCALL-sized handles).

dwCallsSized

wCallsOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
239

Basic TAPI Implementation
LINECALLLIST

LINECALLPARAMS

Members

ValuesMembers

not supporteddwBearerMode

not supporteddwMinRatedwMaxRate

not supporteddwMediaMode

not supporteddwCallParamFlags

not supporteddwAddressMode

not supporteddwAddressID

not supportedDialParams

not supporteddwOrigAddressSize

dwOrigAddressOffset

not supporteddwDisplayableAddressSize

dwDisplayableAddressOffset

not supporteddwCalledPartySize

dwCalledPartyOffset

not supporteddwCommentSize

dwCommentOffset

not supporteddwUserUserInfoSize

dwUserUserInfoOffset

not supporteddwHighLevelCompSize

dwHighLevelCompOffset

not supporteddwLowLevelCompSize

dwLowLevelCompOffset

not supporteddwDevSpecificSize

dwDevSpecificOffset

not supporteddwPredictiveAutoTransferStates

not supporteddwTargetAddressSize

dwTargetAddressOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
240

Basic TAPI Implementation
LINECALLPARAMS

ValuesMembers

not supporteddwSendingFlowspecSize

dwSendingFlowspecOffset

not supporteddwReceivingFlowspecSize

dwReceivingFlowspecOffset

not supporteddwDeviceClassSize

dwDeviceClassOffset

not supporteddwDeviceConfigSize

dwDeviceConfigOffset

not supporteddwCallDataSize

dwCallDataOffset

For All Devices:

The number of seconds, after the completion of dialing, that the
call should be allowed to wait in the PROCEEDING or
RINGBACK state before the service provider automatically
abandons it with a LINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A value of 0
indicates that the application does not want automatic call
abandonment.

dwNoAnswerTimeout

not supporteddwCallingPartyIDSize

dwCallingPartyIDOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
241

Basic TAPI Implementation
LINECALLPARAMS

LINECALLSTATUS

Members

ValuesMembers

For IP Phones and CTI Ports:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

dwCallState

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
242

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For CTI Route Points (without
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_UNKNOWN

For CTI Route Points (with
media):LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DIALING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_PROCEEDING

LINECALLSTATE_RINGBACK

LINECALLSTATE_UNKNOWN

For Park DNs:LINECALLSTATE_ACCEPTED

LINECALLSTATE_CONFERENCED

LINECALLSTATE_CONNECTED

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ONHOLD

LINECALLSTATE_UNKNOWN

dwCallState (continued)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
243

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For IP Phones, CTI Ports:LINECONNECTEDMODE_ACTIVE

LINECONNECTEDMODE_INACTIVE

LINEDIALTONEMODE_NORMAL

LINEDIALTONEMODE_UNAVAIL

LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_FACCMC (if negotiated extension
version is 0x00050000 or greater)

dwCallStateMode

For CTI Route
Points:LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_FACCMC (if negotiated extension
version is 0x00050000 or greater)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
244

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For Park DNs:LINECONNECTEDMODE_ACTIVE

LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_TEMPFAILURE

LINEDISCONNECTMODE_UNREACHABLE

For All Devices

LINECALLPRIVILEGE_MONITOR

LINECALLPRIVILEGE_NONE

LINECALLPRIVILEGE_OWNER

dwCallPrivilege

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
245

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For IP Phones (except VG248 and ATA186) and CTI Ports:

LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_UNPARK

dwCallFeatures

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
246

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For VG248 and ATA186
Devices:LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_PARK

LINECALLFEATURE_PREPAREADDTOCONF

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_UNPARK

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
247

Basic TAPI Implementation
LINECALLSTATUS

ValuesMembers

For CTI Route Points (without
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_DROP

LINECALLFEATURE_REDIRECT

For CTI Route Points (with
media):LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_DIA

LLINECALLFEATURE_DROP

LINECALLFEATURE_GATHERDIGITS

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_GENERATETONE

LINECALLFEATURE_HOLD

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORTONES

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_UNHOLD

dwCallFeatures (continued)

For Park DNs:0dwCallFeatures (continued)

For All Devices:0dwDevSpecificSizedwDevSpecificOffset

For IP Phones and CTI
Ports:LINECALLFEATURE2_TRANSFERNORM

LINECALLFEATURE2_TRANSFERCONF

dwCallFeatures2

For CTI Route Points and Park DNs:0

For All Devices:

The Coordinated Universal Time at which the current call state
was entered.

tStateEntryTime

LINECARDENTRY
The LINECARDENTRY structure describes a calling card. The LINETRANSLATECAPS structure can
contain an array of LINECARDENTRY structures.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
248

Basic TAPI Implementation
LINECARDENTRY

You must not extend this structure.Note

Structure Details

typedef struct linecardentry_tag {
DWORD dwPermanentCardID;
DWORD dwCardNameSize;
DWORD dwCardNameOffset;
DWORD dwCardNumberDigits;
DWORD dwSameAreaRuleSize;
DWORD dwSameAreaRuleOffset;
DWORD dwLongDistanceRuleSize;
DWORD dwLongDistanceRuleOffset;
DWORD dwInternationalRuleSize;
DWORD dwInternationalRuleOffset;
DWORD dwOptions;

} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

ValuesMembers

The permanent identifier that identifies the card.dwPermanentCardID

A null-terminated string (size includes the NULL) that describes
the card in a user-friendly manner.

dwCardNameSize

dwCardNameOffset

The number of digits in the existing card number. The card number
itself is not returned for security reasons (TAPI stores it in
scrambled form). The application can use this parameter to insert
filler bytes into a text control in “password” mode to show that a
number exists.

dwCardNumberDigits

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of bytes
in the dialing rule that is defined for calls to numbers in the same
area code. The rule specifies a null-terminated string.

dwSameAreaRuleSize

dwSameAreaRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of bytes
in the dialing rule that is defined for calls to numbers in the other
areas in the same country or region. The rule specifies a
null-terminated string.

dwLongDistanceRuleSize dwLongDistanceRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of bytes
in the dialing rule that is defined for calls to numbers in other
countries/regions. The rule specifies a null-terminated string.

dwInternationalRuleSize dwInternationalRuleOffset

Indicates other settings that are associated with this calling card,
by using the LINECARDOPTION_

dwOptions

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
249

Basic TAPI Implementation
LINECARDENTRY

LINECOUNTRYENTRY
The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of one
or more of these structures makes up part of the LINECOUNTRYLIST structure that the lineGetCountry
function returns.

You must not extend this structure.Note

Structure Details

typedef struct linecountryentry_tag {
DWORD dwCountryID;
DWORD dwCountryCode;
DWORD dwNextCountryID;
DWORD dwCountryNameSize;
DWORD dwCountryNameOffset;
DWORD dwSameAreaRuleSize;
DWORD dwSameAreaRuleOffset;
DWORD dwLongDistanceRuleSize;
DWORD dwLongDistanceRuleOffset;
DWORD dwInternationalRuleSize;
DWORD dwInternationalRuleOffset;

} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members

ValuesMembers

The country or region identifier of the entry that specifies an
internal identifier that allows multiple entries to exist in the
country or region list with the same country code (for example,
all countries in North America and the Caribbean share country
code 1, but require separate entries in the list).

dwCountryID

The actual country code of the country or region that the entry
represents (that is, the digits that would be dialed in an
international call). Display only this value to users (Country IDs
should never display, as they could be confusing).

dwCountryCode

The country identifier of the next entry in the country or region
list. Because country codes and identifiers are not assigned in
numeric sequence, the country or region list represents a single
linked list, with each entry pointing to the next. The last country
or region in the list includes a dwNextCountryID value of zero.
When the LINECOUNTRYLIST structure is used to obtain the
entire list, the entries in the list appear in sequence as linked by
their dwNextCountryID members.

dwNextCountryID

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that gives the name of the country or region.

dwCountryNameSize dwCountryNameOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
250

Basic TAPI Implementation
LINECOUNTRYENTRY

ValuesMembers

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that contains the dialing rule for direct-dialed calls to the same
area code.

dwSameAreaRuleSize dwSameAreaRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that contains the dialing rule for direct-dialed calls to other areas
in the same country or region.

dwLongDistanceRuleSize dwLongDistanceRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINECOUNTRYLIST structure of a null-terminated string
that contains the dialing rule for direct-dialed calls to other
countries/regions.

dwInternationalRuleSize dwInternationalRuleOffset

LINECOUNTRYLIST
The LINECOUNTRYLIST structure describes a list of countries/regions. This structure can contain an array
of LINECOUNTRYENTRY structures. The lineGetCountry function returns LINECOUNTRYLIST.

You must not extend this structure.Note

Structure Details

typedef struct linecountrylist_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumCountries;
DWORD dwCountryListSize;
DWORD dwCountryListOffset;

} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

Members

ValuesMembers

The total size, in bytes, that are allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
251

Basic TAPI Implementation
LINECOUNTRYLIST

ValuesMembers

The number of LINECOUNTRYENTRY structures that are
present in the array dwCountryListSize and dwCountryListOffset
dominate.

dwNumCountries

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of an array of LINECOUNTRYENTRY
elements that provide information on each country or region.

dwCountryListSize dwCountryListOffset

LINEDEVCAPS

Members

ValuesMembers

For All Devices:

The size, in bytes, of the variably sized field that contains service
provider information and the offset, in bytes, from the beginning
of this data structure. The dwProviderInfoSize/ Offset member
provides information about the provider hardware and/or software.
This information is useful when a user needs to call customer
service with problems regarding the provider. The Cisco Unified
TSP sets this field to "Cisco Unified TSPxxx.TSP: Cisco IP PBX
Service Provider Ver. x.x(x.x)" where the text before the colon
specifies the file name of the TSP and the text after "Ver."
specifies the version of TSP.

dwProviderInfoSize

dwProviderInfoOffset

For All Devices:

The size, in bytes, of the variably sized device field that contains
switch information and the offset, in bytes, from the beginning
of this data structure. The dwSwitchInfoSize/Offset member
provides information about the switch to which the line device
connects, such as the switch manufacturer, the model name, the
software version, and so on. This information is useful when a
user needs to call customer service with problems regarding the
switch. The Cisco Unified TSP sets this field to "Cisco Unified
Communications Manager Ver. x.x(x.x), Cisco CTI Manager Ver
x.x(x.x)" where the text after "Ver." specifies the version of the
Cisco Unified Communications Manager and the version of the
CTI Manager, respectively.

dwSwitchInfoSize

dwSwitchInfoOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
252

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For All Devices:

The permanent DWORD identifier by which the line device is
known in the system configuration. This identifier specifies a
permanent name for the line device. This permanent name (as
opposed to dwDeviceID) does not change as lines are added or
removed from the system and persists through operating system
upgrades. You can therefore use it to link line-specific information
in .ini files (or other files) in a way that is not affected by adding
or removing other lines or by changing the operating system.

dwPermanentLineID

For All Devices:

The size, in bytes, of the variably sized device field that contains
a user-configurable name for this line device and the offset, in
bytes, from the beginning of this data structure. You can configure
this name when you configure the line device service provider,
and the name gets provided for the convenience of the user. Cisco
Unified TSP sets this field to “Cisco Line: [deviceName] (dirn)”
where deviceName specifies the name of the device on which the
line resides, and dirn specifies the directory number for the device.

dwLineNameSize

dwLineNameOffset

For All Devices:

STRINGFORMAT_ASCII

dwStringFormat

For All Devices:

LINEADDRESSMODE_ADDRESSID

dwAddressModes

For All Devices:1dwNumAddresses

For All Devices:

LINEBEARERMODE_SPEECH

LINEBEARERMODE_VOICE

dwBearerModes

For All Devices:0dwMaxRate

For IP Phones and Park DNs:

LINEMEDIAMODE_INTERACTIVEVOICE

dwMediaModes

For CTI Ports and CTI Route Points:

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINETONEMODE_BEEP

dwGenerateToneModes

For CTI Route Points (without media) and Park DNs:0

For All Devices:0dwGenerateToneMaxNumFreq

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
253

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINETONEMODE_DTMF

dwGenerateDigitModes

For CTI Route Points and Park DNs:0

For All Devices:0dwMonitorToneMaxNumFreq

For All Devices:0dwMonitorToneMaxNumEntries

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINETONEMODE_DTMF

dwMonitorDigitModes

For CTI Route Points (without media) and Park DNs:0

For All Devices:0dwGatherDigitsMinTimeout

dwGatherDigitsMaxTimeout

For All Devices:0dwMedCtlDigitMaxListSize

dwMedCtlMediaMaxListSize

dwMedCtlToneMaxListSize

dwMedCtlCallStateMaxListSize

For IP Phones:0dwDevCapFlags

For All Other Devices:

LINEDEVCAPFLAGS_CLOSEDROP

For All Devices:1dwMaxNumActiveCalls

For CTI Route Points (without media):0

For CTI Route Points (with media):

Cisco Unified Communications Manager Administration
configuration

For IP Phones (except for VG248 and ATA186), CTI Route Points
(with media) and CTI Ports:

LINEANSWERMODE_HOLD

dwAnswerMode

For VG248 devices, ATA186 devices, CTI Route Points (without
media), and Park DNs:0

For All Devices:1dwRingModes

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
254

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For IP Phones, CTI Ports, and Route Points (with media):

LINEDEVSTATE_CLOSE

LINEDEVSTATE_DEVSPECIFIC

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_MSGWAITOFF

LINEDEVSTATE_MSGWAITON

LINEDEVSTATE_NUMCALLS

LINEDEVSTATE_OPEN

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_REINIT

LINEDEVSTATE_RINGING

LINEDEVSTATE_TRANSLATECHANGE

dwLineStates

For CTI Route Points (without media):

LINEDEVSTATE_CLOSE

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_OPEN

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_REINIT

LINEDEVSTATE_RINGING

LINEDEVSTATE_TRANSLATECHANGE

For Park DNs:LINEDEVSTATE_CLOSE

LINEDEVSTATE_DEVSPECIFIC

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_NUMCALLS

LINEDEVSTATE_OPEN

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_REINIT

LINEDEVSTATE_TRANSLATECHANGE

For All Devices:0dwUUIAcceptSize

For All Devices:0dwUUIAnswerSize

For All Devices:0dwUUIMakeCallSize

For All Devices:0dwUUIDropSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
255

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For All Devices:0dwUUISendUserUserInfoSize

For All Devices:0dwUUICallInfoSize

For All Devices:0MinDialParams

MaxDialParams

For All Devices:0DefaultDialParams

For All Devices:0dwNumTerminals

For All Devices:0dwTerminalCapsSize

dwTerminalCapsOffset

For All Devices:0dwTerminalTextEntrySize

For All Devices:0dwTerminalTextSize

dwTerminalTextOffset

For All Devices (except ParkDNs):

If dwExtVersion > 0x00030000
(3.0):LINEDEVCAPS_DEV_SPECIFIC.m_DevSpecificFlags =
0

dwDevSpecificSize

dwDevSpecificOffset

For Park DNs:

If dwExtVersion > 0x00030000
(3.0):LINEDEVCAPS_DEV_SPECIFIC.m_DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_PARKDN

For Intercom DNs:

LINEDEVCAPS_DEV_SPECIFIC. M_DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_INTERCOMDNLOCALE info
PARTITION_INFO INTERCOM_SPEEDDIAL_INFO

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINEFEATURE_DEVSPECIFIC

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

LINEFEATURE_MAKECALL

dwLineFeatures

For CTI Route Points (without media):

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

For Park DNs:0

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
256

Basic TAPI Implementation
LINEDEVCAPS

ValuesMembers

For All Devices:0dwSettableDevStatus

For IP Phones and CTI Route Points:

"tapi/line"

"tapi/phone"

dwDeviceClassesSize

dwDeviceClassesOffset

For CTI Ports:

"tapi/line"

"tapi/phone"

"wave/in"

"wave/out"

For Park DNs:

"tapi/line"

The GUID that is permanently associated with the line device.PermanentLineGuid

LINEDEVSTATUS

Members

ValuesMembers

For All Devices:

The number of active opens on the line device.

dwNumOpens

For All Devices:

Bit array that indicates for which media types the line device is
currently open.

dwOpenMediaModes

For All Devices:

The number of calls on the line in call states other than idle,
onhold, onholdpendingtransfer, and onholdpendingconference.

dwNumActiveCalls

For All Devices:

The number of calls on the line in the onhold state.

dwNumOnHoldCalls

For All Devices:

The number of calls on the line in the onholdpendingtransfer or
onholdpendingconference state.

dwNumOnHoldPendCalls

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
257

Basic TAPI Implementation
LINEDEVSTATUS

ValuesMembers

For IP Phones, CTI Ports, and CTI Route Points (with media):

LINEFEATURE_DEVSPECIFIC

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

LINEFEATURE_MAKECALL

dwLineFeatures

For CTI Route Points (without media):

LINEFEATURE_FORWARD

LINEFEATURE_FORWARDFWD

For Park DNs:0

For All Devices:0dwNumCallCompletions

For All Devices:0dwRingMode

For All Devices:0dwSignalLevel

For All Devices:0dwBatteryLevel

For All Devices:0dwRoamMode

For IP Phones and CTI Ports:

LINEDEVSTATUSGLAGS_CONNECTED

LINEDEVSTATUSGLAGS_INSERVICE

LINEDEVSTATUSGLAGS_MSGWAIT

dwDevStatusFlags

For CTI Route Points and Park DNs:

LINEDEVSTATUSGLAGS_CONNECTED

LINEDEVSTATUSGLAGS_INSERVICE

For All Devices:0dwTerminalModesSizedwTerminalModesOffset

For All Devices:0dwDevSpecificSizedwDevSpecificOffset

For All Devices:0dwAvailableMediaModes

For All Devices:

Length, in bytes, and offset from the beginning of
LINEDEVSTATUS of an array of LINEAPPINFO structures.
The dwNumOpens member indicates the number of elements in
the array. Each element in the array identifies an application that
has the line open.

dwAppInfoSizedwAppInfoOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
258

Basic TAPI Implementation
LINEDEVSTATUS

LINEEXTENSIONID

Members

ValuesMembers

For All Devices:

0x8EBD6A50

dwExtensionID0

For All Devices:

0x128011D2

dwExtensionID1

For All Devices:

0x905B0060

dwExtensionID2

For All Devices:

0xB03DD275

dwExtensionID3

LINEFORWARD
The LINEFORWARD structure describes an entry of the forwarding instructions.

Structure Details

typedef struct lineforward_tag {
DWORD dwForwardMode;
DWORD dwCallerAddressSize;
DWORD dwCallerAddressOffset;
DWORD dwDestCountryCode;
DWORD dwDestAddressSize;
DWORD dwDestAddressOffset;

} LINEFORWARD, FAR *LPLINEFORWARD;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
259

Basic TAPI Implementation
LINEEXTENSIONID

Members

ValuesMembers

dwForwardMode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
260

Basic TAPI Implementation
LINEFORWARD

ValuesMembers

The types of forwarding. The dwForwardModemember can have
only a single bit set. This member uses the following
LINEFORWARDMODE_ constants:

LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their origin.
Use this value when unconditional forwarding for internal
and external calls cannot be controlled separately.
Unconditional forwarding overrides forwarding on busy
and/or no-answer conditions.

LINEFORWARDMODE_UNCOND is the only
forward mode that Cisco Unified TSP supports.

Note

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value
when unconditional forwarding for internal and external calls
can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value
when unconditional forwarding for internal and external calls
can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Unconditionally forward all calls that originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use
this value when forwarding for internal and external calls
both on busy and on no answer cannot be controlled
separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when
forwarding for internal and external calls on busy and on no
answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when
forwarding for internal and external calls on busy and on no
answer can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC

Forward on busy all calls that originated at a specified address
(selective call forwarding).

LINEFORWARDMODE_NOANSW

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
261

Basic TAPI Implementation
LINEFORWARD

ValuesMembers

Forward all calls on no answer, irrespective of their origin.
Use this value when call forwarding for internal and external
calls on no answer cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value when
forwarding for internal and external calls on no answer can
be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value when
forwarding for internal and external calls on no answer can
be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on no
answer (selective call forwarding).

LINEFORWARDMODE_BUSYNA

Forward all calls on busy or no answer, irrespective of their
origin. Use this value when forwarding for internal and
external calls on both busy and on no answer cannot be
controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy or no answer. Use this value
when call forwarding on busy and on no answer cannot be
controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy or no answer. Use this
value when call forwarding on busy and on no answer cannot
be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC

Forward on busy or no answer all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_UNKNOWN

Calls get forwarded, but the conditions under which
forwarding occurs are not known at this time.

LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which
forwarding occurs are not known and are never known by
the service provider.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
262

Basic TAPI Implementation
LINEFORWARD

ValuesMembers

The size in bytes of the variably sized address field that contains
the address of a caller to be forwarded and the offset in bytes from
the beginning of the containing data structure. The
dwCallerAddressSize/Offset member gets set to zero if
dwForwardMode is not one of the following
choices:LINEFORWARDMODE_BUSYNASPECIFIC,
LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or
LINEFORWARDMODE_BUSYSPECIFIC.

dwCallerAddressSize dwCallerAddressOffset

The country code of the destination address to which the call is
to be forwarded.

dwDestCountryCode

The size in bytes of the variably sized address field that contains
the address where calls are to be forwarded and the offset in bytes
from the beginning of the containing data structure.

dwDestAddressSize dwDestAddressOffset

LINEFORWARDLIST
The LINEFORWARDLIST structure describes a list of forwarding instructions.

Structure Details

typedef struct lineforwardlist_tag {
DWORD dwTotalSize;
DWORD dwNumEntries;
LINEFORWARD ForwardList[1];

} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

Members

ValuesMembers

The total size in bytes of the data structure.dwTotalSize

Number of entries in the array, specified as ForwardList[].dwNumEntries

An array of forwarding instruction. The array entries specify type
LINEFORWARD.

ForwardList[]

LINEGENERATETONE
The LINEGENERATETONE structure contains information about a tone to be generated. The lineGenerateTone
and TSPI_lineGenerateTone functions use this structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
263

Basic TAPI Implementation
LINEFORWARDLIST

You must not extend this structure.Note

This structure gets used only for the generation of tones; it is not used for tone monitoring.

Structure Details

typedef struct linegeneratetone_tag {
DWORD dwFrequency;
DWORD dwCadenceOn;
DWORD dwCadenceOff;
DWORD dwVolume;

} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

Members

ValuesMembers

The frequency, in hertz, of this tone component. A service provider
may adjust (round up or down) the frequency that the application
specified to fit its resolution.

dwFrequency

The “on” duration, in milliseconds, of the cadence of the custom
tone to be generated. Zero means no tone gets generated.

dwCadenceOn

The “off” duration, in milliseconds, of the cadence of the custom
tone to be generated. Zero means no off time, that is, a constant
tone.

dwCadenceOff

The volume level at which the tone gets generated. A value of
0x0000FFFF represents full volume, and a value of 0x00000000
means silence.

dwVolume

LINEINITIALIZEEXPARAMS
The LINEINITIZALIZEEXPARAMS structure describes parameters that are supplied when calls are made
by using LINEINITIALIZEEX.

Structure Details

typedef struct lineinitializeexparams_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwOptions;

union
{
HANDLE hEvent;
HANDLE hCompletionPort;
} Handles;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
264

Basic TAPI Implementation
LINEINITIALIZEEXPARAMS

DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

One of the LINEINITIALIZEEXOPTION_constants. Specifies
the event notification mechanism that the application wants to
use.

dwOptions

If dwOptions specifies
LINEINITIALIZEEXOPTION_USEEVENT, TAPI returns the
event handle in this field.

hEvent

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field the handle of an existing
completion port that was opened by using
CreateIoCompletionPort.

hCompletionPort

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned
through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion message
as a telephony message.

dwCompletionKey

Further Details

See lineInitializeEx, on page 176 for further information on these options.

LINELOCATIONENTRY
The LINELOCATIONENTRY structure describes a location that is used to provide an address translation
context. The LINETRANSLATECAPS structure can contain an array of LINELOCATIONENTRY structures.

You must not extend this structure.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
265

Basic TAPI Implementation
LINELOCATIONENTRY

Structure Details

typedef struct linelocationentry_tag {
DWORD dwPermanentLocationID;
DWORD dwLocationNameSize;
DWORD dwLocationNameOffset;

DWORD dwCityCodeSize;
DWORD dwCityCodeOffset;
DWORD dwPreferredCardID;
DWORD dwLocalAccessCodeSize;
DWORD dwLocalAccessCodeOffset;
DWORD dwLongDistanceAccessCodeSize;
DWORD dwLongDistanceAccessCodeOffset;
DWORD dwTollPrefixListSize;
DWORD dwTollPrefixListOffset;
DWORD dwCountryID;
DWORD dwOptions;
DWORD dwCancelCallWaitingSize;
DWORD dwCancelCallWaitingOffset;

} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members

ValuesMembers

The permanent identifier that identifies the location.dwPermanentLocationID

Contains a null-terminated string (size includes the NULL) that
describes the location in a user-friendly manner.

dwLocationNameSize

dwLocationNameOffset

The country code of the location.dwCountryCode

The preferred calling card when dialing from this location.dwPreferredCardID

Contains a null-terminated string that specifies the city or area
code that is associated with the location (the size includes the
NULL). Applications can use this information, along with the
country code, to “default” entry fields for the user when you enter
the phone numbers, to encourage the entry of proper canonical
numbers.

dwCityCodeSize

dwCityCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the access code to be dialed before calls to addresses
in the local calling area.

dwLocalAccessCodeSize

dwLocalAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the access code to be dialed before calls to addresses
outside the local calling area.

dwLongDistanceAccessCodeSize

dwLongDistanceAccessCodeOffset

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
266

Basic TAPI Implementation
LINELOCATIONENTRY

ValuesMembers

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the toll prefix list for the location. The string contains
only prefixes that consist of the digits “0” through “9” and are
separated from each other by a single “,” (comma) character.

dwTollPrefixListSize

dwTollPrefixListOffset

The country identifier of the country or region that is selected for
the location. Use this identifier with the lineGetCountry function
to obtain additional information about the specific country or
region, such as the country or region name (you cannot use the
dwCountryCode member for this purpose because country codes
are not unique).

dwCountryID

Indicates options in effect for this location with values taken from
the LINELOCATIONOPTION_Constants.

dwOptions

The size, in bytes, and the offset, in bytes, from the beginning of
the LINETRANSLATECAPS structure of a null-terminated string
that contains the dial digits and modifier characters that should
be prefixed to the dialable string (after the pulse/tone character)
when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bit in
the dwTranslateOptions parameter of lineTranslateAddress. If no
prefix is defined, dwCancelCallWaitingSize set to zero may
indicate this, or dwCancelCallWaitingSize set to 1 and
dwCancelCallWaitingOffset pointing to an empty string (single
NULL byte) may indicate this.

dwCancelCallWaitingSize

dwCancelCallWaitingOffset

LINEMESSAGE
The LINEMESSAGE structure contains parameter values that specify a change in status of the line that the
application currently has open. The lineGetMessage function returns the LINEMESSAGE structure.

Structure Details

typedef struct linemessage_tag {
DWORD hDevice;
DWORD dwMessageID;
DWORD_PTR dwCallbackInstance;
DWORD_PTR dwParam1;
DWORD_PTR dwParam2;
DWORD_PTR dwParam3;

} LINEMESSAGE, FAR *LPLINEMESSAGE;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
267

Basic TAPI Implementation
LINEMESSAGE

Members

ValuesMembers

A handle to either a line device or a call. The context that
dwMessageID provides can determine the nature of this handle
(line handle or call handle).

hDevice

A line or call device message.dwMessageID

Instance data passed back to the application, which the application
in the dwCallBackInstance parameter of lineInitializeEx specified.
TAPI does not interpret this DWORD.

dwCallbackInstance

A parameter for the message.dwParam1

A parameter for the message.dwParam2

A parameter for the message.dwParam3

For details about the parameter values that are passed in this structure, see TAPI Line Messages, on page 199.

LINEMONITORTONE
The LINEMONITORTONE structure defines a tone for the purpose of detection. Use this as an entry in an
array. An array of tones gets passed to the lineMonitorTones function that monitors these tones and sends a
LINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call
information stream for silence.

You must not extend this structure.Note

Structure Details

typedef struct linemonitortone_tag { DWORD dwAppSpecific;
DWORD dwDuration;
DWORD dwFrequency1;
DWORD dwFrequency2;
DWORD dwFrequency3;

} LINEMONITORTONE, FAR *LPLINEMONITORTONE;

Members

ValuesMembers

Used by the application for tagging the tone. When this tone is
detected, the value of the dwAppSpecific member gets passed
back to the application.

dwAppSpecific

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
268

Basic TAPI Implementation
LINEMONITORTONE

ValuesMembers

The duration, in milliseconds, during which the tone should be
present before a detection is made.

dwDuration

dwFrequency2dwFrequency1

The frequency, in hertz, of a component of the tone. If fewer than
three frequencies are needed in the tone, a value of 0 should be
used for the unused frequencies. A tone with all three frequencies
set to zero gets interpreted as silence and can be used for silence
detection.

dwFrequency3

LINEPROVIDERENTRY
The LINEPROVIDERENTRY structure provides the information for a single service provider entry. An array
of these structures gets returned as part of the LINEPROVIDERLIST structure that the function
lineGetProviderList returns.

You cannot extend this structure.Note

Structure Details

typedef struct lineproviderentry_tag {
DWORD dwPermanentProviderID;
DWORD dwProviderFilenameSize;
DWORD dwProviderFilenameOffset;

} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

Members

ValuesMembers

The permanent provider identifier of the entry.dwPermanentProviderID

The size, in bytes, and the offset, in bytes, from the beginning of
the LINEPROVIDERLIST structure of a null-terminated string
that contains the filename (path) of the service provider DLL
(.TSP) file.

dwProviderFilenameSizedwProviderFilenameOffset

LINEPROVIDERLIST
The LINEPROVIDERLIST structure describes a list of service providers. The lineGetProviderList function
returns a structure of this type. The LINEPROVIDERLIST structure can contain an array of
LINEPROVIDERENTRY structures.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
269

Basic TAPI Implementation
LINEPROVIDERENTRY

You must not extend this structure.Note

Structure Details

typedef struct lineproviderlist_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;

DWORD dwNumProviders;
DWORD dwProviderListSize;
DWORD dwProviderListOffset;

} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Members

ValuesMembers

The total size, in bytes, that are allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

The number of LINEPROVIDERENTRY structures that are
present in the array that is denominated by dwProviderListSize
and dwProviderListOffset.

dwNumProviders

The size, in bytes, and the offset, in bytes, from the beginning of
this data structure of an array of LINEPROVIDERENTRY
elements, which provide the information on each service provider.

dwProviderListSize

dwProviderListOffset

LINEREQMAKECALL
The LINEREQMAKECALL structure describes a request that a call initiated to the lineGetRequest function.

You cannot extend this structure.Note

Structure Details

typedef struct linereqmakecall_tag {
char szDestAddress[TAPIMAXDESTADDRESSSIZE];
char szAppName[TAPIMAXAPPNAMESIZE];
char szCalledParty[TAPIMAXCALLEDPARTYSIZE];

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
270

Basic TAPI Implementation
LINEREQMAKECALL

char szComment[TAPIMAXCOMMENTSIZE];
} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

Members

ValuesMembers

The null-terminated destination address of the make-call request.
The address uses the canonical address format or the dialable
address format. The maximum length of the address specifies
TAPIMAXDESTADDRESSSIZE characters, which include the
NULL terminator. Longer strings get truncated.

szDestAddress

[TAPIMAXADDRESSSIZE]

The null-terminated, user-friendly application name or filename
of the application that originated the request. Themaximum length
of the address specifies TAPIMAXAPPNAMESIZE characters,
which include the NULL terminator.

szAppName

[TAPIMAXAPPNAMESIZE]

The null-terminated, user-friendly called-party name. The
maximum length of the called-party information specifies
TAPIMAXCALLEDPARTYSIZE characters, which include the
NULL terminator.

szCalledParty

[TAPIMAXCALLEDPARTYSIZE]

The null-terminated comment about the call request. The
maximum length of the comment string specifies
TAPIMAXCOMMENTSIZE characters, which include theNULL
terminator.

szComment

[TAPIMAXCOMMENTSIZE]

LINETRANSLATECAPS
The LINETRANSLATECAPS structure describes the address translation capabilities. This structure can
contain an array of LINELOCATIONENTRY structures and an array of LINECARDENTRY structures. the
lineGetTranslateCaps function returns the LINETRANSLATECAPS structure.

You must not extend this structure.Note

Structure Details

typedef struct linetranslatecaps_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumLocations;
DWORD dwLocationListSize;
DWORD dwLocationListOffset;
DWORD dwCurrentLocationID;
DWORD dwNumCards;
DWORD dwCardListSize;
DWORD dwCardListOffset;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
271

Basic TAPI Implementation
LINETRANSLATECAPS

DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

The number of entries in the location list. It includes all locations
that are defined, including zero (default).

dwNumLocations

List of locations that are known to the address translation. The
list comprises a sequence of LINELOCATIONENTRY structures.
The dwLocationListOffset member points to the first byte of the
first LINELOCATIONENTRY structure, and the
dwLocationListSize member indicates the total number of bytes
in the entire list.

dwLocationListSize

dwLocationListOffset

The dwPermanentLocationID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

dwCurrentLocationID

The number of entries in the CardList.dwNumCards

List of calling cards that are known to the address translation. It
includes only non-hidden card entries and always includes card
0 (direct dial). The list comprises a sequence of
LINECARDENTRY structures. The dwCardListOffset member
points to the first byte of the first LINECARDENTRY structure,
and the dwCardListSize member indicates the total number of
bytes in the entire list.

dwCardListSize

dwCardListOffset

The dwPreferredCardID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

dwCurrentPreferredCardID

LINETRANSLATEOUTPUT
The LINETRANSLATEOUTPUT structure describes the result of an address translation. The
lineTranslateAddress function uses this structure.

You must not extend this structure.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
272

Basic TAPI Implementation
LINETRANSLATEOUTPUT

Structure Details

typedef struct linetranslateoutput_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwDialableStringSize;
DWORD dwDialableStringOffset;
DWORD dwDisplayableStringSize;
DWORD dwDisplayableStringOffset;
DWORD dwCurrentCountry;
DWORD dwDestCountry;
DWORD dwTranslateResults;

} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

Members

ValuesMembers

The total size, in bytes, that is allocated to this data structure.dwTotalSize

The size, in bytes, for this data structure that is needed to hold all
the returned information.

dwNeededSize

The size, in bytes, of the portion of this data structure that contains
useful information.

dwUsedSize

Contains the translated output that can be passed to the
lineMakeCall, lineDial, or other function that requires a dialable
string. The output always comprises a null-terminated string
(NULL gets included in the count in dwDialableStringSize). This
output string includes ancillary fields such as name and subaddress
if they were in the input string. This string may contain private
information such as calling card numbers. To prevent inadvertent
visibility to unauthorized persons, it should not display to the
user.

dwDialableStringSize

dwDialableStringOffset

Contains the translated output that can display to the user for
confirmation. Identical to DialableString, except the “friendly
name” of the card enclosedwithin bracket characters (for example,
“[AT&TCard]”) replaces calling card digits. The ancillary fields,
such as name and subaddress, get removed. You can display this
string in call-status dialog boxes without exposing private
information to unauthorized persons. You can also include this
information in call logs.

dwDisplayableStringSize

dwDisplayableStringOffset

Contains the country code that is configured in CurrentLocation.
Use this value to control the display by the application of certain
user interface elements for local call progress tone detection and
for other purposes.

dwCurrentCountry

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
273

Basic TAPI Implementation
LINETRANSLATEOUTPUT

ValuesMembers

Contains the destination country code of the translated address.
This value may pass to the dwCountryCode parameter of
lineMakeCall and other dialing functions (so the call progress
tones of the destination country or region such as a busy signal
are properly detected). This field gets set to zero if the destination
address that is passed to lineTranslateAddress is not in canonical
format.

dwDestCountry

Indicates the information that is derived from the translation
process, which may assist the application in presenting
user-interface elements. This field uses one
LINETRANSLATERESULT_.

dwTranslateResults

TAPI Phone Functions
TAPI phone functions enable an application to control physical aspects of a phone

Table 15: TAPI Phone Functions

TAPI phone functions

phoneCallbackFunc, on page 275

phoneClose, on page 276

phoneDevSpecific, on page 276

phoneGetDevCaps, on page 276

phoneGetDisplay, on page 277

phoneGetLamp, on page 278

phoneGetMessage, on page 278

phoneGetRing, on page 279

phoneGetStatus, on page 280

phoneGetStatusMessages, on page 281

phoneInitialize, on page 282

phoneInitializeEx, on page 283

phoneNegotiateAPIVersion, on page 285

phoneOpen, on page 286

phoneSetDisplay, on page 287

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
274

Basic TAPI Implementation
TAPI Phone Functions

TAPI phone functions

phoneSetStatusMessages, on page 288

phoneShutdown, on page 290

phoneCallbackFunc
The phoneCallbackFunc function provides a placeholder for the application-supplied function name.

All callbacks occur in the application context. The callback function must reside in a dynamic-link library
(DLL) or application module and be exported in the module-definition file.

Function Details

VOID FAR PASCAL phoneCallbackFunc(
HANDLE hDevice,
DWORD dwMsg,
DWORD dwCallbackInstance,
DWORD dwParam1,
DWORD dwParam2,
DWORD dwParam3

);

Parameters

hDevice

A handle to a phone device that is associated with the callback.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed to the application in the callback. TAPI does not interpret this
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For more information about the parameters that are passed to this callback function, see TAPI Line Messages,
on page 199 and TAPI Phone Messages, on page 290.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
275

Basic TAPI Implementation
phoneCallbackFunc

phoneClose
The phoneClose function closes the specified open phone device.

Function Details

LONG phoneClose(
HPHONE hPhone

);

Parameter

hPhone

A handle to the open phone device that is to be closed. If the function succeeds, this means that the handle
is no longer valid.

phoneDevSpecific
The phoneDevSpecific function gets used as a general extension mechanism to enable a telephony API
implementation to provide features that are not described in the other TAPI functions. The meanings of these
extensions are device specific.

When used with the Cisco Unified TSP, you can use phoneDevSpecific to send device-specific data to a phone
device.

Function Details

LONG WINAPI phoneDevSpecific (
HPHONE hPhone,
LPVOID lpParams,
DWORD dwSize
);

Parameters

hPhone

A handle to a phone device.

lpParams

A pointer to a memory area used to hold a parameter block. Its interpretation is device specific. TAPI
passes the contents of the parameter block unchanged to or from the service provider.

dwSize

The size in bytes of the parameter block area.

phoneGetDevCaps
The phoneGetDevCaps function queries a specified phone device to determine its telephony capabilities.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
276

Basic TAPI Implementation
phoneClose

Function Details

LONG phoneGetDevCaps(
HPHONEAPP hPhoneApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPPHONECAPS lpPhoneCaps

);

Parameters

hPhoneApp

The handle to the registration with TAPI for this application.

dwDeviceID

The phone device that is to be queried.

dwAPIVersion

The version number of the telephony API that is to be used. The high-order word contains the major
version number; the low-order word contains the minor version number. You can obtain this number
with the function phoneNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained with
the function phoneNegotiateExtVersion. It can be left as zero if no device-specific extensions are to be
used. Otherwise, the high-order word contains the major version number, the low-order word contains
the minor version number.

lpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful completion of the request,
this structure is filled with phone device capabilities information.

phoneGetDisplay
The phoneGetDisplay function returns the current contents of the specified phone display.

Function Details

LONG phoneGetDisplay(
HPHONE hPhone,
LPVARSTRING lpDisplay

);

Parameters

hPhone

A handle to the open phone device.

lpDisplay

A pointer to the memory location where the display content is to be stored, of type VARSTRING.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
277

Basic TAPI Implementation
phoneGetDisplay

phoneGetLamp
The phoneGetLamp function returns the current lamp mode of the specified lamp.

Cisco Unified IP Phones 79xx series do not support this function.Note

Function Details

LONG phoneGetLamp(
HPHONE hPhone,
DWORD dwButtonLampID,
LPDWORD lpdwLampMode

);

Parameters

hPhone

A handle to the open phone device.

dwButtonLampID

The identifier of the lamp that is to be queried. See PHONE_BUTTON, on page 291 for lamp IDs.

lpdwLampMode

Cisco Unified IP Phones 79xx series do not support this function.Note

A pointer to a memory location that holds the lamp mode status of the given lamp. The lpdwLampMode
parameter can have atmost one bit set. This parameter uses the following PHONELAMPMODE_constants:

• PHONELAMPMODE_FLASH -Flash means slow on and off.

• PHONELAMPMODE_FLUTTER -Flutter means fast on and off.

• PHONELAMPMODE_OFF -The lamp is off.

• PHONELAMPMODE_STEADY -The lamp is continuously lit.

• PHONELAMPMODE_WINK -The lamp winks.

• PHONELAMPMODE_UNKNOWN -The lamp mode is currently unknown.

• PHONELAMPMODE_DUMMY -Use this value to describe a button/lamp position that has no
corresponding lamp.

phoneGetMessage
The phoneGetMessage function returns the next TAPI message that is queued for delivery to an application
that is using the Event Handle notification mechanism (see phoneInitializeEx for further details).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
278

Basic TAPI Implementation
phoneGetLamp

Function Details

LONG WINAPI phoneGetMessage(
HPHONEAPP hPhoneApp,
LPPHONEMESSAGE lpMessage,
DWORD dwTimeout

);

Parameters

hPhoneApp

The handle that phoneInitializeEx returns. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
PHONEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a PHONEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns immediately.
If dwTimeout is INFINITE, the time-out interval never elapses.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED, PHONEERR_INVALPOINTER,
PHONEERR_NOMEM.

phoneGetRing
The phoneGetRing function enables an application to query the specified open phone device as to its current
ring mode.

Function Details

LONG phoneGetRing(
HPHONE hPhone,
LPDWORD lpdwRingMode,
LPDWORD lpdwVolume

);

Parameters

hPhone

A handle to the open phone device.

lpdwRingMode

The ringing pattern with which the phone is ringing. Zero indicates that the phone is not ringing.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
279

Basic TAPI Implementation
phoneGetRing

The system supports four ring modes.

The following table lists the valid ring modes.

Table 16: Ring Modes

DefinitionRing Modes

Off0

Inside Ring1

Outside Ring2

Feature Ring3

lpdwVolume

The volume level with which the phone is ringing. This parameter has no meaning; the value 0x8000
always gets returned.

phoneGetStatus
The phoneGetStatus function enables an application to query the specified open phone device for its overall
status.

Function Details

LONG WINAPI phoneGetStatusMessages(
HPHONE hPhone,
LPPHONESTATUS lpPhoneStatus
) ;

Parameters

hPhone

A handle to the open phone device to be queried.

lpPhoneStatus

A pointer to a variably sized data structure of type PHONESTATUS, which is loaded with the returned
information about the phone status.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Return values include the following:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL PHONEERR_OPERATIONFAILED,
PHONEERR_STRUCTURETOOSMALL PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
280

Basic TAPI Implementation
phoneGetStatus

phoneGetStatusMessages
The phoneGetStatusMessages function returns information about which phone-state changes on the specified
phone device generate a callback to the application.

An application can use phoneGetStatusMessages to query the generation of the corresponding messages. The
phoneSetStatusMessages can control Message generation. All phone status messages remain disabled by
default.

Function Details

LONG WINAPI phoneGetStatusMessages(
HPHONE hPhone,
LPDWORD lpdwPhoneStates,
LPDWORD lpdwButtonModes,
LPDWORD lpdwButtonStates

);

Parameters

hPhone

A handle to the open phone device that is to be monitored.

lpdwPhoneStates

A pointer to a DWORD holding zero, one or more of the PHONESTATE_Constants. These flags specify
the set of phone status changes and events for which the application can receive notification messages.
You can enable or disable monitoring individually for the following states:

• PHONESTATE_OTHER

• PHONESTATE_CONNECTED

• PHONESTATE_DISCONNECTED

• PHONESTATE_OWNER

• PHONESTATE_MONITORS

• PHONESTATE_DISPLAY

• PHONESTATE_LAMP

• PHONESTATE_RINGMODE

• PHONESTATE_RINGVOLUME

• PHONESTATE_HANDSETHOOKSWITCH

• PHONESTATE_HANDSETVOLUME

• PHONESTATE_HANDSETGAIN

• PHONESTATE_SPEAKERHOOKSWITCH

• PHONESTATE_SPEAKERVOLUME

• PHONESTATE_SPEAKERGAIN

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
281

Basic TAPI Implementation
phoneGetStatusMessages

• PHONESTATE_HEADSETHOOKSWITCH

• PHONESTATE_HEADSETVOLUME

• PHONESTATE_HEADSETGAIN

• PHONESTATE_SUSPEND

• PHONESTATE_RESUMEF

• PHONESTATE_DEVSPECIFIC

• PHONESTATE_REINIT

• PHONESTATE_CAPSCHANGE

• PHONESTATE_REMOVED

lpdwButtonModes

A pointer to a DWORD that contains flags that specify the set of phone-button modes for which the
application can receive notification messages. This parameter uses zero, one, or more of the
PHONEBUTTONMODE_Constants.

lpdwButtonStates

A pointer to a DWORD that contains flags that specify the set of phone button state changes for which
the application can receive notification messages. This parameter uses zero, one, or more of the
PHONEBUTTONSTATE_ Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALPHONEHANDLE

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL

PHONEERR_OPERATIONFAILED

PHONEERR_UNINITIALIZED.

phoneInitialize
Although the phoneInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using TAPI versions 1.3 and 1.4.

Function Details

LONG WINAPI phoneInitialize(
LPHPHONEAPP lphPhoneApp,
HINSTANCE hInstance,
PHONECALLBACK lpfnCallback,
LPCSTR lpszAppName,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
282

Basic TAPI Implementation
phoneInitialize

LPDWORD lpdwNumDevs
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the phone device.

lpszAppName

A pointer to a null-terminated string that contains displayable characters. If this parameter is non-NULL,
it contains an application-supplied name of the application. This name, which is provided in the
PHONESTATUS structure, indicates, in a user-friendly way, which application is the current owner of
the phone device. You can use this information for logging and status reporting purposes. If lpszAppName
is NULL, the application filename gets used instead.

lpdwNumDevs

A pointer to DWORD. This location gets loaded with the number of phone devices that are available to
the application.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPNAME

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_NOMEM

PHONEERR_OPERATIONFAILED

PHONEERR_REINIT

PHONEERR_RESOURCEUNAVAIL

PHONEERR_NODEVICE

PHONEERR_NODRIVER

PHONEERR_INVALPARAM

phoneInitializeEx
The phoneInitializeEx function initializes the application use of TAPI for subsequent use of the phone
abstraction. It registers the application specified notification mechanism and returns the number of phone
devices that are available to the application. A phone device represents any device that provides an
implementation for the phone-prefixed functions in the telephony API.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
283

Basic TAPI Implementation
phoneInitializeEx

Function Details

LONG WINAPI phoneInitializeEx(
LPHPHONEAPP lphPhoneApp,
HINSTANCE hInstance,
PHONECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPPHONEINITIALIZEEXPARAMS lpPhoneInitializeExParams

);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for this
parameter, in which case TAPI uses the module handle of the root executable of the process.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification (for
more information, see phoneCallbackFunc). When the application chooses to use the event handle or
completion port event notification mechanisms, this parameter gets ignored and should be set to NULL.

lpszFriendlyAppName

A pointer to a null-terminated string that contains only displayable characters. If this parameter is not
NULL, it contains an application-supplied name for the application. This name, which is provided in the
PHONESTATUS structure, indicates, in a user-friendly way, which application has ownership of the
phone device. If lpszFriendlyAppName is NULL, the application module filename gets used instead (as
returned by the Windows function GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD. Upon successful completion of this request, the number of phone devices that
are available to the application fills this location.

lpdwAPIVersion

A pointer to a DWORD. The application must initialize this DWORD, before calling this function, to
the highest API version that it is designed to support (for example, the same value that it would pass into
dwAPIHighVersion parameter of phoneNegotiateAPIVersion). Do no use artificially high values; ensure
the values are accurately set. TAPI translates any newer messages or structures into values or formats
that the application version supports. Upon successful completion of this request, the highest API version
that TAPI supports fills this location, which allows the application to detect and adapt to being installed
on a system with an older version of TAPI.

lpPhoneInitializeExParams

A pointer to a structure of type PHONEINITIALIZEEXPARAMS that contains additional parameters
that are used to establish the association between the application and TAPI (specifically, the
application-selected event notification mechanism and associated parameters).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
284

Basic TAPI Implementation
phoneInitializeEx

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPNAME

PHONEERR_OPERATIONFAILED

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_REINIT

PHONEERR_NOMEM

PHONEERR_INVALPARAM

phoneNegotiateAPIVersion
Use the phoneNegotiateAPIVersion function to negotiate the API version number to be used with the specified
phone device. It returns the extension identifier that the phone device supports, or zeros if no extensions are
provided.

Function Details

LONG WINAPI phoneNegotiateAPIVersion(
HPHONEAPP hPhoneApp,
DWORD dwDeviceID,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPPHONEEXTENSIONID lpExtensionID

);

Parameters

hPhoneApp

The handle to the application registration with TAPI.

dwDeviceID

The phone device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word represents
the major version number, and the low-order word represents the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word represents
the major version number, and the low-order word represents the minor version number.

lpdwAPIVersion

A pointer to a DWORD in which the API version number that was negotiated will be returned. If
negotiation succeeds, this number ranges from dwAPILowVersion to dwAPIHighVersion.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
285

Basic TAPI Implementation
phoneNegotiateAPIVersion

lpExtensionID

A pointer to a structure of type PHONEEXTENSIONID. If the service provider for the specified
dwDeviceID parameter supports provider-specific extensions, this structure gets filled with the extension
identifier of these extensions when negotiation succeeds. This structure contains all zeros if the line
provides no extensions. An application can ignore the returned parameter if it does not use extensions.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPHANDLE

PHONEERR_OPERATIONFAILED

PHONEERR_BADDEVICEID

PHONEERR_OPERATIONUNAVAIL

PHONEERR_NODRIVER

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL,PHONEERR_INCOMPATIBLEAPIVERSION

PHONEERR_UNINITIALIZED

PHONEERR_NODEVICE

phoneOpen
The phoneOpen function opens the specified phone device. Open the device by using either owner privilege
or monitor privilege. An application that opens the phone with owner privilege can control the lamps, display,
ringer, and hookswitch or hookswitches that belong to the phone. An application that opens the phone device
with monitor privilege receives notification only about events that occur at the phone, such as hookswitch
changes or button presses. Because ownership of a phone device is exclusive, only one application at a time
can have a phone device opened with owner privilege. The phone device can, however, be opened multiple
times with monitor privilege.

To open a phone device on a CTI port, first ensure a corresponding line device is open.Note

Function Details

LONG phoneOpen(
HPHONEAPP hPhoneApp,
DWORD dwDeviceID,
LPHPHONE lphPhone,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivilege

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
286

Basic TAPI Implementation
phoneOpen

Parameters

hPhoneApp

A handle by which the application is registered with TAPI.

dwDeviceID

The phone device to be opened.

lphPhone

A pointer to an HPHONE handle that identifies the open phone device. Use this handle to identify the
device when invoking other phone control functions.

dwAPIVersion

The API version number under which the application and telephony API agreed to operate. Obtain this
number from phoneNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. Obtain this number from
phoneNegotiateExtVersion.

dwCallbackInstance

User instance data that is passed back to the application with each message. The telephony API does not
interpret this parameter.

dwPrivilege

The privilege requested. The dwPrivilege parameter can have only one bit set. This parameter uses the
following PHONEPRIVILEGE_constants:

• PHONEPRIVILEGE_MONITOR -An application that opens a phone device with this privilege
gets informed about events and state changes that occur on the phone. The application cannot invoke
any operations on the phone device that would change its state.

• PHONEPRIVILEGE_OWNER -An application that opens a phone device in this mode can change
the state of the lamps, ringer, display, and hookswitch devices of the phone. Having owner privilege
to a phone device automatically includes monitor privilege as well.

phoneSetDisplay
The phoneSetDisplay function causes the specified string to display on the specified open phone device.

Prior to Release 4.0, Cisco Unified Communications Manager messages that were passed to the phone would
automatically overwrite any messages sent to the phone by using phoneSetDisplay(). In Cisco Unified
Communications Manager 4.0, the message sent to the phone in the phoneSetDisplay() API remains on the
phone until the phone is rebooted. If the application wants to clear the text from the display and see the Cisco
Unified Communications Manager messages again, a NULL string, not spaces, should be passed in the
phoneSetDisplay() API. In other words, the lpsDisplay parameter should be NULL and the dwSize should be
set to 0.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
287

Basic TAPI Implementation
phoneSetDisplay

Function Details

LONG phoneSetDisplay(
HPHONE hPhone,
DWORD dwRow,
DWORD dwColumn,
LPCSTR lpsDisplay,
DWORD dwSize

);

Parameters

hPhone

A handle to the open phone device. The application must be the owner of the phone.

dwRow

The row position on the display where the new text displays.

dwColumn

The column position on the display where the new text displays.

lpsDisplay

A pointer to the memory location where the display content is stored. The display information must
follow the format that is specified in the dwStringFormat member of the device capabilities for this
phone.

dwSize

The size in bytes of the information to which lpsDisplay points.

phoneSetStatusMessages
The phoneSetStatusMessages function enables an application to monitor the specified phone device for selected
status events.

See TAPI Phone Messages, on page 290 for supported messages.

Function Details

LONG phoneSetStatusMessages(
HPHONE hPhone,
DWORD dwPhoneStates,
DWORD dwButtonModes,
DWORD dwButtonStates

);

Parameters

hPhone

A handle to the open phone device to be monitored.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
288

Basic TAPI Implementation
phoneSetStatusMessages

dwPhoneStates

These flags specify the set of phone status changes and events for which the application can receive
notification messages. This parameter can have zero, one, or more bits set. This parameter uses the
following PHONESTATE_ constants:

• PHONESTATE_OTHER -Phone status items other than those in the following list changed. The
application should check the current phone status to determine which items changed.

• PHONESTATE_OWNER -The number of owners for the phone device changed.

• PHONESTATE_MONITORS -The number of monitors for the phone device changed.

• PHONESTATE_DISPLAY -The display of the phone changed.

• PHONESTATE_LAMP -A lamp of the phone changed.

• PHONESTATE_RINGMODE -The ring mode of the phone changed.

• PHONESTATE_SPEAKERHOOKSWITCH -The hookswitch state changed for this speakerphone.

• PHONESTATE_REINIT -Items changed in the configuration of phone devices. To become aware
of these changes (as with the appearance of new phone devices), the application should reinitialize
its use of TAPI. New phoneInitialize, phoneInitializeEx, and phoneOpen requests get denied until
applications have shut down their usage of TAPI. The hDevice parameter of the PHONE_STATE
message stays NULL for this state change because it applies to any line in the system. Because of
the critical nature of PHONESTATE_REINIT, you cannot mask such messages, so the setting of
this bit gets ignored, and the messages always get delivered to the application.

• PHONESTATE_REMOVED -Indicates that the service provider is removing the device from the
system (most likely through user action, through a control panel or similar utility). A PHONE_CLOSE
message on the device immediately follows a PHONE_STATEmessage with this value. Subsequent
attempts to access the device prior to TAPI being reinitialized result in PHONEERR_NODEVICE
being returned to the application. If a service provider sends a PHONE_STATEmessage that contains
this value to TAPI, TAPI passes it along to applications that negotiated TAPI version 1.4 or later;
applications that negotiated a previous TAPI version do not receive any notification.

dwButtonModes

The set of phone-buttonmodes for which the application can receive notificationmessages. This parameter
can have zero, one, or more bits set. This parameter uses the following
PHONEBUTTONMODE_constants:

• PHONEBUTTONMODE_CALL -The button is assigned to a call appearance.

• PHONEBUTTONMODE_FEATURE -The button is assigned to requesting features from the switch,
such as hold, conference, and transfer.

• PHONEBUTTONMODE_KEYPAD -The button is one of the 12 keypad buttons, ‘0’ through ‘9’,
‘*’, and ‘#’.

• PHONEBUTTONMODE_DISPLAY -The button is a “soft” button that is associated with the phone
display. A phone set can have zero or more display buttons.

dwButtonStates

The set of phone-button state changes for which the application can receive notification messages. If the
dwButtonModes parameter is zero, the system ignores dwButtonStates. If dwButtonModes has one or

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
289

Basic TAPI Implementation
phoneSetStatusMessages

more bits set, this parameter also must have at least one bit set. This parameter uses the following
PHONEBUTTONSTATE_constants:

• PHONEBUTTONSTATE_UP -The button is in the “up” state.

• PHONEBUTTONSTATE_DOWN -The button is in the “down” state (pressed down).

• PHONEBUTTONSTATE_UNKNOWN -The up or down state of the button is unknown at this
time but may become known later.

• PHONEBUTTONSTATE_UNAVAIL -The service provider does not know the up or down state
of the button, and the state will not become known.

phoneShutdown
The phoneShutdown function shuts down the application usage of the TAPI phone abstraction.

If this function is called when the application has open phone devices, these devices are closed.Note

Function Details

LONG WINAPI phoneShutdown(
HPHONEAPP hPhoneApp

);

Parameter

hPhoneApp

The application usage handle for TAPI.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM, PHONEERR_UNINITIALIZED,
PHONEERR_RESOURCEUNAVAIL.

TAPI Phone Messages
Messages notify the application of asynchronous events. All messages get sent to the application through the
message notificationmechanism that the application specified in lineInitializeEx. Themessage always contains
a handle to the relevant object (phone, line, or call), of which the application can determine the type from the
message type. The following table describes TAPI Phone messages.

Table 17: TAPI Phone Messages

TAPI Phone Messages

PHONE_BUTTON, on page 291

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
290

Basic TAPI Implementation
phoneShutdown

TAPI Phone Messages

PHONE_CLOSE, on page 294

PHONE_CREATE, on page 294

PHONE_REMOVE, on page 295

PHONE_REPLY, on page 296

PHONE_STATE, on page 296

PHONE_BUTTON
The PHONE_BUTTON message notifies the application that button press monitoring is enabled if it has
detected a button press on the local phone.

Function Details

PHONE_BUTTON
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idButtonOrLamp;
dwParam2 = (DWORD) ButtonMode;
dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device for this application is opened.

dwParam1

The button/lamp identifier of the button that was pressed. Button identifiers zero through 11 always
represent the KEYPAD buttons, with ‘0’ being button identifier zero, ‘1’ being button identifier 1 (and
so on through button identifier 9), and with ‘*’ being button identifier 10, and ‘#’ being button identifier
11. Find additional information about a button identifier with phoneGetDevCaps, on page 276.

dwParam2

The button mode of the button. The button mode for each button ID gets listed as shown in the table
below.

The TAPI service provider cannot detect button down or button up state changes. To conform to the
TAPI specification, two messages are sent to simulate a down state followed by an up state in dwparam3.

This parameter uses the following PHONEBUTTONMODE_constants:

• PHONEBUTTONMODE_CALL -The button is assigned to a call appearance.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
291

Basic TAPI Implementation
PHONE_BUTTON

• PHONEBUTTONMODE_FEATURE -The button is assigned to requesting features from the switch,
such as hold, conference, and transfer.

• PHONEBUTTONMODE_KEYPAD -The button is one of the 12 keypad buttons, ‘0’ through ‘9’,
‘*’, and ‘#’.

• PHONEBUTTONMODE_DISPLAY -The button is a soft button that is associated with the phone
display. A phone set can have zero or more display buttons.

dwParam3

Specifies whether this is a button-down event or a button-up event. This parameter uses the following
PHONEBUTTONSTATE_constants:

• PHONEBUTTONSTATE_UP -The button is in the up state.

• PHONEBUTTONSTATE_DOWN -The button is in the down state (pressed down).

• PHONEBUTTONSTATE_UNKNOWN -The up or down state of the button is not known at this
time and may be known later.

• PHONEBUTTONSTATE_UNAVAIL -The service provider does not know the up or down state
of the button, and the state cannot become known at a future time.

Button ID values of zero through 11 map to the keypad buttons as defined by TAPI. Values above 11
map to line and feature buttons. The low-order part of the DWORD specifies the feature. The high-order
part of the DWORD specifies the instance number of that feature. The following table lists all possible
values for the low-order part of the DWORD that corresponds to the feature.

Use the following expression to make the button ID:

ButtonID = (instance << 16) | featureID

The following table lists the valid phone button values.

Table 18: Phone Button Values

Button ModeHas InstanceFeatureValue

KeypadNoKeypad button 00

KeypadNoKeypad button 11

KeypadNoKeypad button 22

KeypadNoKeypad button 33

KeypadNoKeypad button 44

KeypadNoKeypad button 55

KeypadNoKeypad button 66

KeypadNoKeypad button 77

KeypadNoKeypad button 88

KeypadNoKeypad button 99

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
292

Basic TAPI Implementation
PHONE_BUTTON

Button ModeHas InstanceFeatureValue

KeypadNoKeypad button ‘*’10

KeypadNoKeypad button ‘#’11

FeatureNoLast Number Redial12

FeatureYesSpeed Dial13

FeatureNoHold14

FeatureNoTransfer15

FeatureNoForward All (for line one)16

FeatureNoForward Busy (for line one)17

FeatureNoForward No Answer (for line
one)

18

FeatureNoDisplay19

CallYesLine20

FeatureNoChat (for line one)21

FeatureNoWhiteboard (for line one)22

FeatureNoApplication Sharing (for line
one)

23

FeatureNoT120 File Transfer (for line one)24

FeatureNoVideo (for line one)25

FeatureNoVoice Mail (for line one)26

FeatureNoAnswer Release27

FeatureNoAuto-answer28

FeatureYesGeneric Custom Button 144

FeatureYesGeneric Custom Button 245

FeatureYesGeneric Custom Button 346

FeatureYesGeneric Custom Button 447

FeatureYesGeneric Custom Button 548

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
293

Basic TAPI Implementation
PHONE_BUTTON

PHONE_CLOSE
The PHONE_CLOSE message gets sent when an open phone device is forcibly closed as part of resource
reclamation. The device handle is no longer valid after this message is sent.

Function Details

PHONE_CLOSE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the open phone device that was closed. The handle is no longer valid after this message is
sent.

dwCallbackInstance

The callback instance of the application that is provided on an open phone device.

dwParam1
Not used.

dwParam2
Not used.

dwParam3
Not used.

PHONE_CREATE
The PHONE_CREATE message gets sent to inform applications of the creation of a new phone device.

CTI Manager cluster support, extension mobility, change notification, and user addition to the directory can
generate PHONE_CREATE events.

Note

Function Details

PHONE_CREATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
294

Basic TAPI Implementation
PHONE_CLOSE

Parameters

hPhone

Not used.

dwCallbackInstance
Not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2
Not used.

dwParam3
Not used.

PHONE_REMOVE
The PHONE_REMOVEmessage gets sent to inform an application of the removal (deletion from the system)
of a phone device. Generally, this method is not used for temporary removals, such as extraction of PCMCIA
devices, but only for permanent removals in which the service provider would no longer report the device, if
TAPI were reinitialized.

CTI Manager cluster support, extension mobility, change notification, and user deletion from the directory
can generate PHONE_REMOVE events.

Note

Function Details

PHONE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice
Reserved. Set to zero.

dwCallbackInstance
Reserved. Set to zero.

dwParam1

Identifier of the phone device that was removed.

dwParam2
Reserved. Set to zero.

dwParam3
Reserved. Set to zero.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
295

Basic TAPI Implementation
PHONE_REMOVE

PHONE_REPLY
The TAPI PHONE_REPLY message gets sent to an application to report the results of function call that
completed asynchronously.

Function Details

PHONE_REPLY
hPhone = (HPHONE) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

hPhone
Not used.

dwCallbackInstance

Returns the application callback instance.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a LONG. Zero indicates
success; a negative number indicates an error.

dwParam3
Not used.

PHONE_STATE
TAPI sends the PHONE_STATE message to an application whenever the status of a phone device changes.

Function Details

PHONE_STATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PhoneState;
dwParam2 = (DWORD) PhoneStateDetails;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device is opened for this application.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
296

Basic TAPI Implementation
PHONE_REPLY

dwParam1

The phone state that changed. This parameter uses the following PHONESTATE_constants:

• PHONESTATE_OTHER -Phone-status items other than the following ones changed. The application
should check the current phone status to determine which items changed.

• PHONESTATE_CONNECTED -The connection between the phone device and TAPI was just
made. This happens when TAPI is first invoked or when the wire that connects the phone to the
computer is plugged in while TAPI is active.

• PHONESTATE_DISCONNECTED -The connection between the phone device and TAPI just
broke. This happens when the wire that connects the phone set to the computer is unplugged while
TAPI is active.

• PHONESTATE_OWNER -The number of owners for the phone device changed.

• PHONESTATE_MONITORS -The number of monitors for the phone device changed.

• PHONESTATE_DISPLAY -The display of the phone changed.

• PHONESTATE_LAMP -A lamp of the phone changed.

• PHONESTATE_RINGMODE -The ring mode of the phone changed.

• PHONESTATE_HANDSETHOOKSWITCH -The hookswitch state changed for this speakerphone.

• PHONESTATE_REINIT -Items changed in the configuration of phone devices. To become aware
of these changes (as with the appearance of new phone devices), the application should reinitialize
its use of TAPI. The hDevice parameter of the PHONE_STATE message stays NULL for this state
change as it applies to any of the phones in the system.

• PHONESTATE_REMOVED -Indicates that the device is being removed from the system by the
service provider (most likely through user action, through a control panel or similar utility). Normally,
a PHONE_CLOSE message on the device immediately follows a PHONE_STATE message with
this value. Subsequent attempts to access the device prior to TAPI being reinitialized result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message that contains this value to TAPI, TAPI passes it along to applications
that negotiated TAPI version 1.4 or later; applications that negotiated a previous API version do
not receive any notification.

• PHONESTATE_SUSPEND -Indicates the phone unregisters as it enters Energywise
DeepSleep/PowersavePlus mode.

dwParam2

Phone state-dependent information that details the status change. This parameter is not used if multiple
flags are set in dwParam1 because multiple status items get changed. The application should invoke
phoneGetStatus to obtain a complete set of information.

Parameter dwparam2 can comprise one of PHONESTATE_LAMP, PHONESTATE_DISPLAY,
PHONESTATE_HANDSETHOOKSWITCH, or PHONESTATE_RINGMODE. Because the Cisco
Unified TSP cannot differentiate among hook switches for handsets, headsets, or speaker, the
PHONESTATE_HANDSETHOOKSWITCH value always gets used for hook switches.

If dwparam2 is PHONESTATE_LAMP, dwparam2 is the button ID that the PHONE_BUTTONmessage
defines.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
297

Basic TAPI Implementation
PHONE_STATE

If dwParam1 is PHONESTATE_OWNER, dwParam2 contains the new number of owners.

If dwParam1 is PHONESTATE_MONITORS, dwParam2 contains the new number of monitors.

If dwParam1 is PHONESTATE_LAMP, dwParam2 contains the button/lamp identifier of the lamp that
changed.

If dwParam1 is PHONESTATE_RINGMODE, dwParam2 contains the new ring mode.

If dwParam1 is PHONESTATE_HANDSET, SPEAKER, or HEADSET, dwParam2 contains the new
hookswitch mode of that hookswitch device. This parameter uses the following
PHONEHOOKSWITCHMODE_constants:

• PHONEHOOKSWITCHMODE_ONHOOK -The microphone and speaker both remain on hook
for this device.

• PHONEHOOKSWITCHMODE_MICSPEAKER -Themicrophone and speaker both remain active
for this device. The Cisco Unified TSP cannot distinguish among handsets, headsets, or speakers,
so this value gets sent when the device is off hook.

If dw Param1 is PHONESTATE_SUSPEND, dwParam2 contains the reason EnergyWisePowerSavePlus
when the phone unregisters as it enters EnergywiseDeepSleep.

dwParam3

The TAPI specification specifies that dwparam3 is zero; however, the Cisco Unified TSP will send the
new lamp state to the application in dwparam3 to avoid the call to phoneGetLamp to obtain the state
when dwparam2 is PHONESTATE_LAMP.

TAPI Phone Structures
This section describes the TAPI phone structures that Cisco Unified TSP supports:

.

Table 19: TAPI Phone Structures

TAPI Phone Structure

PHONECAPS Structure, on page 298

PHONEINITIALIZEEXPARAMS, on page 300

PHONEMESSAGE, on page 301

PHONESTATUS, on page 302

VARSTRING, on page 304

PHONECAPS Structure
This section lists the Cisco-set attributes for each member of the PHONECAPS structure. If the value of a
structure member is device, line, or call specific, the list gives the value for each condition.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
298

Basic TAPI Implementation
TAPI Phone Structures

Members

dwProviderInfoSize
dwProviderInfoOffset

"Cisco Unified TSPxxx.TSP: Cisco IP PBX Service Provider Ver. X.X(x.x)" where the text before the
colon specifies the file name of the TSP, and the text after "Ver. " specifies the version of the TSP.

dwPhoneInfoSize
dwPhoneInfoOffset

"DeviceType:[type]" where type specifies the device type that is specified in the Cisco Unified
Communications Manager database.

dwPermanentPhoneID
dwPhoneNameSize
dwPhoneNameOffset

"Cisco Phone: [deviceName]" where deviceName specifies the name of the device in the Cisco Unified
Communications Manager database.

dwStringFormat

STRINGFORMAT_ASCII

dwPhoneStates

PHONESTATE_OWNER |

PHONESTATE_MONITORS |

PHONESTATE_DISPLAY | (Not set for CTI Route Points)

PHONESTATE_LAMP | (Not set for CTI Route Points)

PHONESTATE_RESUME |

PHONESTATE_REINIT |

PHONESTATE_SUSPEND

dwHookSwitchDevs

PHONEHOOKSWITCHDEV_HANDSET (Not set for CTI Route Points)

dwHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_UNKNOWN (Not set for CTI Route Points)

dwDisplayNumRows (Not set for CTI Route Points)
1

dwDisplayNumColumns

20 (Not set for CTI Route Points)

dwNumRingModes

3 (Not set for CTI Route Points)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
299

Basic TAPI Implementation
PHONECAPS Structure

dwPhoneFeatures (Not set for CTI Route Points)

PHONEFEATURE_GETDISPLAY |

PHONEFEATURE_GETLAMP |

PHONEFEATURE_GETRING |

PHONEFEATURE_SETDISPLAY |

PHONEFEATURE_SETLAMP

dwMonitoredHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER (Not set for CTI Route Points)

PHONEINITIALIZEEXPARAMS
The PHONEINITIALIZEEXPARAMS structure contains parameters that are used to establish the association
between an application and TAPI; for example, the application selected event notification mechanism. The
phoneInitializeEx function uses this structure.

Structure Details

typedef struct phoneinitializeexparams_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwOptions;
union
{
HANDLE hEvent;
HANDLE hCompletionPort;

} Handles;
DWORD dwCompletionKey;

} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwOptions

One of the PHONEINITIALIZEEXOPTION_Constants. Specifies the event notificationmechanism that
the application wants to use.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
300

Basic TAPI Implementation
PHONEINITIALIZEEXPARAMS

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event handle
in this member.

hCompletionPort

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify, in this member, the handle of an existing completion port that is opened by using
CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify in this field a value that is returned through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion message as a telephony message.

PHONEMESSAGE
The PHONEMESSAGE structure contains the next message that is queued for delivery to the application.
The phoneGetMessage function returns the following structure.

Structure Details

typedef struct phonemessage_tag {
DWORD hDevice;
DWORD dwMessageID;
DWORD_PTR dwCallbackInstance;
DWORD_PTR dwParam1;
DWORD_PTR dwParam2;
DWORD_PTR dwParam3;

} PHONEMESSAGE, FAR *LPPHONEMESSAGE;

Members

hDevice

A handle to a phone device.

dwMessageID

A phone message.

dwCallbackInstance

Instance data that is passed back to the application, which the application specified in phoneInitializeEx.
TAPI does not interpret DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
301

Basic TAPI Implementation
PHONEMESSAGE

Further Details

For details on the parameter values that are passed in this structure, see “TAPI PhoneMessages, on page 290.”

PHONESTATUS
The PHONESTATUS structure describes the current status of a phone device. The phoneGetStatus and
TSPI_phoneGetStatus functions return this structure.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset) variably
sized area of this data structure.

The dwPhoneFeatures member is available only to applications that open the phone device with an API version
of 2.0 or later.

Note

Structure Details

typedef struct phonestatus_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwStatusFlags;
DWORD dwNumOwners;
DWORD dwNumMonitors;
DWORD dwRingMode;
DWORD dwRingVolume;
DWORD dwHandsetHookSwitchMode;
DWORD dwHandsetVolume;
DWORD dwHandsetGain;
DWORD dwSpeakerHookSwitchMode;
DWORD dwSpeakerVolume;
DWORD dwSpeakerGain;
DWORD dwHeadsetHookSwitchMode;
DWORD dwHeadsetVolume;
DWORD dwHeadsetGain;
DWORD dwDisplaySize;
DWORD dwDisplayOffset;
DWORD dwLampModesSize;
DWORD dwLampModesOffset;
DWORD dwOwnerNameSize;
DWORD dwOwnerNameOffset;
DWORD dwDevSpecificSize;
DWORD dwDevSpecificOffset;
DWORD dwPhoneFeatures;

} PHONESTATUS, FAR *LPPHONESTATUS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
302

Basic TAPI Implementation
PHONESTATUS

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStatusFlags

Provides a set of status flags for this phone device. This member uses one of the
PHONESTATUSFLAGS_Constants.

dwNumOwners

The number of application modules with owner privilege for the phone.

dwNumMonitors

The number of application modules with monitor privilege for the phone.

dwRingMode

The current ring mode of a phone device.

dwRingVolume
0x8000

dwHandsetHookSwitchMode

The current hookswitch mode of the phone handset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHandsetVolume
0

dwHandsetGain
0

dwSpeakerHookSwitchMode

The current hookswitchmode of the phone speakerphone. PHONEHOOKSWITCHMODE_UNKNOWN

dwSpeakerVolume
0

dwSpeakerGain
0

dwHeadsetHookSwitchMode

The current hookswitch mode of the phone's headset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHeadsetVolume
0

dwHeadsetGain
0

dwDisplaySize
dwDisplayOffset

0
dwLampModesSize
dwLampModesOffset

0
dwOwnerNameSize
dwOwnerNameOffset

The size, in bytes, of the variably sized field that contains the name of the application that is the current
owner of the phone device and the offset, in bytes, from the beginning of this data structure. The name
is the application name that the application provides when it invokes with phoneInitialize or

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
303

Basic TAPI Implementation
PHONESTATUS

phoneInitializeEx. If no application name was supplied, the application's filename is used instead. If the
phone currently has no owner, dwOwnerNameSize is zero.

dwDevSpecificSize
dwDevSpecificOffset

Application can send XSI data to phone by using DeviceDataPassThrough device-specific extension.
Phone can pass back data to Application. The data is returned as part of this field. The format of the data
is as follows:

struct PhoneDevSpecificData
{ DWORD m_DeviceDataSize ; // size of device data

DWORD m_DeviceDataOffset ; // offset from PHONESTATUS
structure

// this will follow the actual variable length device data.
}

dwPhoneFeatures

The application negotiates an extension version > = 0x00020000. The following features are supported:

• PHONEFEATURE_GETDISPLAY

• PHONEFEATURE_GETLAMP

• PHONEFEATURE_GETRING

• PHONEFEATURE_SETDISPLAY

• PHONEFEATURE_SETLAMP

VARSTRING
The VARSTRING structure returns variably sized strings. The line device class and the phone device class
both use it.

No extensibility exists with VARSTRING.Note

Structure Details

typedef struct varstring_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwStringFormat;
DWORD dwStringSize;
DWORD dwStringOffset;

} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
304

Basic TAPI Implementation
VARSTRING

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStringFormat

The format of the string. This member uses one of the STRINGFORMAT_Constants.

dwStringSize
dwStringOffset

The size, in bytes, of the variably sized device field that contains the string information and the offset,
in bytes, from the beginning of this data structure.

If a string cannot be returned in a variable structure, the dwStringSize and dwStringOffset members get
set in one of the following ways:

• dwStringSize and dwStringOffset members both get set to zero.

• dwStringOffset gets set to nonzero and dwStringSize gets set to zero.

• dwStringOffset gets set to nonzero, dwStringSize gets set to 1, and the byte at the given offset gets
set to zero.]

Wave Functions
The AVAudio32.dll implements the wave interfaces to the Cisco wave drivers. The system supports all APIs
for input and output waveform devices.

Cisco TSP 8.0 includes CiscoMedia Driver, a new and innovative way for TAPI-based applications, to provide
media interaction. Cisco TSP 8.0(1) includes support for Cisco Media Driver and Cisco Wave Driver. Only
one driver is active at any given time. For more information, see Cisco TSP Media Driver, on page 421.

Table 20: Wave Functions

Wave functions

waveInAddBuffer, on page 306

waveInClose, on page 306

waveInGetID, on page 307

waveInGetPosition, on page 307

waveInOpen, on page 308

waveInPrepareHeader, on page 309

waveInReset, on page 310

waveInStart, on page 310

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
305

Basic TAPI Implementation
Wave Functions

Wave functions

waveInUnprepareHeader, on page 310

waveOutClose, on page 311

waveOutGetDevCaps, on page 311

waveOutGetID, on page 312

waveOutGetPosition, on page 312

waveOutOpen, on page 313

waveOutPrepareHeader, on page 314

waveOutReset, on page 314

waveOutUnprepareHeader, on page 315

waveOutWrite, on page 315

waveInAddBuffer
The waveInAddBuffer function sends an input buffer to the given waveform-audio input device. When the
buffer is filled, the application receives notification.

Function Details

MMRESULT waveInAddBuffer(
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInClose
The waveInClose function closes the given waveform-audio input device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
306

Basic TAPI Implementation
waveInAddBuffer

Function Details

MMRESULT waveInClose(
HWAVEIN hwi

);

Parameter

hwi

Handle of the waveform-audio input device. If the function succeeds, the handle no longer remains valid
after this call.

waveInGetID
The waveInGetID function gets the device identifier for the given waveform-audio input device.

This function gets supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

Function Details

MMRESULT waveInGetID(
HWAVEIN hwi,
LPUINT puDeviceID

);

Parameters

hwi

Handle of the waveform-audio input device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveInGetPosition
The waveInGetPosition function retrieves the current input position of the given waveform-audio input device.

Function Details

MMRESULT waveInGetPosition(
HWAVEIN hwi,
LPMMTIME pmmt,
UINT cbmmt

);

Parameters

hwi

Handle of the waveform-audio input device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
307

Basic TAPI Implementation
waveInGetID

pmmt

Address of the MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

waveInOpen
The waveInOpen function opens the given waveform-audio input device for recording.

Function Details

MMRESULT waveInOpen(
LPHWAVEIN phwi,
UINT uDeviceID,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen

);

Parameters

phwi

Address that is filled with a handle that identifies the open waveform-audio input device. Use this handle
to identify the device when calling other waveform-audio input functions. This parameter can be NULL
if WAVE_FORMAT_QUERY is specified for fdwOpen.HDR structure.

uDeviceID

Identifier of the waveform-audio input device to open. It can be either a device identifier or a handle of
an open waveform-audio input device. You can use the following flag instead of a device identifier:

WAVE_MAPPER -The function selects a waveform-audio input device that is capable of recording in
the specified format.

pwfx

Address of aWAVEFORMATEX structure that identifies the desired format for recordingwaveform-audio
data. You can free this structure immediately after waveInOpen returns.

The formats that the TAPI Wave Driver supports include a 16-bit PCM at 8000 Hz, 8-bit mulaw at 8000
Hz, and 8-bit alaw at 8000 Hz.

Note

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a thread
to be called during waveform-audio recording to process messages that are related to the progress of
recording. If no callback function is required, this value can specify zero. For more information on the
callback function, see waveInProc in the TAPI API.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
308

Basic TAPI Implementation
waveInOpen

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter is not used with the window
callback mechanism.

fdwOpen

Flags for opening the device. The following values definitions apply:

• CALLBACK_EVENT -The dwCallback parameter specifies an event handle.

• CALLBACK_FUNCTION -The dwCallback parameter specifies a callback procedure address.

• CALLBACK_NULL -No callback mechanism. This represents the default setting.

• CALLBACK_THREAD -The dwCallback parameter specifies a thread identifier.

• CALLBACK_WINDOW -The dwCallback parameter specifies a window handle.

• WAVE_FORMAT_DIRECT -If this flag is specified, the A driver does not perform conversions
on the audio data.

• WAVE_FORMAT_QUERY -The function queries the device to determine whether it supports the
given format, but it does not open the device.

• WAVE_MAPPED -The uDeviceID parameter specifies a waveform-audio device to which the wave
mapper maps.

waveInPrepareHeader
The waveInPrepareHeader function prepares a buffer for waveform-audio input.

Function Details

MMRESULT waveInPrepareHeader(
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
309

Basic TAPI Implementation
waveInPrepareHeader

waveInReset
The waveInReset function stops input on the given waveform-audio input device and resets the current position
to zero. All pending buffers get marked as done and get returned to the application.

Function Details

MMRESULT waveInReset(
HWAVEIN hwi

);

Parameter

hwi

Handle of the waveform-audio input device.

waveInStart
The waveInStart function starts input on the given waveform-audio input device.

Function Details

MMRESULT waveInStart(
HWAVEIN hwi

);

Parameter

hwi

Handle of the waveform-audio input device.

waveInUnprepareHeader
The waveInUnprepareHeader function cleans up the preparation that the waveInPrepareHeader function
performs. This function must be called after the device driver fills a buffer and returns it to the application.
You must call this function before freeing the buffer.

Function Details

MMRESULT waveInUnprepareHeader(
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
310

Basic TAPI Implementation
waveInReset

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutClose
The waveOutClose function closes the given waveform-audio output device.

Function Details

MMRESULT waveOutClose(
HWAVEOUT hwo

);

Parameter

hwo

Handle of the waveform-audio output device. If the function succeeds, the handle no longer remains
valid after this call.

waveOutGetDevCaps
The waveOutGetDevCaps function retrieves the capabilities of a given waveform-audio output device.

Function Details

MMRESULT waveOutGetDevCaps(
UINT uDeviceID,
LPWAVEOUTCAPS pwoc,
UINT cbwoc

);

Parameters

uDeviceID

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an open
waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure that is to be filled with information about the capabilities of
the device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
311

Basic TAPI Implementation
waveOutClose

cbwoc

Size, in bytes, of the WAVEOUTCAPS structure.

waveOutGetID
The waveOutGetID function retrieves the device identifier for the given waveform-audio output device.

This function gets supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

Function Details

MMRESULT waveOutGetID(
HWAVEOUT hwo,
LPUINT puDeviceID

);

Parameters

hwo

Handle of the waveform-audio output device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveOutGetPosition
The waveOutGetPosition function retrieves the current playback position of the given waveform-audio output
device.

Function Details

MMRESULT waveOutGetPosition(
HWAVEOUT hwo,
LPMMTIME pmmt,
UINT cbmmt

);

Parameters

hwo

Handle of the waveform-audio output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
312

Basic TAPI Implementation
waveOutGetID

waveOutOpen
The waveOutOpen function opens the given waveform-audio output device for playback.

Function Details

MMRESULT waveOutOpen(
LPHWAVEOUT phwo,
UINT uDeviceID,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen

);

Parameters

phwo

Address that is filled with a handle that identifies the open waveform-audio output device. Use the handle
to identify the device when other waveform-audio output functions are called. This parameter might be
NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio output device to open. It can be either a device identifier or a handle
of an open waveform-audio input device. You can use the following flag instead of a device identifier:

WAVE_MAPPER -The function selects a waveform-audio output device that is capable of playing the
given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio data to be
sent to the device. You can free this structure immediately after passing it to waveOutOpen.

The formats that the TAPI Wave Driver supports include 16-bit PCM at 8000 Hz, 8-bit mulaw at 8000
Hz, and 8-bit alaw at 8000 Hz.

Note

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a thread
to be called during waveform-audio playback to process messages that are related to the progress of the
playback. If no callback function is required, this value can specify zero. For more information on the
callback function, see waveOutProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter is not used with the window
callback mechanism.

fdwOpen

Flags for opening the device. The following value definitions apply:

• CALLBACK_EVENT -The dwCallback parameter represents an event handle.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
313

Basic TAPI Implementation
waveOutOpen

• CALLBACK_FUNCTION -The dwCallback parameter specifies a callback procedure address.

• CALLBACK_NULL -No callback mechanism. This value specifies the default setting.

• CALLBACK_THREAD -The dwCallback parameter represents a thread identifier.

• CALLBACK_WINDOW -The dwCallback parameter specifies a window handle.

• WAVE_ALLOWSYNC -If this flag is specified, a synchronous waveform-audio device can be
opened. If this flag is not specified while a synchronous driver is opened, the device will fail to
open.

• WAVE_FORMAT_DIRECT -If this flag is specified, the ACM driver does not perform conversions
on the audio data.

• WAVE_FORMAT_QUERY -If this flag is specified, waveOutOpen queries the device to determine
whether it supports the given format, but the device does not actually open.

• WAVE_MAPPED -If this flag is specified, the uDeviceID parameter specifies a waveform-audio
device to which the wave mapper maps.

waveOutPrepareHeader
The waveOutPrepareHeader function prepares a waveform-audio data block for playback.

Function Details

MMRESULT waveOutPrepareHeader(
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutReset
The waveOutReset function stops playback on the given waveform-audio output device and resets the current
position to zero. All pending playback buffers get marked as done and get returned to the application.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
314

Basic TAPI Implementation
waveOutPrepareHeader

Function Details

MMRESULT waveOutReset(
HWAVEOUT hwo

);

Parameter

hwo

Handle of the waveform-audio output device.

waveOutUnprepareHeader
The waveOutUnprepareHeader function cleans up the preparation that the waveOUtPrepareHeader function
performs. Ensure this function is called after the device driver is finished with a data block. You must call
this function before freeing the buffer.

Function Details

MMRESULT waveOutUnprepareHeader(
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutWrite
The waveOutWrite function sends a data block to the given waveform-audio output device.

Function Details

MMRESULT waveOutWrite(
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
315

Basic TAPI Implementation
waveOutUnprepareHeader

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that contains information about the data block.

cbwh

Size, in bytes, of the WAVEHDR structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
316

Basic TAPI Implementation
waveOutWrite

C H A P T E R 6
Cisco Device-Specific Extensions

This chapter describes the Cisco device-specific TAPI extensions. CiscoLineDevSpecific and the
CCiscoPhoneDevSpecific class represent the parent class. This chapter describes how to invoke the Cisco
device-specific TAPI extensions with the lineDevSpecific function. It also describes a set of classes that you
can use when you call phoneDevSpecific. It contains the following sections:

• Cisco Line Device Specific Extensions, on page 317
• Cisco Line Device Feature Extensions, on page 391
• CCiscoPhoneDevSpecific, on page 395
• Messages, on page 405

Cisco Line Device Specific Extensions
The following table lists and describes the subclasses of Cisco Line Device-Specific Extensions. This section
contains all of the extensions in the table and descriptions of the following data structures:

• LINEDEVCAPS, on page 321

• LINECALLINFO, on page 324

• LINECALLPARAMS, on page 343

• LINEDEVSTATUS, on page 344

SynopsisCisco functions

The CCiscoLineDevSpecific class specifies the parent class to
the following classes.

CCiscoLineDevSpecific, on page 346

The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that the hLine parameter
specifies.

Message Waiting, on page 349

The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that a parameter specifies and
remains independent of the hLine parameter.

Message Waiting Dirn, on page 350

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
317

SynopsisCisco functions

The CCiscoLineDevSpecificSetMsgSummary class turns the
message waiting lamp on or off, as well as provides voice and
fax message counts for the line specified by the hLine parameter.

Message Summary, on page 350

The CCiscoLineDevSpecificSetMsgSummaryDirn class turns the
message waiting lamp on or off and provides voice and fax
message counts for the line specified by a parameter and is
independent of the hLine parameter.

Message Summary Dirn, on page 352

TheCCiscoLineDevSpecificUserControlRTPStream class controls
the audio stream for a line.

Audio Stream Control, on page 353

The CCiscoLineDevSpecificSetStatusMsgs class controls the
reporting of certain line device specific messages for a line.

Set Status Messages, on page 355

Cisco Unified TSP 4.0 and later do not support this function. The
CCiscoLineDevSpecificSwapHoldSetupTransfer class performs
a setupTransfer between a call that is in CONNECTED state and
a call that is in ONHOLD state. This function will change the
state of the connected call to ONHOLDPENDTRANSFER state
and the ONHOLD call to CONNECTED state. This action will
then allow a completeTransfer to be performed on the two calls.

Swap-Hold/SetupTransfer, on page 358

The CCiscoLineDevSpecificRedirectResetOrigCalled class gets
used to redirect a call to another party while resetting the original
called ID of the call to the destination of the redirect.

Redirect Reset Original Called ID, on page 359

The CciscoLineDevSpecificPortRegistrationPerCall class gets
used to register a CTI port or route point for the Dynamic Port
Registration feature, which allows applications to specify the IP
address and UDP port number on a call-by-call basis.

Port Registration per Call, on page 360

The CciscoLineDevSpecificSetRTPParamsForCall class sets the
IP address and UDP port number for the specified call.

Setting RTP Parameters for Call, on page 362

The CCiscoLineDevSpecificRedirectSetOrigCalled class to
redirect a call to another party while setting the original called ID
of the call to any other party.

Redirect Set Original Called ID, on page 363

The CciscoLineDevSpecificJoin class joins two or more calls into
one conference call.

Join, on page 363

The CciscoLineDevSpecificUserSetSRTPAlgorithmID class
allows the application to set SRTP algorithm IDs. You should use
this class after lineopen and before
CCiscoLineDevSpecificSetRTPParamsForCall or
CCiscoLineDevSpecificUserControlRTPStream

Set User SRTP Algorithm IDs, on page 364

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
318

Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions

SynopsisCisco functions

The CciscoLineDevSpecificAcquire class explicitly acquires any
CTI Controllable device in the Cisco Unified Communications
Manager system, which needs to be opened in Super Provider
mode.

Explicit Acquire, on page 366

The CciscoLineDevSpecificDeacquire class explicitly de-acquires
any CTI controllable device in the Cisco Unified Communications
Manager system.

Explicit De-Acquire, on page 367

The CCiscoLineDevSpecificRedirectFACCMC class redirects a
call to another party while including a FAC, CMC, or both.

Redirect FAC CMC, on page 367

The CCiscoLineDevSpecificBlindTransferFACCMC class blind
transfers a call to another party while including a FAC, CMC, or
both.

Blind Transfer FAC CMC, on page 368

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class
opens a CTI port in third-party mode.

CTI Port Third Party Monitor, on page 369

The CciscoLineDevSpecificSendLineOpen class triggers actual
line open from TSP side. Use this for delayed open mechanism.

Send Line Open, on page 370

The CciscoLineSetIntercomSpeeddial class allows the application
to set or reset SpeedDial/Label on an intercom line.

Set Intercom SpeedDial, on page 371

The CciscoLineIntercomTalkback class allows the application to
initiate talk back on an incoming Intercom call on an Intercom
line.

Intercom Talk Back, on page 372

The CciscoLineRedirectWithFeaturePriority class enables the
application to redirect calls with specified priority.

Redirect with Feature Priority, on page 373

The CCiscoLineDevSpecificStartCallMonitoring class allows
applications to send a start monitoring request for the active call
on a line.

Start Call Monitoring, on page 373

The CCiscoLineDevSpecificStartCallRecording allows the
application to send a recording request for the active call on that
line.

Start Call Recording, on page 375

The CCiscoLineDevSpecificStopCallRecording allows the
application to stop recording a call on that line.

StopCall Recording, on page 376

The CciscoLineDevSpecificSetIPv6AddressAndMode enables
the application to set the IPv6 address and addressingmode during
registration.

Set IPv6 Address and Mode, on page 377

The CciscoLineDevSpecificSetRTPParamsForCallIPv6 class sets
the RTP parameters for calls for which you must specify IPv6
address.

Set RTP Parameters for IPv6 Calls, on page 378

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
319

Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions

SynopsisCisco functions

The CciscoLineDevSpecificDirectTransfer class transfers calls
across lines or on the same line.

Direct Transfer, on page 379

The
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
class is used to register the call Pickup Group for notification on
calls for Pickup.

RegisterCallPickUpGroupForNotification, on page 380

The
CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification
class is used to unregister the call Pickup Group for notification
on calls for Pickup.

UnRegisterCallPickUpGroupForNotification, on page 381

This feature allows to invoke the pickup, group-pickup,
other-pickup, and directed pickup feature from the application.
Apart from providing API to invoke feature, application will have
capability to register Call pickup group for alert notification,
whenever a call is available for pickup.

The CciscoLineDevSpecificCallPickupRequest class is used to
Pickup the call from the PickGroup.

CallPickUpRequest, on page 381

The CCiscoLineDevSpecificStartSendMediaToBIBRequest class
allows the application to initiate agent greeting to the customer
call.

Start Send Media to BIB, on page 382

The CCiscoLineDevSpecificStopSendMediaToBIBRequest class
allows the application to stop agent greeting that is playing on the
agent-to-customer call.

Stop Send Media to BIB, on page 383

The CciscoLineDevSpecificEnableFeatureSupport class allows
the application to initiate Zip tone on the Agent Call.

Agent Zip Tone, on page 384

The CciscoLineDevSpecificEnableFeatureSupport class allows
the application to enhance or update feature support.

Enable Feature, on page 385

The CciscoLineDevSpecificAddRemoteDestination class is used
to add new Remote Destination to CTI Remote Device.

Add Remote Destination, on page 388

The CciscoLineDevSpecificRemoveRemoteDestination class is
used to remove Remote Destination from List of Remote
Destinations of CTI Remote Device.

Remove Remote Destination, on page 389

The CciscoLineDevSpecificUpdateRemoteDestination class is
used to update Remote Destination information on a CTI Remote
Device.

Update Remote Destination, on page 390

CciscoLineDevSpecificHoldEx class is used to put call on hold
and specify media content that should be played while call is on
hold.

lineHold Enhancement, on page 391

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
320

Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions

SynopsisCisco functions

The CciscoSetupTransferWithoutMedia class allows the
application to transfer a call that does not have media setup.

Transfer with media

LINEDEVCAPS
Cisco TSP implements several line device-specific extensions and uses the DevSpecific (dwDevSpecificSize
and dwDevSpecificOffset) variably sized area of the LINEDEVCAPS data structure for those extensions.
The Cisco_LineDevCaps_Ext structure in the CiscoLineDevSpecificMsg.h header file defines the DevSpecific
area layout. Cisco TSP organizes the data in that structure based on the extension version in which the data
was introduced:

// LINEDEVCAPS Dev Specific extention //
typedef struct Cisco_LineDevCaps_Ext
{

Cisco_LineDevCaps_Ext00030000 ext30;
Cisco_LineDevCaps_Ext00060000 ext60;
Cisco_LineDevCaps_Ext00070000 ext70;
Cisco_LineDevCaps_Ext00080000 ext80;
Cisco_LineDevCaps_Ext00090000 ext90;
Cisco_LineDevCaps_Ext00090001 ext91;
Cisco_LineDevCaps_Ext000A0000 extA0;
Cisco_LineDevCaps_Ext000C0000 extC0;
Cisco_LineDevCaps_Ext000D0000 extD0;
Cisco_LineDevCaps_Ext000E0000 extE0;

} CISCO_LINEDEVCAPS_EXT;

For a specific line device, the extension area will include a portion of this structure starting from the beginning
and up to the extension version that an application negotiated.

The individual extension version substructure definitions follow:

// LINEDEVCAPS 00030000 extention //
typedef struct Cisco_LineDevCaps_Ext00030000
{

DWORD dwLineTypeFlags;
} CISCO_LINEDEVCAPS_EXT00030000;

// LINEDEVCAPS 00060000 extention //
typedef struct Cisco_LineDevCaps_Ext00060000
{
DWORD dwLocale;
} CISCO_LINEDEVCAPS_EXT00060000;

// LINEDEVCAPS 00070000 extention //
typedef struct Cisco_LineDevCaps_Ext00070000
{

DWORD dwPartitionOffset;
DWORD dwPartitionSize;

} CISCO_LINEDEVCAPS_EXT00070000;

// LINEDEVCAPS 00080000 extention //
typedef struct Cisco_LineDevCaps_Ext00080000
{

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
321

Cisco Device-Specific Extensions
LINEDEVCAPS

DWORD dwLineDevCaps_DevSpecificFlags; //
LINEFEATURE_DEVSPECIFIC

DWORD dwLineDevCaps_DevSpecificFeatureFlags; //
LINEFEATURE_DEVSPECIFICFEAT

RECORD_TYPE_INFO recordTypeInfo;
INTERCOM_SPEEDDIAL_INFO intercomSpeedDialInfo;

} CISCO_LINEDEVCAPS_EXT00080000;

// LINEDEVCAPS 00090000 extention //
// --------------------------------
typedef struct Cisco_LineDevCaps_Ext00090000
{

IpAddressingMode dwLineDevCapsIPAddressingMode; //
LINEFEATURE_DEVSPECIFIC
} CISCO_LINEDEVCAPS_EXT00090000;

// =
= = = = = = = = = = =
// Cisco Extention 00090001
// =
= = = = = = = = = = =
// LINEDEVCAPS 00090001 extention //
// --------------------------------
typedef struct Cisco_LineDevCaps_Ext00090001
{

DWORD MaxCalls ;
DWORD BusyTrigger ;
DWORD LineInstanceNumber ;
DWORD LineLabelASCIIOffset ;
DWORD LineLabelASCIISize ;
DWORD LineLabelUnicodeOffset ;
DWORD LineLabelUnicodeSize ;

DWORD VoiceMailPilotDNOffset ;
DWORD VoiceMailPilotDNSize ;
DWORD RegisteredIPAddressMode;// IpAddressingMode

DWORD RegisteredIPv4Address ;
DWORD RegisteredIPv6AddressOffset;

DWORD RegisteredIPv6AddressSize;
DWORD ApplicationFeatureFlagBitMap;// CiscoFeatureInformation
DWORD DeviceFeatureFlagBitMap; // CiscoFeatureInformation
} CISCO_LINEDEVCAPS_EXT00090001;

typedef struct Cisco_LineDevCaps_Ext000A0000
{

DWORD dwPickUpGroupDNOffset;
DWORD dwPickUpGroupDNSize;
DWORD dwPickUpGroupPartitionOffset;
DWORD dwPickUpGroupPartitionSize;

} CISCO_LINEDEVCAPS_EXT000A0000;

typedefstruct Cisco_LineDevCaps_Ext000C0000
{

DWORD DeviceProtocolType;
DWORD RemoteDestinationOffset;
DWORD RemoteDestinationSize;
DWORD RemoteDestinationCount;
DWORD RemoteDestinationElementFixedSize;
DWORD IsMyAppLastToSetActiveRD;

} CISCO_LINEDEVCAPS_EXT000C0000;
typedef struct Cisco_LineDevCaps_Ext000D0000
{
DWORD DeviceMultiMediaCapabilityBitMask;
DWORD DeviceMultiMediaCapabilityOffset;
DWORD DeviceMultiMediaCapabilitySize;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
322

Cisco Device-Specific Extensions
LINEDEVCAPS

DWORD DeviceMultiMediaCapabilityCount;
DWORD DeviceMultiMediaCapabilityElementFixedSize;
DWORD ClusterIDSize;
DWORD ClusterIDOffset;
} CISCO_LINEDEVCAPS_EXT000D0000;

See the CiscoLineDevSpecificMsg.h header file for additional information on the DevSpecific structure layout
and data.

CISCO_LINEDEVCAPS_EXT000D000 structure contains following information:

Table 21: CISCO_LINEDEVCAPS_EXT000D000 Structure

DescriptionFields

Bitmask field indicates which fields in
MultiMediaCapability structure Info are valid

DWORD DeviceMultiMediaCapabilityBitMask

Offset pointing to the DeviceMultiMediaCapability
structure Information

DWORD DeviceMultiMediaCapabilityOffset

Size of the DeviceMultiMediaCapability InformationDWORD DeviceMultiMediaCapabilitySize

Count of MultiMediaCapaility Info availableDWORD DeviceMultiMediaCapabilityCount

Size of MultiMediaCapability StructureDWORD
DeviceMultiMediaCapabilityElementFixedSize

Offset/Size of the name of the cluster ID where the
line is located

DWORD ClusterIDSize

DWORD ClusterIDOffset

MultiMediacapability Information

CiscoDeviceMultiMediaCapInfoBitMask - Bit mask indicateswhich fields inMultiMediaCapability Structure
Exposed are valid and can be used by Applications. Following is the Enum Definition which is used to update
this bitmask field.

enum CiscoDeviceMultiMediaCapInfoBitMask
{

CiscoDeviceMultiMediaCapability_None = 0x00000000,
CiscoDeviceMultiMediaCapability_VideoCapability = 0x00000001,
CiscoDeviceMultiMediaCapability_TelepresenceInfo = 0x00000002,
CiscoDeviceMultiMediaCapability_ScreenCount = 0x00000004

};

Device MultiMedia Capability of the Device is exposed as a structure DeviceMultiMediaCapability in the
DevSpecific part. This structure contains the fields deviceVideoCapability, telepresenceInfo and screenCount.

typedef struct DeviceMultiMediaCapability
{

DWORD deviceVideoCapability;
DWORD telepresenceInfo;
DWORD screenCount;

} DeviceMultiMediaCapability;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
323

Cisco Device-Specific Extensions
LINEDEVCAPS

ValueData fields

This field contains the type value defined in the following enumeration.
[CiscoDeviceVideoCapabilityInfo]

DeviceVideoCapability

This field indicates if Telepresence interop is supported by the device,
defined in the following enumeration. [CiscoDeviceTelepresenceInfo]

TelepresenceInfo

This field indicates the number of screens present on the device.ScreenCount

enum CiscoLineDeviceVideoCapabilityInfo
{

CiscoLineDeviceVideoCapability_None = 0x00000000,
CiscoLineDeviceVideoCapability_Enabled = 0x00000001,

};

enum CiscoDeviceTelepresenceInfo
{

CiscoDeviceTelepresence_None = 0x00000000,
CiscoDeviceTelepresence_Enabled = 0x00000001,

};

As part of 11.5 release, CISCO_LINEDEVCAPS_EXT has been modified to include
CISCO_LINEDEVCAPS_EXT000E0000 structure.

The structure for the new extension Cisco_LineDevCaps_Ext000E0000 is:
// LINEDEVCAPS 000E0000 extention //
typedef struct Cisco_LineDevCaps_Ext000E0000
{

DWORD DeviceHuntGroupLoginStatus;
}CISCO_LINEDEVCAPS_EXT000E0000;

ValueData fields

DeviceHuntGroupLoginStatus field contains the type
value defined in the following enumeration
[CiscoDeviceHuntGroupLoginStatus].

DeviceHuntGroupLoginStatus

enum CiscoDeviceHuntGroupLoginStatus
{
CiscoDeviceHuntGroupLoginStatus_NotApplicable = 0,
CiscoDeviceHuntGroupLoginStatus_Login = 1,
CiscoDeviceHuntGroupLoginStatus_Logout = 2
};

LINECALLINFO
Cisco TSP implements several line device-specific extensions and uses the DevSpecific (dwDevSpecificSize
and dwDevSpecificOffset) variably sized area of the LINECALLINFO data structure for those extensions.
The Cisco_LineCallInfo_Ext structure in the CiscoLineDevSpecificMsg.h header file defines DevSpecific
area layout. Cisco TSP organizes the data in the structure, that is based on the extension version, in which the
data is introduced:

// LINECALLINFO Dev Specific extention //
typedef struct Cisco_LineCallInfo_Ext
{

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
324

Cisco Device-Specific Extensions
LINECALLINFO

Cisco_LineCallInfo_Ext00060000 ext60;
Cisco_LineCallInfo_Ext00070000 ext70;
Cisco_LineCallInfo_Ext00080000 ext80;
Cisco_LineCallInfo_Ext00080001 ext81;
Cisco_LineCallInfo_Ext00090000 ext90;
Cisco_LineCallInfo_Ext00090000 ext91;
Cisco_LineCallInfo_Ext000A0000 extA0;
Cisco_LineCallInfo_Ext000D0000 extD0;
Cisco_LineCallInfo_Ext000F0000 extF0;

} CISCO_LINECALLINFO_EXT;

For a specific line device, the extension area includes, a portion of the structure from the beginning to the
extension version that an application negotiated.

The definitions for individual extension version substructure are as follows:

// LINECALLINFO 00060000 extention //
typedef struct Cisco_LineCallInfo_Ext00060000
{

TSP_UNICODE_PARTY_NAMES unicodePartyNames;
} CISCO_LINECALLINFO_EXT00060000;

// LINECALLINFO 00070000 extention //
typedef struct Cisco_LineCallInfo_Ext00070000
{

DWORD SRTPKeyInfoStructureOffset; // offset from base of LINECALLINFO
DWORD SRTPKeyInfoStructureSize; // includes variable length data total

size
DWORD SRTPKeyInfoStructureElementCount;
DWORD SRTPKeyInfoStructureElementFixedSize;
DWORD DSCPInformationOffset; // offset from base of LINECALLINFO
DWORD DSCPInformationSize; // fixed size of the DSCPInformation

structure
DWORD DSCPInformationElementCount;
DWORD DSCPInformationElementFixedSize;
DWORD CallPartitionInfoOffset; // offset from base of LINECALLINFO
DWORD CallPartitionInfoSize; // fixed size of the

CallPartitionInformation
structure

DWORD CallPartitionInfoElementCount;
DWORD CallPartitionInfoElementFixedSize;
DWORD ExtendedCallInfoOffset; // = = = > ExtendedCallInfo { }
DWORD ExtendedCallInfoSize; //
DWORD ExtendedCallInfoElementCount; //
DWORD ExtendedCallInfoElementSize; //

} CISCO_LINECALLINFO_EXT00070000;

// LINECALLINFO 00080000 extention //
// ---------------------------------
typedef struct Cisco_LineCallInfo_Ext00080000
{

DWORD CallSecurityStatusOffset;
DWORD CallSecurityStatusSize;
DWORD CallSecurityStatusElementCount;
DWORD CallSecurityStatusElementFixedSize;
DWORD CCMCallIDInfoOffset;
DWORD CCMCallIDInfoSize;
DWORD CCMCallIDInfoElementCount;
DWORD CCMCallIDInfoElementFixedSize;
DWORD CallAttrtibuteInfoOffset;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
325

Cisco Device-Specific Extensions
LINECALLINFO

DWORD CallAttrtibuteInfoSize;
DWORD CallAttrtibuteInfoElementCount;
DWORD CallAttrtibuteInfoElementFixedSize;
DWORD TSPIntercomSideInfo;
DWORD CallingPartyIpAddr;

} CISCO_LINECALLINFO_EXT00080000;

// LINECALLINFO 00080001 extension //
// ---------------------------------
typedef struct Cisco_LineCallInfo_Ext00080001
{

DWORD CPNInfoOffset; //array of structure of CPNInfo structure
DWORD CPNInfoSize;
DWORD CPNInfoElementCount;
DWORD CPNInfoElementFixedSize;

} CISCO_LINECALLINFO_EXT00080001;
// LINECALLINFO 00090000 extention //
// ---------------------------------
typedef struct Cisco_LineCallInfo_Ext00090000
{

DWORD IPv6InfoOffset;
DWORD IPv6InfoSize;
DWORD IPv6InfoElementCount;
DWORD IPv6InfoElementFixedSize;
DWORD FarEndIPAddressingMode;

}CISCO_LINECALLINFO_EXT00090000;

// LINECALLINFO 000A0000 extention //
// ---------------------------------
typedef struct Cisco_LineCallInfo_Ext000A0000
{

DWORD CallAttributeBitMask;
DWORD UniqueCallRefIDInfoOffset;
DWORD UniqueCallRefIDInfoSize;
DWORD UniqueCallRefIDInfoElementCount;
DWORD UniqueCallRefIDElementFixedSize;
//HuntList
DWORD HuntPilotInfoOffset; //point to HuntPoiltInfo
DWORD HuntPilotInfoSize;
DWORD HuntPilotInfoCount;
DWORD HuntPilotInfoElementFixedSize;
DWORD GlobalCallID;
DWORD CallManagerID;

} CISCO_LINECALLINFO_EXT000A0000;

typedef struct Cisco_LineCallInfo_Ext000D0000
{

DWORD CallingPartyMultiMediaCapBitMask; //refer to
CiscoDeviceMultiMediaCapInfoBitMask

DWORD CalledPartyMultiMediaCapBitMask; //refer to
CiscoDeviceMultiMediaCapInfoBitMask

DWORD CallingPartyMultiMediaCapInfoOffset; //refer to
DeviceCallMultiMediaCapInfo

DWORD CallingPartyMultiMediaCapInfoSize;
DWORD CallingPartyMultiMediaCapInfoCount;
DWORD CallingPartyMultiMediaCapInfoElementFixedSize;
DWORD CalledPartyMultiMediaCapInfoOffset; //refer to

DeviceCallMultiMediaCapInfo
DWORD CalledPartyMultiMediaCapInfoSize;
DWORD CalledPartyMultiMediaCapInfoCount;
DWORD CalledPartyMultiMediaCapInfoElementFixedSize;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
326

Cisco Device-Specific Extensions
LINECALLINFO

DWORD MultiMediaStreamsInfoOffset; //refer to VideoStreamInfo
DWORD MultiMediaStreamsInfoSize;
DWORD MultiMediaStreamsInfoCount;
DWORD MultiMediaStreamsInfoElementFixedSize;
DWORD RecordingAttributeInfo_ExtD0_Offset;
DWORD RecordingAttributeInfo_ExtD0_Size;
DWORD RecordingAttributeInfo_ExtD0_Count;
DWORD RecordingAttributeInfo_ExtD0_ElementFixedSize;

} CISCO_LINECALLINFO_EXT000D0000;

Calling and Called MultiMediaCapability Information

The video capability of the calling party and the called party is exposed as a structure
DeviceCallMultiMediaCapInfo in the DevSpecific part. The structure contains the following fields:

• VideoCapStatus,

• TelepresenceInfo, and

• ScreenCount

typedef struct DeviceCallMultiMediaCapInfo
{
DWORD VideoCapStatus;
DWORD TelepresenceInfo;
DWORD ScreenCount;
} DeviceCallMultiMediaCapInfo;

ValueData fields

Contains the value that is defined in the following
enumeration [CiscoDeviceVideoCapabilityInfo].

DeviceVideoCapability

Indicates if Telepresence is enabled on the device,
which is defined in the following enumeration
[CiscoDeviceTelepresenceInfo].

TelepresenceInfo

Indicates the number of screens present on the device.ScreenCount

Indicates which fields of
DeviceCallMultiMediaCapInfo structure have valid
information
[CiscoDeviceMultiMediaCapInfoBitMask].

CallingPartyMultiMediaCapInfoBitMask

Indicates which fields of
DeviceCallMultiMediaCapInfo structure have valid
information
[CiscoDeviceMultiMediaCapInfoBitMask].

CalledPartyMultiMediaCapInfoBitMask

enum CiscoDeviceVideoCapabilityInfo
{
CiscoDeviceVideoCapability_None = 0x00000000,
CiscoDeviceVideoCapability_Enabled = 0x00000001,
};
enum CiscoDeviceTelepresenceInfo
{

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
327

Cisco Device-Specific Extensions
LINECALLINFO

CiscoDeviceTelepresence_None = 0x00000000,
CiscoDeviceTelepresence_Enabled = 0x00000001,
};
enum CiscoDeviceMultiMediaCapInfoBitMask
{
CiscoDeviceMultiMediaCapability_None = 0x00000000,
CiscoDeviceMultiMediaCapability_VideoCapability = 0x00000001,
CiscoDeviceMultiMediaCapability_TelepresenceInfo = 0x00000002,
CiscoDeviceMultiMediaCapability_ScreenCount = 0x00000004
};

MultiMediaStream Information

When the call arrives on an opened line, the TSP sends the LINE_CALLDEVSPECIFIC event to the application
with Multimedia Stream information.

The application then sends a query to the LINECALLINFO to get a detailed Multimedia Stream information.
The information is exposed as a part of the VideoStreamInfo structure in the DevSpecific part of the
LineCallInfo.

The structure contains the following data.

typedef struct VideoStreamInfo
{

DWORD StreamId;
DWORD CompressionType; // MEDIAPAYLOAD
DWORD BitRate;
DWORD MediaMode;
DWORD bKeyInfoPresent;
//ipv6
DWORD RxRTPDestinationV6Offset;
DWORD RxRTPDestinationV6Size;
DWORD RxRTPDestinationV4;
DWORD RxIpAddrMode;
DWORD TxRTPDestinationV6Offset;
DWORD TxRTPDestinationV6Size;
DWORD TxRTPDestinationV4;
DWORD TxIpAddrMode;
MultiMediaEncryptionKeyInfo MediaEncryptionKeyInfo;

} VideoStreamInfo;

ValueData fields

Indicates the index of the MultiMedia stream.StreamId

Indicates the compression type of the video stream.CompressionType

Indicates the bit rate of the video stream.BitRate

Indicates the media mode of the video stream.MediaMode

Indicates the packet size of the video stream.PacketSize

Indicates whether Key Information is present.bKeyInfoPresent

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Reception RTP destination IPv6 information.

RxRTPDestinationV6Offset

RxRTPDestinationV6Size

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
328

Cisco Device-Specific Extensions
LINECALLINFO

ValueData fields

Indicates the IPv4 address of the video stream.RxRTPDestinationV4

Specifies the reception IP addressing mode.RxIpAddrMode

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Transmission RTP destination IPv6 information.

TxRTPDestinationV6Offset

TxRTPDestinationV6Size

Indicates the IPv4 address of the video stream.TxRTPDestinationV4

Specifies the transmission IP addressing mode.TxIpAddrMode

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Multimedia Encryption Key information.

MediaEncryptionKeyInfo

Cisco TSP reports a detailed multimedia Encryption Key Information to the applications as a part of the
structure CiscoTsp_MultiMediaEncryptionKeyInfo, if there is secure connection to CTIManager. The
application user is authorized to receive multimedia Encryption Key Information.

The multimedia Encryption Key information that is provided by Cisco TSP includes TxKeylen, RxKeylen,
Txkey, RxKey, TxSalt, RxSalt, AlgorithmID, TxIsMKIPresent, RxIsMKIPresent, and SecurityIndicator.

The administrator must configure TLS Enabled and SRTP Enabled flags on CallManager Admin User pages
to receive the key materials. TLS link must be established between TSP and CTIManager.

typedef struct CiscoTsp_MultiMediaEncryptionKeyInfo
{
DWORD AlgorithmID;
DWORD TxKeyOffset;
DWORD TxKeySize;
DWORD RxKeyOffset;
DWORD RxKeySize;
DWORD TxSaltOffset;
DWORD TxSaltSize;
DWORD RxSaltOffset;
DWORD RxSaltSize;
DWORD TxIsMKIPresent;
DWORD RxIsMKIPresent;
DWORD SecurityIndicator;
} CiscoTsp_MultiMediaEncryptionKeyInfo;

Specifies the negotiated algorithm id.AlgorithmID

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Transmission Key information.

TxKeyOffset

TxKeySize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
329

Cisco Device-Specific Extensions
LINECALLINFO

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Reception Key information.

RxKeyOffset

RxKeySize

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Transmission Salt information.

TxSaltOffset

TxSaltSize

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
Reception Salt information.

RxSaltOffset

RxSaltSize

Indicates whether Transmission MKI is present.TxIsMKIPresent

Indicates whether Reception MKI is present.RxIsMKIPresent

Specifies the security indicator.SecurityIndicator

See the CiscoLineDevSpecificMsg.h header file for additional information on the DevSpecific structure layout
and data.

A new CISCO_LINECALLINFO_EXT000F0000 structure is introduced and contains the following
information:

typedef struct Cisco_LineCallInfo_Ext000F0000
{

DWORD MultiForkingRecorderInfo_ExtF0_Offset;
DWORD MultiForkingRecorderInfo_ExtF0_Size;
DWORD MultiForkingRecorderInfo_ExtF0_Count;
DWORD MultiForkingRecorderInfo_ExtF0_ElementFixedSize;
DWORD SessionIDInfo_ExtF0_Offset;
DWORD SessionIDInfo_ExtF0_Size;
DWORD SessionIDInfo_ExtF0_Count;
DWORD SessionIDInfo_ExtF0_ElementFixedSize;

}Cisco_LineCallInfo_Ext000F0000;

The following table details the fields in the CISCO_LINECALLINFO_EXT000F0000 structure:

ValueData fields

Refers to MultiForkingRecorderInfo.MultiForkingRecorderInfo_ExtF0_Offset

MultiForkingRecorderInfo_ExtF0_Size

MultiForkingRecorderInfo_ExtF0_Count

MultiForkingRecorderInfo_ExtF0_ElementFixedSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
330

Cisco Device-Specific Extensions
LINECALLINFO

ValueData fields

Refers to SessionIDInfo.SessionIDInfo_ExtF0_Offset

SessionIDInfo_ExtF0_ExtF0_Size

SessionIDInfo_ExtF0_ExtF0_Count

SessionIDInfo_ExtF0_ExtF0_ElementFixedSize

MultiForkingRecorder Information

TSP reports the detailed MultiForking Recorders information to the applications as a part of the structure
MultiForkingRecorderInfo. The MultiForking information that is provided by Cisco TSP includes
RecorderType, RecorderStatus, RecorderUri, and RecorderErrorMsg.

typedef struct MultiForkingRecorderInfo
{

DWORD RecorderType;
DWORD RecorderStatus;
DWORD RecorderUriOffset;
DWORD RecorderUriSize;
DWORD RecorderErrorMsgOffset;
DWORD RecorderErrorMsgSize;

} MultiForkingRecorderInfo;

ValueData fields

Contains the value that is defined in the following:
enumeration (CiscoMultiForkingRecorderType).

RecorderType

Contains the value that is defined in the following:
enumeration (CiscoMultiForkingRecorderStatus).

RecorderStatus

Contains the value in bytes from the beginning of
LINECALLINFO structure.

RecorderUriOffset

Contains the value in bytes of the variably sized
Recorder URI (IP and Port number).

RecorderUriSize

Contains the value in bytes from the beginning of
LINECALLINFO structure.

RecorderErrorMsgOffset

Contains the value in bytes of the variably sized
Recorder Error Message, when the recording fails.

RecorderErrorMsgSize

enum CiscoMultiForkingRecorderType
{

CiscoMultiForkingRecorderType_Unknown = 0,
CiscoMultiForkingRecorderType_Mandatory,
CiscoMultiForkingRecorderType_Optional

};

enum CiscoMultiForkingRecorderStatus
{

CiscoMultiForkingRecorderStatus_Unknown = 0,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
331

Cisco Device-Specific Extensions
LINECALLINFO

CiscoMultiForkingRecorderStatus_Success,
CiscoMultiForkingRecorderStatus_Failure

};

SessionID Information

TSP reports the SessionID information to the applications as a part of the structure SessionIDInfo. The
SessionID information that is provided by Cisco TSP includes DeviceUUID and PeerUUID.

typedef struct SessionIdInfo
{

DWORD DeviceUuidOffset;
DWORD DeviceUuidSize;
DWORD PeerUuidOffset;
DWORD PeerUuidSize;

} SessionIdInfo;

ValueData fields

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized
UUID, of one of the two sessions in the call (Either
Calling or Called session).

DeviceUuidOffset

DeviceUuidSize

Contains the value in bytes from the beginning of
LINECALLINFO structure.

Contains the value in bytes of the variably sized UUID
of the other session.

PeerUuidOffset

PeerUuidSize

Details
The TSP_Unicode_Party_names structure and SRTP information structure describe the device-specific
extensions that the Cisco Unified TSP made to the LINECALLINFO structure. DSCPValueForAudioCalls
will contain the DSCP value that CTI sent in the StartTransmissionEvent.

ExtendedCallInfo structure has extra call information. For Cisco Unified Communications Manager Release
7.0(1), the ExtendedCallReason field belongs to the ExtendedCallInfo structure.

CallAttributeInfo contains the information about attributeType (Monitoring,Monitored, Recorder,securityStatus)
and PartyInfo (Dn,Partition,DeviceName)

CCMCallID contains CCM Call identifier value.

CallingPartyIPAddress contains the IP address of the calling party if the calling party device supports it.

CallSecurityStatus structure contains the overall security status of the call for two-party call as well as
conference call.

DWORD TapiCallerPartyUnicodeNameOffset;
DWORD TapiCallerPartyUnicodeNameSize;
DWORDTapiCallerPartyLocale;

DWORD TapiCalledPartyUnicodeNameOffset;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
332

Cisco Device-Specific Extensions
Details

DWORD TapiCalledPartyUnicodeNameSize;
DWORDTapiCalledPartyLocale;

DWORD TapiConnectedPartyUnicodeNameOffset;
DWORD TapiConnectedPartyUnicodeNameSize;
DWORDTapiConnectedPartyLocale;

DWORD TapiRedirectionPartyUnicodeNameOffset;
DWORD TapiRedirectionPartyUnicodeNameSize;
DWORDTapiRedirectionPartyLocale;

DWORD TapiRedirectingPartyUnicodeNameOffset;
DWORD TapiRedirectingPartyUnicodeNameSize;
DWORDTapiRedirectingPartyLocale;

DWORD SRTPKeyInfoStructureOffset; // offset from base of LINECALLINFO
DWORD SRTPKeyInfoStructureSize;// includes variable length data total size
DWORD SRTPKeyInfoStructureElementCount;
DWORD SRTPKeyInfoStructureElementFixedSize;
DWORD DSCPValueInformationOffset;
DWORD DSCPValueInformationSize;
DWORD DSCPValueInformationElementCount;
DWORD DSCPValueInformationElementFixedSize;
DWORD PartitionInformationOffset; // offset from base of LINECALLINFO
DWORD PartitionInformationSize; // includes variable length data total size
DWORD PartitionInformationElementCount;
DWORD PartitionInformationElementFixedSize;
DWORD ExtendedCallInfoOffset;
DWORD ExtendedCallInfoSize;
DWORD ExtendedCallInfoElementCount;
DWORD ExtendedCallInfoElementSize;
DWORD CallAttrtibuteInfoOffset;
DWORD CallAttrtibuteInfoSize;
DWORD CallAttrtibuteInfoElementCount;
DWORD CallAttrtibuteInfoElementSize;
DWORD CallingPartyIPAddress;
DWORD CCMCallIDInfoOffset;
DWORD CCMCallIDInfoSize;
DWORD CCMCallIDInfoElementCount;
DWORD CCMCallIDInfoElementFixedSize;
DWORD CallSecurityStatusOffset;
DWORD CallSecurityStatusSize;
DWORD CallSecurityStatusElementCount;
DWORD CallSecurityStatusElementFixedSize;
DWORD IsChaperoneCall;
DWORD UniqueCallRefIDInfoOffset,
DWORD UniqueCallRefIDInfoSize;
DWORD CallAttributeBitMask;

typedef struct SRTPKeyInfoStructure
{
SRTPKeyInformation TransmissionSRTPInfo;
SRTPKeyInformation ReceptionSRTPInfo;
} SRTPKeyInfoStructure;

typedef struct SRTPKeyInformation
{
DWORDIsSRTPDataAvailable;
DWORDSecureMediaIndicator;// CiscoSecurityIndicator
DWORDMasterKeyOffset;
DWORDMasterKeySize;
DWORDMasterSaltOffset;
DWORDMasterSaltSize;
DWORDAlgorithmID;// CiscoSRTPAlgorithmIDs

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
333

Cisco Device-Specific Extensions
Details

DWORDIsMKIPresent;
DWORDKeyDerivationRate;
} SRTPKeyInformation;
enum CiscoSRTPAlgorithmIDs
{
SRTP_NO_ENCRYPTION=0,
SRTP_AES_128_COUNTER=1
};

enum CiscoSecurityIndicator
{

SRTP_MEDIA_ENCRYPT_KEYS_AVAILABLE,
SRTP_MEDIA_ENCRYPT_USER_NOT_AUTH,
SRTP_MEDIA_ENCRYPT_KEYS_UNAVAILABLE,
SRTP_MEDIA_NOT_ENCRYPTED

};

If isSRTPInfoavailable is set to False, rest of the information from SRTPKeyInformation must be ignored.

If MasterKeySize or MasterSlatSize is set to 0, then corresponding MasterKeyOffset or MasterSaltOffset
must be ignored.

typedef struct DSCPValueInformation{
DWORD DSCPValueForAudioCalls;
}

typedef struct PartitionInformation
{
DWORD CallerIDPartitionOffset;
DWORD CallerIDPartitionSize;
DWORD CalledIDPartitionOffset;
DWORD CalledIDPartitionSize;
DWORD ConnecetedIDPartitionOffset;
DWORD ConnecetedIDPartitionSize;
DWORD RedirectionIDPartitionOffset;
DWORD RedirectionIDPartitionSize;
DWORD RedirectingIDPartitionOffset;
DWORD RedirectingIDPartitionSize;
} PartitionInformation;

Struct ExtendedCallInfo
{
DWORD ExtendedCallReason ;
DWORD CallerIDURLOffset;// CallPartySipURLInfo
DWORD CallerIDURISize;
DWORD CalledIDURLOffset;// CallPartySipURLInfo
DWORD CalledIDURISize;
DWORD ConnectedIDURIOffset;// CallPartySipURLInfo
DWORD ConnectedIDURISize;
DWORD RedirectionIDURIOffset;// CallPartySipURLInfo
DWORD RedirectionIDURISize;
DWORD RedirectingIDURIOffset;// CallPartySipURLInfo
DWORD RedirectingIDURISize;
}

Struct CallPartySipURLInfo
{
DWORD dwUserOffset; //sip user string
DWORDdwUserSize;
DWORDdwHostOffset; //host name string

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
334

Cisco Device-Specific Extensions
Details

DWORDdwHostSize;
DWORDdwPort;// integer port number
DWORD dwTransportType; // SIP_TRANS_TYPE
DWORD dwURLType;// SIP_URL_TYPE
}

enum {
CTI_SIP_TRANSPORT_TCP=1,
CTI_SIP_TRANSPORT_UDP,
CTI_SIP_TRANSPORT_TLS

} SIP_TRANS_TYPE;
enum {

CTI_NO_URL = 0,
CTI_SIP_URL,
CTI_TEL_URL

} SIP_URL_TYPE;

typedef struct CallAttributeInfo
{
DWORD CallAttributeType;
DWORD PartyDNOffset;
DWORD PartyDNSize;
DWORD PartyPartitionOffset;
DWORD PartyPartitionSize;
DWORD DeviceNameOffset;
DWORD DeviceNameSize;
DWORD OverallCallSecurityStatus;
}

typedef struct CallAttributeInfo_ExtA0
{
DWORD CallAttributeType;
DWORD PartyDNOffset;
DWORD PartyDNSize;
DWORD PartyPartitionOffset;
DWORD PartyPartitionSize;
DWORD DeviceNameOffset;
DWORD DeviceNameSize;
DWORD OverallCallSecurityStatus;
DWORD TransactionID;//Secure R & M
} CallAttributeInfo_ExtA0;

typedef struct CallAttributeInfo_ExtB0
{
CallAttributeInfo_ExtA0 attr_a0;
DWORD ActiveToneDirection;
} CallAttributeInfo_ExtB0;

typedef struct CCMCallHandleInformation
{
DWORD CCMCallID;
}

enum
{

CallAttribute_Regular = 0,
CallAttribute_SilentMonitorCall,
CallAttribute_SilentMonitorCall_Target,
CallAttribute_RecordedCall,
CallAttribute_WhisperCoachingCall,
CallAttribute_WhisperCoachingCall_Target,
CallAttribute_Recorded_Automatic,
CallAttribute_Recorded_AppInitiatedSilent,
CallAttribute_Recorded_UserInitiatedFromApp,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
335

Cisco Device-Specific Extensions
Details

CallAttribute_Recorded_UserInitiatedFromDevice
} CallAttributeType
typedef struct CallSecurityStausInfo
{
DWORD CallSecurityStaus
} CallSecurityStausInfo
enum OverallCallSecurityStatus
{
OverallCallSecurityStatus_Unknown = 0,
OverallCallSecurityStatus_NotAuthenticated,
OverallCallSecurityStatus_Authenticated,
OverallCallSecurityStatus_Encrypted
};

typedef struct CPNInfo
{
DWORD CallerPartyNumberType;//refer to CiscoNumberType
DWORD CalledPartyNumberType;
DWORD ConnectedIdNumberType;
DWORD RedirectingPartyNumberType;
DWORD RedirectionPartyNumberType;
DWORD ModifiedCallingPartySize;
DWORD ModifiedCallingPartyOffset;
DWORD ModifiedCalledPartySize;
DWORD ModifiedCalledPartyOffset;
DWORD ModifiedConnectedIdSize;
DWORD ModifiedConnectedIdOffset;
DWORD ModifiedRedirectingPartySize;
DWORD ModifiedRedirectingPartyOffset;
DWORD ModifiedRedirectionPartySize;
DWORD ModifiedRedirectionPartyOffset;
DWORD GlobalizedCallingPartySize;
DWORD GlobalizedCallingPartyOffset;
} CPNInfo;

enum CiscoNumberType {
NumberType_Unknown = 0, // UNKNOWN_NUMBER
NumberType_International = 1, // INTERNATIONAL_NUMBER
NumberType_National = 2, // NATIONAL_NUMBER
NumberType_NetSpecificNum = 3, // NET_SPECIFIC_NUMBER
NumberType_Subscriber = 4, // SUBSCRIBER_NUMBER
NumberType_Abbreviated = 6 // ABBREVIATED_NUMBER

};

typedef struct Cisco_LineCallInfo_Ext000A0000
{

…
//HuntList
DWORD HuntPilotInfoOffset;//point to HuntPoiltInfo
DWORD HuntPilotInfoSize;
DWORD HuntPilotInfoCount;
DWORD HuntPilotInfoElementFixedSize;

}CISCO_LINECALLINFO_EXT000A0000;

//HuntList
typedef struct HuntPilotInfo
{
DWORD CallingPartyHuntPilotDNOffset;
DWORD CallingPartyHuntPilotDNSize;
DWORD CallingPartyHuntPilotPartitionOffset;
DWORD CallingPartyHuntPilotPartitionSize;
DWORD CalledPartyHuntPilotDNOffset;
DWORD CalledPartyHuntPilotDNSize;
DWORD CalledPartyHuntPilotPartitionOffset;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
336

Cisco Device-Specific Extensions
Details

DWORD CalledPartyHuntPilotPartitionSize;
DWORD ConnectedPartyHuntPilotDNOffset;
DWORD ConnectedPartyHuntPilotDNSize;
DWORD ConnectedPartyHuntPilotPartitionOffset;
DWORD ConnectedPartyHuntPilotPartitionSize;
}HuntPilotInfo;

typedef struct UniqueCallRefIDInfo
{
DWORD UniqueCallRefIDOffset;
DWORD UniqueCallRefIDSize;
} UniqueCallRefIDInfo;

typedef enum
{
TSPCallAttribute_Normal = 0x00000000,
TSPCallAttribute_IntercomOriginator = 0x00000001,
TSPCallAttribute_IntercomTarget = 0x00000002,
TSPCallAttribute_SilentMonitorCall = 0x00000004,
TSPCallAttribute_SilentMonitorCall_Target = 0x00000008,
TSPCallAttribute_RecordedCall = 0x00000010,
TSPCallAttribute_ChaperoneCall = 0x00000020,
TSPCallAttribute_CallForwardAllSet = 0x00000040,
TSPCallAttribute_CallForwardAllClear = 0x00000080,
TSPCallAttribute_WhisperMonitorCall = 0x00000100,
TSPCallAttribute_WhisperMonitorCall_Target= 0x00000200,
TSPCallAttribute_BIBCall = 0x00000400,
TSPCallAttribute_ServerCall =0x00000800,
TSPCallAttribute_SendMediaToBIB = 0x00001000
} CallAttributeBits

Cisco TSP exposes the multimedia capability information of a linedevice in the devspecific data of
LINEGETCALLINFO when LineGetCallInfo is invoked with Extension version 0x000D0000 or higher.

The calling party and the called party multimedia capability is exposed as a structure DeviceVideoCapInfo
in the DevSpecific part. This structure contains three fields:

• deviceVideoCapability,

• telepresenceInfo, and,

• screenCount.

typedef struct DeviceVideoCapInfo{
DWORD VideoCapStatus;
DWORD TelepresenceInfo;
DWORD ScreenCount;

} DeviceVideoCapInfo;

ValueData fields

DeviceVideoCapability field contains the type value
defined in the following enumeration
[CiscoDeviceVideoCapabilityInfo].

DeviceVideoCapability

This field indicates if Telepresence is enabled on the
device, defined in the following enumeration
[CiscoDeviceTelepresenceInfo].

TelepresenceInfo

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
337

Cisco Device-Specific Extensions
Details

ValueData fields

This field indicated the number of screens present on
the device.

ScreenCount

enum CiscoDeviceVideoCapabilityInfo
{

CiscoDeviceVideoCapability_None = 0x00000000,
CiscoDeviceVideoCapability_Enabled = 0x00000001,

};

enum CiscoDeviceTelepresenceInfo
{

CiscoDeviceTelepresence_None = 0x00000000,
CiscoDeviceTelepresence_Enabled = 0x00000001,

};

Parameters

ValueParameter

The size, in bytes, of the variably sized field that
contains the Unicode Caller party identifier name
information, and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

TapiCallerPartyUnicodeNameOffsetTapiCallerPartyUnicodeNameSize

The Unicode Caller party identifier name Locale
information

TapiCallerPartyLocale

The size, in bytes, of the variably sized field that
contains the Unicode Caller party identifier name
information, and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

TapiCallerPartyUnicodeNameOffsetTapiCallerPartyUnicodeNameSize

The Unicode Caller party identifier name Locale
information

TapiCallerPartyLocale

The size, in bytes, of the variably sized field that
contains the Unicode Called party identifier name
information and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

TapiCalledPartyUnicodeNameOffsetTapiCalledPartyUnicodeNameSize

The Unicode Called party identifier name locale
information

TapiCalledPartyLocale

The size, in bytes, of the variably sized field that
contains the Unicode Connected party identifier
name information and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

TapiConnectedPartyUnicodeNameOffsetTapiConnectedPartyUnicodeNameSize

The Unicode Connected party identifier name locale
information

TapiConnectedPartyLocale

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
338

Cisco Device-Specific Extensions
Parameters

ValueParameter

The size, in bytes, of the variably sized field that
contains the Unicode Redirection party identifier
name information and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

TapiRedirectionPartyUnicodeNameOffsetTapiRedirectionPartyUnicodeNameSize

TheUnicode Redirection party identifier name locale
information

TapiRedirectionPartyLocale

The size, in bytes, of the variably sized field that
contains the Unicode Redirecting party identifier
name information and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

TapiRedirectingPartyUnicodeNameOffsetTapiRedirectingPartyUnicodeNameSize

TheUnicode Redirecting party identifier name locale
information

TapiRedirectingPartyLocale

Point to SRTPKeyInfoStructureSRTPKeyInfoStructureOffset

Total size of SRTP informationSRTPKeyInfoStructureSize

Number of SRTPKeyInfoStructure elementSRTPKeyInfoStructureElementCount

Fixed size of SRTPKeyInfoStructureSRTPKeyInfoStructureElementFixedSize

Indicates whether media is secure and whether
application is authorized for key information

SecureMediaIndicator

The offset and size of SRTPMasterKey informationMasterKeyOffsetMasterKeySize

The offset and size of SRTP MasterSaltKey
information

MasterSaltOffsetMasterSaltSize

Specifies negotiated SRTP algorithm IDAlgorithmID

Indicates whether MKI is presentIsMKIPresent

Provides the KeyDerivationRateKeyDerivationRate

The DSCP value for Audio CallsDSCPValueForAudioCalls

The size, in bytes, of the variably sized field that
contains the Caller party identifier partition
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

CallerIDPartitionOffsetCallerIDPartitionSize

The size, in bytes, of the variably sized field that
contains the Called party identifier partition
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

CalledIDPartitionOffsetCalledIDPartitionSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
339

Cisco Device-Specific Extensions
Parameters

ValueParameter

The size, in bytes, of the variably sized field that
contains the Connected party identifier partition
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

ConnectedIDPartitionOffsetConnecetedIDPartitionSize

The size, in bytes, of the variably sized field that
contains the Redirection party identifier partition
information, and the offset, in bytes, from the
beginning of LINECALLINFO data structure

RedirectionIDPartitionOffsetRedirectionIDPartitionSize

The size, in bytes, of the variably sized field that
contains the Redirecting party identifier partition
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

RedirectingIDPartitionOffsetRedirectingIDPartitionSize

Presents all the last feature-related CTI Call reason
code to the application as an extension to the
standard reason codes that TAPI supports. This
provides the feature-specific information per call.
As phones that are running SIP are supported
through CTI, new features can get introduced for
phones that are running on SIP during releases.

Be aware that this field is not backward
compatible and can change as changes or
additions are made in the SIP phone
support for a feature. Applications should
implement some default behavior to
handle any unknown reason codes that
might be provided through this field.

Note

For Refer, the reason code specified is
CtiCallReason_Refer.

For Replaces, the reason code specified is
CtiCallReason_Replaces.

ExtendedCallReason

The size, in bytes, of the variably sized field that
contains the Caller party identifier URL information
and the offset, in bytes, from the beginning of
LINECALLINFO data structure

CallerIDURLOffsetCallerIDURLSize

The size, in bytes, of the variably sized field that
contains the Called party identifier URL information
and the offset, in bytes, from the beginning of
LINECALLINFO data structure

CalledIDURLOffsetCalledIDURLSize

The size, in bytes, of the variably sized field that
contains the Connected party identifier URL
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

ConnectedIDURLOffsetConnecetedIDURLSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
340

Cisco Device-Specific Extensions
Parameters

ValueParameter

The size, in bytes, of the variably sized field that
contains the Redirection party identifier URL
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

RedirectionIDURLOffsetRedirectionIDURLSize

The size, in bytes, of the variably sized field that
contains the Redirecting party identifier URL
information and the offset, in bytes, from the
beginning of LINECALLINFO data structure

RedirectingIDURLOffsetRedirectingIDURLSize

Identifies whether the following information
(DN.Partition.DeviceName) is for a regular call, a
monitoring call, a monitored call, or a recording call

CallAttributeType

The size, in bytes, of the variably sized field that
contains the Monitoring/Monitored/Recorder party
DN information and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

PartyDNOffset,

PartyDNSize,

The size, in bytes, of the variably sized field that
contains the Monitoring/Monitored/Recorder party
partition information and the offset, in bytes, from
the beginning of the LINECALLINFO data structure

PartyPartitionOffset

PartyPartitionSize

The size, in bytes, of the variably sized field that
contains the Monitoring/Monitored/Recorder party
device name and the offset, in bytes, from the
beginning of the LINECALLINFO data structure

DeviceNameOffset

DeviceNameSize

The security status of the call for two-party calls and
conference calls

OverallCallSecurityStatus

The Cisco Unified CommunicationsManager caller
ID for each call leg

CCMCallID

The size, in bytes, of the variably sized field
containing the Hunt Pilot DN, and the offset, in
bytes, from the beginning of LINECALLINFO data
structure.

CallingPartyHuntPilotDNOffset CallingPartyHuntPilotDNSize

The size, in bytes, of the variably sized field
containing the Hunt Pilot Partition, and the offset,
in bytes, from the beginning of LINECALLINFO
data structure.

CallingPartyHuntPilotPartitionOffset

CallingPartyHuntPilotPartitionSize

The size, in bytes, of the variably sized field
containing the Hunt Pilot DN, and the offset, in
bytes, from the beginning of LINECALLINFO data
structure.

CalledPartyHuntPilotDNOffset

CalledPartyHuntPilotDNSize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
341

Cisco Device-Specific Extensions
Parameters

ValueParameter

The size, in bytes, of the variably sized field
containing the Hunt Pilot Partition, and the offset,
in bytes, from the beginning of LINECALLINFO
data structure.

CalledPartyHuntPilotPartitionOffset

CalledPartyHuntPilotPartitionSize

The size, in bytes, of the variably sized field
containing the Hunt Pilot DN, and the offset, in
bytes, from the beginning of LINECALLINFO data
structure.

ConnectedPartyHuntPilotDNOffset ConnectedPartyHuntPilotDNSize

The size, in bytes, of the variably sized field
containing the Hunt Pilot Partition, and the offset,
in bytes, from the beginning of LINECALLINFO
data structure.

ConnectedPartyHuntPilotPartitionOffset

ConnectedPartyHuntPilotPartitionSize

This field specifies whether the call is a chaperone
call or not.

IsChaperoneCall

To indicate that partition information exists in the LINECALLINFO structure, the system fires a
LINECALLINFOSTATE_DEVSPECIFIC event. The bit map indicating the change is defined as the following:

0x00000001SLDST_SRTP_INFO

0x00000002SLDST_QOS_INFO

0x00000004SLDST_PARTITION_INFO

0x00000008SLDST_EXTENDED_CALL_INFO

0x00000010 //M&RSLDST_CALL_ATTRIBUTE_INFO

0x00000020 //M&RSLDST_CCM_CALL_ID

0x00000040 //SecureConfSLDST_SECURITY_STATUS_INFO

0x00000080 //CPNSLDST_NUMBER_TYPE_CHANGED

0x00000100 //CPNSLDST_GLOBALIZED_CALLING_PARTY_CHANGED

0x00000200//IPv6 newSLDST_FAR_END_IP_ADDRESS_CHANGED

0x00000400SLDST_UNIQUE_CALL_REF_ID_INFO

0x00000800SLDST_DEVICE_VIDEO_CAP_INFO

0x00001000SLDST_MULTIMEDIA_STREAMS_INFO

LINEDEVSPECIFIC{
hDevice = hcall //call handle for which the info has changed.
dwParam1 = SLDSMT_LINECALLINFO_DEVSPECIFICDATA //indicates DevSpecific portion’s
changed

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
342

Cisco Device-Specific Extensions
Parameters

dwParam2 = SLDST_SRTP_INFO | SLDST_QOS_INFO |SLDST_PARTITION_INFO |
SLDST_EXTENDED_CALL_INFO | SLDST_CALL_ATTRIBUTE_INFO|SLDST_CCM_CALLID|
SLDST_CALL_SECURITY_STATUS | SLDST_NUMBER_TYPE_CHANGED |
SLDST_GLOBALIZED_CALLING_PARTY_CHANGED | SLDST_FAR_END_IP_ADDRESS_CHANGED |
SLDST_UNIQUE_CALL_REF_ID_INFO | SLDST_DEVICE_VIDEO_CAP_INFO |
SLDST_MULTIMEDIA_STREAMS_INFO
dwParam3 = …
dwParam3 will be security indicator if dwParam2 has bit set for SLDST_SRTP_INFO

}

LINECALLPARAMS
Cisco TSP implements several line device-specific extensions that require applications to use
LINECALLPARAMS structure to pass relevant data in the lineMakeCall request.

Details

With extention 0x00080001 feature priority is introduced for DoNotDisturb-Reject feature. Feature priority
can be specified in DevSpecific part of LINECALLPARAMS (dwDevSpecificSize and dwDevSpecificOffset)
as

typedef struct LineParamas
{

DWORD FeaturePriority;
} LINE_PRAMS;

Starting with extention 0x000D0000 Feature Priority data is included in Cisco_CallParamsDevSpecific
structure that replaces LineParams structure. The Cisco_CallParamsDevSpecific structure is defined in
CiscoLineDevSpecificMsg.h header file as follows:

typedef struct Cisco_CallParamsDevSpecific_tag
{

DWORD CallPriority;
DWORD DevSpecificFlags;

} Cisco_CallParamsDevSpecific;

The DevSpecificFlags field in that structure is used to identify a specific feature and can be set to one of the
following:

#define Cisco_CALLPARAMS_DEVSPECIFICFLAGS_PRIORITYCALL 0x00000001
#define Cisco_CALLPARAMS_DEVSPECIFICFLAGS_PERSISTENTCALL 0x00000002
#define Cisco_CALLPARAMS_DEVSPECIFICFLAGS_ANNOUNCEMENTCALL 0x00000004

Cisco_CALLPARAMS_DEVSPECIFICFLAGS_PRIORITYCALL indicates the feature priority call for
DoNotDisturb-Reject feature. The CallPriority field in Cisco_CallParamsDevSpecific structure should be
used to specify feature priority.

Cisco_CALLPARAMS_DEVSPECIFICFLAGS_PERSISTENTCALL indicates that Persistent Call is to be
created. In this case, two other LINECALLPARAMS fields are used:

• CallingPartyID (dwCallingPartyIDSize and dwCallingPartyIDOffset) is used to specify calling-party ID

• DisplayabeAddress (dwDisplayableAddress Size and dwDisplayableAddress Offset) is used to specify
calling-party ID name

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
343

Cisco Device-Specific Extensions
LINECALLPARAMS

Cisco_CALLPARAMS_DEVSPECIFICFLAGS_ANNOUNCEMENTCALL indicates that Announcement
call is to be created. In that case CallData field in the LINECALLPARAMS structure is used to specify an
announcement ID. Announcement ID (or media-contmt ID) is a string with a maximum length defined in
CiscoLineDevSpecificMsg.h as MAX_CISCO_TSP_MEDIA_CONTENT_ID_SIZE.

LINEDEVSTATUS
Cisco TSP implements several line device-specific extensions and uses the DevSpecific (dwDevSpecificSize
and dwDevSpecificOffset) variably sized area of the LINEDEVSTATUS data structure for those extensions.
Cisco TSP defines the DevSpecific area layout in the Cisco_LineDevStatus_Ext structure in the
CiscoLineDevSpecificMsg.h header file. The extension version in which the data was introduced provides
basis for how the data in that structure is organized.

// LINEDEVSTATUS Dev Specific extention //
typedef struct Cisco_LineDevStatus_Ext
{

Cisco_LineDevStatus_Ext00060000 ext60;
Cisco_LineDevStatus_Ext00070000 ext70;
Cisco_LineDevStatus_Ext00080000 ext80;

} CISCO_LINEDEVSTATUS_EXT;

typedef struct Cisco_LineDevStatus_Ext00080000
{
CISCOLINEDEVSTATUS_DONOTDISTURB doNotDisturbStatus;
} CISCO_LINEDEVSTATUS_EXT00080000;

typedef struct CiscoLineDevStatus_DoNotDisturb
{
DWORD m_LineDevStatus_DoNotDisturbOption;
DWORD m_LineDevStatus_DoNotDisturbStatus;
} CISCOLINEDEVSTATUS_DONOTDISTURB;

For a specific line device, the extension area will include a portion of this structure, starting from the beginning
and up to the extension version that an application negotiated.

Detail
The individual extension version substructure definitions follow:

// LINEDEVSTATUS 00060000 extention //
typedef struct Cisco_LineDevStatus_Ext00060000
{

DWORD dwSupportedEncoding;
} CISCO_LINEDEVSTATUS_EXT00060000;

// LINEDEVSTATUS 00070000 extention //
typedef struct Cisco_LineDevStatus_Ext00070000
{

char lpszAlternateScript[MAX_ALTERNATE_SCRIPT_SIZE];
// An empty string means there is no alternate script configured
// or the phone does not support alternate scripts

} CISCO_LINEDEVSTATUS_EXT00070000;

// LINEDEVSTATUS 00080000 extention //
// Status extention 00080000 Data Structure//
typedef struct Cisco_LineDevStatus_Ext00080000
{

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
344

Cisco Device-Specific Extensions
LINEDEVSTATUS

CISCOLINEDEVSTATUS_DONOTDISTURB doNotDisturbStatus;
} CISCO_LINEDEVSTATUS_EXT00080000;

typedef struct CiscoLineDevStatus_DoNotDisturb
{

DWORD m_LineDevStatus_DoNotDisturbOption;
DWORD m_LineDevStatus_DoNotDisturbStatus;

} CISCOLINEDEVSTATUS_DONOTDISTURB;

You can find additional information on the DevSpecific structure layout and data in the
CiscoLineDevSpecificMsg.h header file.

The CiscoLineDevStatus_DoNotDisturb structure belongs to the LINEDEVSTATUS_DEV_SPECIFIC_DATA
structure and gets used to reflect the current state of the Do Not Disturb feature.

Parameters
DWORD dwSupportEncoding

This parameter indicates the Support Encoding for the Unicode Party names that are being sent in
device-specific extension of the LINECALLINFO structure.

The typical values could be

enum {
UnknownEncoding = 0,// Unknown encoding
NotApplicableEncoding = 1,// Encoding not applicable to this device
AsciiEncoding = 2, // ASCII encoding
Ucs2UnicodeEncoding = 3 // UCS-2 Unicode encoding
}

Be aware that the dwSupportedEncoding extension is only available if extension version 0x00060000
or higher is negotiated.

Note

LPCSTR lpszAlternateScript

This parameter specifies the alternate script that the device supports. An empty string indicates the device
does not support or is not configured with an alternate script.

The only supported script in this release is "Kanji" for the Japanese locale.

m_LineDevStatus_DoNotDisturbOption

This field contains DND option that is configured for the device and can comprise one of the following
enum values:

enum CiscoDoNotDisturbOption { DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

m_LineDevStatus_DoNotDisturbStatus field contains current DND status on the
device and can be one of the following enum values:

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
345

Cisco Device-Specific Extensions
Parameters

DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

Be aware that this extension is only available if extension version 8.0 (0x00080000) or higher is negotiated.Note

CCiscoLineDevSpecific
This section provides information on how to perform Cisco Unified TAPI specific functions with the
CCiscoLineDevSpecific class, which represents the parent class to all the following classes. It comprises a
virtual class and is provided here for informational purposes.

CCiscoLineDevSpecific|
+--CCiscoLineDevSpecificMsgWaiting
|
+--CCiscoLineDevSpecificMsgWaitingDirn
|
+--CCiscoLineDevSpecificUserControlRTPStream
|
+--CCiscoLineDevSpecificSetStatusMsgs
|
+--CCiscoLineDevSpecificSwapHoldSetupTransfer
|
+--CCiscoLineDevSpecificRedirectResetOrigCalled
|
+--CCiscoLineDevSpecificRedirectSetOrigCalled
|
+--CCiscoLineDevSpecificPortRegistrationPerCall
|
+--CCiscoLineDevSpecificSetRTPParamsForCall
|
+--CCiscoLineDevSpecificJoin
|
+--CCiscoLineDevSpecificRedirectFACCMC
|
+--CCiscoLineDevSpecificBlindTransferFACCMC
|
+--CCiscoLineDevSpecificCTIPortThirdPartyMonitor
|
+--CCiscoLineDevSpecificUserSetSRTPAlgorithmID
|
+--CCiscoLineDevSpecificSendLineOpen
|
+--CCiscoLineDevSpecificAcquire
|
+--CCiscoLineDevSpecificDeacquire
|
+--CCiscoLineDevSpecificStartCallMonitoring
|
+--CCiscoLineDevSpecificStartCallRecording
|
+--CCiscoLineDevSpecificStopCallRecording
|
+--CCiscoLineSetIntercomSpeeddial
|
+--CCiscoLineIntercomTalkback
|

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
346

Cisco Device-Specific Extensions
CCiscoLineDevSpecific

+--CciscoSetupTransferWithoutMedia
|
+--CCiscoLineDevSpecificSetMsgSummary
|
+--CCiscoLineDevSpecificSetMsgSummaryDirn
|
+--CCiscoLineDevSpecificSetRTPParamsForCallIPv6
|
+--CCiscoLineDevSpecificSetIPv6AddressAndMode
|
+--CCiscoLineDevSpecificDirectTransfer
|
+--CCiscoLineDevSpecificRegisterCallPickupGroupForNotification
|
+--CCiscoLineDevSpecificUnRegisterCallPickupGroupForNotification
|
+--CCiscoLineDevSpecificCallPickupRequest
|
+--CCiscoLineDevSpecificPlaytone
|
+--CCiscoLineDevSpecificStartSendMediaToBIBRequest
|
+--CCiscoLineDevSpecificStopSendMediaToBIBRequest
|
+--CCiscoLineDevSpecificMonitoringUpdateMode
|
+--CCiscoLineDevSpecificEnableFeatureSupport
|
+--CCiscoLineRedirectWithFeaturePriority
|
+--CciscoLineDevSpecificAddRemoteDestination
|
+--CciscoLineDevSpecificUpdateRemoteDestination
|
+--CciscoLineDevSpecificRemoveRemoteDestination
|
+--CciscoLineDevSpecificHoldEx
|
+--CciscoLineDevSpecificRedirectEx

Header File
The file CiscoLineDevSpecific.h contains the constant, structure, and class definition for the Cisco line
device-specific classes.

Class Detail

class CCiscoLineDevSpecific
{
public:
CCicsoLineDevSpecific(DWORD msgType);
virtual ~CCiscoLineDevSpecific();
DWORD GetMsgType(void) const {return m_MsgType;}
void* lpParams() {return &m_MsgType;}
virtual DWORD dwSize() = 0;

private:
DWORD m_MsgType;

};

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
347

Cisco Device-Specific Extensions
Header File

Functions
lpParms()

You can use function to obtain the pointer to the parameter block.

dwSize()

Function will give the size of the parameter block area.

Parameter
m_MsgType

Specifies the type of message.

Subclasses
Each subclass of CCiscoLineDevSpecific includes a different value that is assigned to the parameter
m_MsgType. If you are using C instead of C++, this represents the first parameter in the structure.

Enumeration
The CiscoLineDevSpecificType enumeration provides valid message identifiers.

enum CiscoLineDevSpecificType
{
SLDST_MSG_WAITING = 1,
SLDST_MSG_WAITING_DIRN,
SLDST_USER_CRTL_OF_RTP_STREAM,
SLDST_SET_STATUS_MESSAGES,
SLDST_NUM_TYPE,
SLDST_SWAP_HOLD_SETUP_TRANSFER, // Not Supported in CiscoTSP 3.4 and Beyond
SLDST_REDIRECT_RESET_ORIG_CALLED,
SLDST_REDIRECT_SET_ORIG_CALLED,
SLDST_USER_RECEIVE_RTP_INFO,
SLDST_USER_SET_RTP_INFO,
SLDST_JOIN,
SLDST_REDIRECT_FAC_CMC,
SLDST_BLIND_TRANSFER_FAC_CMC,
SLDST_CTI_PORT_THIRD_PARTY_MONITOR,
SLDST_ACQUIRE,
SLDST_DE_ACQUIRE,
SLDST_USER_SET_SRTP_ALGORITHM_ID,
SLDST_SEND_LINE_OPEN,
SLDST_START_CALL_MONITORING,
SLDST_START_CALL_RECORDING,
SLDST_STOP_CALL_RECORDING,
SLDST_LINE_SET_INTERCOM_SPEEDDIAL,
SLDST_LINE_INTERCOM_TALKBACK,
SLDST_REDIRECT_WITH_FEATURE_PRIORITY,
SLDST_USER_SET_RTP_INFO_IPv6,
SLDST_USER_SET_IPv6_ADDRESS_AND_MODE,
SLDST_SETUP_TRANSFER_WITHOUT_MEDIA,
SLDST_DIRECT_TRANSFER,
SLDST_MSG_SUMMARY,
SLDST_MSG_SUMMARY_DIRN,
SLDST_CALLPICKUP_GROUP_REGISTER,
SLDST_CALLPICKUP_GROUP_UNREGISTER,
SLDST_CALLPICKUP_CALL,
SLDST_PLAY_TONE,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
348

Cisco Device-Specific Extensions
Functions

SLDST_START_SEND_MEDIA_TO_BIB,
SLDST_STOP_SEND_MEDIA_TO_BIB,
SLDST_UPDATE_MONITOR_MODE,
SLDST_ENABLE_FEATURE_SUPPORT,
SLDST_ADD_REMOTE_DESTINATION,
SLDST_REMOVE_REMOTE_DESTINATION,
SLDST_UPDATE_REMOTE_DESTINATION,
SLDST_HOLD_EX
SLDST_REDIRECT_EX
};

Message Waiting
The CCiscoLineDevSpecificMsgWaiting class turns the message waiting lamp on or off for the line that the
hLine parameter specifies.

This extension does not require an extension version to be negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificMsgWaiting

Class Detail

class CCiscoLineDevSpecificMsgWaiting : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificMsgWaiting() : CCiscoLineDevSpecific(SLDST_MSG_WAITING){}
virtual ~CCiscoLineDevSpecificMsgWaiting() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
DWORD m_BlinkRate;

};

Parameters
DWORD m_MsgType

Equals SLDST_MSG_WAITING.

DWORD m_BlinkRate

Any supported PHONELAMPMODE_constants that are specified in the phoneSetLamp() function.

Cisco Unified IP Phone 7900 Series supports only PHONELAMPMODE_OFF and
PHONELAMPMODE_STEADY

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
349

Cisco Device-Specific Extensions
Message Waiting

Message Waiting Dirn
The CCiscoLineDevSpecificMsgWaitingDirn class turns the message waiting lamp on or off for the line that
a parameter specifies and remains independent of the hLine parameter.

This extension does not require an extension version to be negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificMsgWaitingDirn

Class Detail

class CCiscoLineDevSpecificMsgWaitingDirn : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificMsgWaitingDirn() :
CCiscoLineDevSpecific(SLDST_MSG_WAITING_DIRN) {}

virtual ~CCiscoLineDevSpecificMsgWaitingDirn() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
DWORD m_BlinkRate;
char m_Dirn[25];

};

Parameters
DWORD m_MsgType

Specifies SLDST_MSG_WAITING_DIRN.

DWORD m_BlinkRate

As in the CCiscoLineDevSpecificMsgWaiting message.

Cisco Unified IP Phone 7900 Series supports only PHONELAMPMODE_OFF and
PHONELAMPMODE_STEADY

Note

char m_Dirn[25]

The directory number for which the message waiting lamp should be set.

Message Summary
Use the CCiscoLineDevSpecificSetMsgSummary class to turn the message waiting lamp on or off as well as
to provide voice and fax message counts for the line specified by the hLine parameter.

Be aware that this extension does not require an extension version to be negotiated.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
350

Cisco Device-Specific Extensions
Message Waiting Dirn

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificSetMsgSummary

Class Detail

class CCiscoLineDevSpecificSetMsgSummary : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSetMsgSummary() : CCiscoLineDevSpecific(SLDST_MSG_SUMMARY){}

virtual ~CCiscoLineDevSpecificSetMsgSummary() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
DWORD m_BlinkRate;
MSG_SUMMARY m_MessageSummary;

};

Parameters
DWORD m_MsgType

equals SLDST_MSG_SUMMARY.

DWORD m_BlinkRate

is any supported PHONELAMPMODE_constants specified in the phoneSetLamp() function.

MSG_SUMMARY m_MessageSummary

A data structure with the following format:

typedef struct {
DWORD m_voiceCounts; // indicates if new voice counts are

// provided. True = counts will be displayed
// on supported phones.

DWORD m_totalNewVoiceMsgs; // specifies the total number of new
// voice messages. This number includes all
// the high and normal priority voice
// messages that are new.

DWORD m_totalOldVoiceMsgs; // specifies the total number of old
// voice messages. This number includes all
// high and normal priority voice messages
// that are old.

DWORD m_highPriorityVoiceCounts; // indicates if old voice
// counts are provided. True = counts will be
// displayed on supported phones.

DWORD m_newHighPriorityVoiceMsgs; //specifies the number of new
// high priority voice messages.

DWORD m_oldHighPriorityVoiceMsgs; //specifies the number of old
// high priority voice messages.

DWORD m_faxCounts; // indicates if new fax counts are
// provided. True = counts will be displayed
// on supported phones.

DWORD m_totalNewFaxMsgs; // specifies the total number of new
// fax messages. This number includes all
// the high and normal priority fax
// messages that are new.

DWORD m_totalOldFaxMsgs; // specifies the total number of old
// fax messages. This number includes all
// high and normal priority fax messages

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
351

Cisco Device-Specific Extensions
Class Detail

// that are old.
DWORD m_highPriorityFaxCounts; // indicates if old fax counts

// are provided. True = counts will be
// displayed on supported phones.

DWORD m_newHighPriorityFaxMsgs; // specifies the number of new
// high priority fax messages.

DWORD m_oldHighPriorityFaxMsgs; // specifies the number of old
// high priority fax messages.

} MSG_SUMMARY;

Message Summary Dirn
Use the CCiscoLineDevSpecificSetMsgSummaryDirn class to turn the message waiting lamp on or off and
to provide voice and fax message counts for the line specified by a parameter and is independent of the hLine
parameter.

Be aware that this extension does not require an extension version to be negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificSetMsgSummaryDirn

Class Detail

class CCiscoLineDevSpecificSetMsgSummaryDirn : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSetMsgSummaryDirn() :

CCiscoLineDevSpecific(SLDST_MSG_SUMMARY_DIRN) {}
virtual ~CCiscoLineDevSpecificSetMsgSummaryDirn() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
DWORD m_BlinkRate;
char m_Dirn[25];
MSG_SUMMARY m_MessageSummary;

};

Parameters
DWORD m_MsgType

equals SLDST_MSG_SUMMARY_DIRN.

DWORD m_BlinkRate

is as in the CCiscoLineDevSpecificSetMsgSummary message.

char m_Dirn[25]

is the directory number for which the message waiting lamp should be set.

MSG_SUMMARY m_MessageSummary

A data structure with the following format:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
352

Cisco Device-Specific Extensions
Message Summary Dirn

typedef struct {
DWORD m_voiceCounts; // indicates if new voice counts are

// provided. True = counts will be displayed
// on supported phones.

DWORD m_totalNewVoiceMsgs; // specifies the total number of new
// voice messages. This number includes all
// the high and normal priority voice
// messages that are new.

DWORD m_totalOldVoiceMsgs; // specifies the total number of old
// voice messages. This number includes all
// high and normal priority voice messages
// that are old.

DWORD m_highPriorityVoiceCounts; // indicates if old voice
// counts are provided. True = counts will be
// displayed on supported phones.

DWORD m_newHighPriorityVoiceMsgs; //specifies the number of new
// high priority voice messages.

DWORD m_oldHighPriorityVoiceMsgs; //specifies the number of old
// high priority voice messages.

DWORD m_faxCounts; // indicates if new fax counts are
// provided. True = counts will be displayed
// on supported phones.

DWORD m_totalNewFaxMsgs; // specifies the total number of new
// fax messages. This number includes all
// the high and normal priority fax
// messages that are new.

DWORD m_totalOldFaxMsgs; // specifies the total number of old
// fax messages. This number includes all
// high and normal priority fax messages
// that are old.

DWORD m_highPriorityFaxCounts; // indicates if old fax counts
// are provided. True = counts will be
// displayed on supported phones.

DWORD m_newHighPriorityFaxMsgs; // specifies the number of new
// high priority fax messages.

DWORD m_oldHighPriorityFaxMsgs; // specifies the number of old
// high priority fax messages.

} MSG_SUMMARY;

Audio Stream Control
The CCiscoLineDevSpecificUserControlRTPStream class controls the audio stream of a line. To use this
class you must call the lineNegotiateExtVersion API before opening the line. When lineNegotiateExtVersion
is called ensure the highest bit is set on both the dwExtLowVersion and dwExtHighVersion parameters. This
causes the call to lineOpen to behave differently. The line does not actually open, but waits for a lineDevSpecific
call to complete the open with more information. The CCiscoLineDevSpecificUserControlRTPStream class
provides the extra information that is required.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificUserControlRTPStream

Procedure

1. Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters).

2. Call lineOpen for the deviceID of the line that is to be opened.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
353

Cisco Device-Specific Extensions
Audio Stream Control

3. Call lineDevSpecific with a CCiscoLineDevSpecificUserControlRTPStream message in the lpParams
parameter.

Class Detail

class CCiscoLineDevSpecificUserControlRTPStream : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificUserControlRTPStream() :
CCiscoLineDevSpecific(SLDST_USER_CRTL_OF_RTP_STREAM),
m_ReceiveIP(-1),
m_ReceivePort(-1),
m_NumAffectedDevices(0)
{
memset(m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
}

virtual ~CCiscoLineDevSpecificUserControlRTPStream() {}
DWORD m_ReceiveIP; // UDP audio reception IP
DWORD m_ReceivePort; // UDP audio reception port
DWORD m_NumAffectedDevices;
DWORD m_AffectedDeviceID[10];
DWORD m_MediaCapCount;
MEDIA_CAPS m_MediaCaps;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
};

Parameters
DWORD m_MsgType

Equals SLDST_USER_CRTL_OF_RTP_STREAM

DWORD m_ReceiveIP:

The RTP audio reception IP address in network byte order

DWORD m_ReceivePort:

The RTP audio reception port in network byte order

DWORD m_NumAffectedDevices:

The TSP returns this value. It contains the number of deviceIDs in the m_AffectedDeviceID array that
are valid. Any device with multiple directory numbers that are assigned to it will have multiple TAPI
lines, one per directory number.

DWORD m_AffectedDeviceID[10]:

The TSP returns this value. It contains the list of deviceIDs for any device that is affected by this call.
Do not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount

The number of codecs that are supported for this line.

MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
354

Cisco Device-Specific Extensions
Class Detail

typedef struct {
DWORD MediaPayload;
DWORD MaxFramesPerPacket;
DWORD G723BitRate;

} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec that is supported on a line. The limit specifies 18. The following
description shows each member in the MEDIA_CAPS data structure:

MediaPayload specifies an enumerated integer that contains one of the following values:

enum {
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;

Read MaxFramesPerPacket as MaxPacketSize. It specifies a 16-bit integer that indicates the maximum
desired RTP packet size in milliseconds. Typically, this value gets set to 20.

G723BitRate specifies a 6-byte field that contains either the G.723.1 information bit rate, or it gets
ignored. The following list provides values for the G.723.1 field values:

enum {
Media_G723BRate_5_3 = 1, //5.3Kbps
Media_G723BRate_6_4 = 2 //6.4Kbps
} Media_G723BitRate;

Set Status Messages

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificSetStatusMsgs

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
355

Cisco Device-Specific Extensions
Set Status Messages

Description
Use the CCiscoLineDevSpecificSetStatusMsgs class to turn on or off the status messages for the line that the
hLine parameter specifies. The Cisco Unified TSP supports the following flags:

• DEVSPECIFIC_MEDIA_STREAM—Setting this flag on a line turns on the reporting of media streaming
messages for that line. Clearing this flag turns off the reporting of media streaming messages for that
line.

• DEVSPECIFIC_CALL_TONE_CHANGED—Setting this flag on a line turns on the reporting of call
tone changed events for that line. Clearing this flag turns off the reporting of call tone changed events
for that line.

• DEVSPECIFIC_SILENT_MONITORING_TERMINATED—Setting this flag on a line turns on the
reporting of Monitoring Session Terminated Event messages for that line. Clearing this flag turns off the
reporting of Monitoring Session Terminated Event Messages for that line.

• DEVSPECIFIC_GET_IP_PORT—Setting this flag on a line turns on the reporting of Get IP and Port
Notification Event messages for that line. Clearing this flag turns off the reporting of Get IP and Port
Notification Event Messages for that line.

• DEVSPECIFIC_HOLD_REVERSION—Setting this flag on a line causes the application to receive a
LINE_DEVSPECIFIC(dwParam1 = SLDSMT_HOLD_REVERSION) when a hold reversion happens
on a held call. Clearing this flag on a line turns off the reporting of the LINE_DEVSPECIFIC(dwParam1
= SLDSMT_HOLD_REVERSION) event.

• DEVSPECIFIC_IDLE_TRANSFER_REASON—Setting this flag on a line causes the reason to be
reported as LINECALLREASON_TRANSFER when calls go to the LINECALLSTATE_IDLE state
after a transfer is completed at the transfer controller. Clearing this flag on a line causes the reason to be
reported as LINECALLREASON_DIRECT when calls go to the LINECALLSTATE_IDLE state after
a transfer is completed at the transfer controller.

• DEVSPECIFIC_SPEEDDIAL_CHANGED—Setting this flag on a line causes a
LINE_DEVSPECIFIC(dwParam1 = SLDSMT_LINE_PROPERTY_CHANGED, dwParam2 =
LPCT_INTERCOM_LINE, and dwParam3 = CiscoIntercomLineChangeResult) to be fired to the
application when there is a change in the database or the application overwrites the speed dial setting.
Clearing this flag turns off the reporting of the LINE_DEVSPECIFIC(dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED, dwParam2 = LPCT_INTERCOM_LINE, and dwParam3
= CiscoIntercomLineChangeResult) event.

• DEVSPECIFIC_DONOTDISTURB_CHANGED—Setting this flag on a line causes a
LINE_DEVSPECIFICFEATURE(dwParam1 = PHONEBUTTONFUNCTION_DONOTDISTURB,
dwParam2 = typeOfChange, and dwParam3 = currentValue) to be fired to the application when there is
a change in the DND configuration or status. Clearing this flag turns off the reporting of the
LINE_DEVSPECIFICFEATURE(dwParam1 = PHONEBUTTONFUNCTION_DONOTDISTURB,
dwParam2 = typeOfChange, and dwParam3 = currentValue) event.

• DEVSPECIFIC_DISPLAYABLE_ADDRESS—Setting this flag on a line causes the DisplayableAddress
field in LINECALLINFO to be filled with the latest called partyDN/ASCCI name/Unicode name/Partition
(separated by ":"). Clearing this flag causes the DisplayableAddress field in LINECALLINFO to be
empty.

• DEVSPECIFIC_DEVICE_STATE—Setting this flag gets the accumulative state of all the lines on the
device and with the state being fired to the application using the LINE_DEVSPECIFIC(dwParam1 =

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
356

Cisco Device-Specific Extensions
Description

SLDSMT_DEVICE_STATE, dwParam2 = State) events. Clearing this flag turns off the reporting of the
accumulative state of all the lines on the device.

The DEVSPECIFIC_DEVICE_STATE state is defined as:

enum lineDeviceState{
lineDeviceState_UNKNOWN = 0,
lineDeviceState_ACTIVE = 1,
lineDeviceState_ALERTING = 2,
lineDeviceState_HELD = 3,
lineDeviceState_WHISPER = 4,
lineDeviceState_IDLE = 5

};

• DEVSPECIFIC_PARK_MONITORING—Setting this flag on a line causes the Park Monitoring events
to be fired to the application. Clearing this flag turns off the reporting of the Park Monitoring events. For
more information, see Park Monitoring, on page 80.

• DEVSPECIFIC_OTHER_DEVICE_STATE_NOTIFY—Setting this flag on a line notifies the application
about the non-opened device state changes. Clearing this flag turns off the reporting of the other
non-opened device state changes. For more information, see Other-Device State Notification, on page
79.

This extension only applies if extension version 0x00020001 or higher is negotiated.Note

Class Detail

class CCiscoLineDevSpecificSetStatusMsgs : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSetStatusMsgs() :
CCiscoLineDevSpecific(SLDST_SET_STATUS_MESSAGES) {}
virtual ~CCiscoLineDevSpecificSetStatusMsgs() {}
DWORD m_DevSpecificStatusMsgsFlag;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
};

Parameters
DWORD m_MsgType

Equals SLDST_SET_STATUS_MESSAGES.

DWORD m_DevSpecificStatusMsgsFlag

Identifies which status changes cause a LINE_DEVSPECIFIC message to be sent to the application.

The supported values follow:

#define DEVSPECIFIC_MEDIA_STREAM0x00000001#define
DEVSPECIFIC_CALL_TONE_CHANGED0x00000002
#define CALL_DEVSPECIFIC_RTP_EVENTS0x00000003
#define DEVSPECIFIC_IDLE_TRANSFER_REASON 0x00000004
#define DEVSPECIFIC_HOLD_REVERSION 0x00000008

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
357

Cisco Device-Specific Extensions
Class Detail

#define DEVSPECIFIC_SPEEDDIAL_CHANGED0x00000010
#define DEVSPECIFIC_DONOTDISTURB_CHANGED0x00000020
#define DEVSPECIFIC_DISPLAYABLE_ADDRESS0x00000040
#define DEVSPECIFIC_PARK_MONITORING0x00000080
#define DEVSPECIFIC_DEVICE_STATE0x00000100
#define DEVSPECIFIC_SILENT_MONITORING_TERMINATED0x00000200
#define DEVSPECIFIC_OTHER_DEVICE_STATE_NOTIFY0x00000400
#define DEVSPECIFIC_GET_IP_PORT0x00000800

Swap-Hold/SetupTransfer

Cisco Unified TSP 4.0 and later do not support this.Note

The CCiscoLineDevSpecificSwapHoldSetupTransfer class gets used to perform a SetupTransfer between a
call that is in CONNECTED state and a call that is in the ONHOLD state. This function changes the state of
the connected call to ONHOLDPENDTRANSFER state and the ONHOLD call to CONNECTED state. This
allows a CompleteTransfer to be performed on the two calls. In Cisco Unified TSP 4.0 and later, the TSP
allows applications to use lineCompleteTransfer() to transfer the calls without having to use the
CCiscoLineDevSpecificSwapHoldSetupTransfer function. Therefore, this function returns
LINEERR_OPERATIONUNAVAIL in Cisco Unified TSP 4.0 and beyond.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificSwapHoldSetupTransfer

This extension only applies if extension version 0x00020002 or higher is negotiated.Note

Class Details

class CCiscoLineDevSpecificSwapHoldSetupTransfer : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSwapHoldSetupTransfer() :

CCiscoLineDevSpecific(SLDST_SWAP_HOLD_SETUP_TRANSFER) {}
virtual ~CCiscoLineDevSpecificSwapHoldSetupTransfer() {}
DWORD heldCallID;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out

the
virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals SLDST_SWAP_HOLD_SETUP_TRANSFER.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
358

Cisco Device-Specific Extensions
Swap-Hold/SetupTransfer

DWORD heldCallID

Equals the callid of the held call that is returned in dwCallID of LPLINECALLINFO.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.

Redirect Reset Original Called ID

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificRedirectResetOrigCalled

Description
The CCiscoLineDevSpecificRedirectResetOrigCalled class redirects a call to another party while it resets the
original called ID of the call to the destination of the redirect.

This extension only applies if extension version 0x00020003 or higher is negotiated.Note

Class Details

class CCiscoLineDevSpecificRedirectResetOrigCalled: public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificRedirectResetOrigCalled:

CCiscoLineDevSpecific(SLDST_REDIRECT_RESET_ORIG_CALLED) {}
virtual ~CCiscoLineDevSpecificRedirectResetOrigCalled{}
char m_DestDirn[25]; //redirect destination address
virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out

the
virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals SLDST_REDIRECT_RESET_ORIG_CALLED.

DWORD m_DestDirn

Equals the destination address where the call needs to be redirected.

HCALL hCall (In lineDevSpecific parameter list)

Equals the handle of the connected call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
359

Cisco Device-Specific Extensions
Redirect Reset Original Called ID

Port Registration per Call
The CCiscoLineDevSpecificPortRegistrationPerCall class registers the CTI Port for the RTP parameters on
a per-call basis. With this request, the application receives the new lineDevSpecific event that requests that
it needs to set the RTP parameters for the call.

To use this class, ensure the lineNegotiateExtVersion API is called before opening the line. When calling
lineNegotiateExtVersion, ensure the highest bit is set on both the dwExtLowVersion and dwExtHighVersion
parameters.

This causes the call to lineOpen to behave differently. The line does not actually open, but waits for a
lineDevSpecific call to complete the open with more information. The extra information required is provided
in the CciscoLineDevSpecificPortRegistrationPerCall class.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificPortRegistrationPerCall

Procedure

1. Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (or 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

2. Call lineOpen for the deviceID of the line that is to be opened.

3. Call lineDevSpecific with a CciscoLineDevSpecificPortRegistrationPerCall message in the lpParams
parameter.

This extension is only available if the extension version 0x00040000 or higher gets negotiated.Note

Class Details

class CCiscoLineDevSpecificPortRegistrationPerCall: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificPortRegistrationPerCall () :
CCiscoLineDevSpecific(SLDST_USER_RECEIVE_RTP_INFO),
m_RecieveIP(-1), m_RecievePort(-1), m_NumAffectedDevices(0)
{
memset((char*)m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
}

virtual ~ CCiscoLineDevSpecificPortRegistrationPerCall () {}
DWORD m_NumAffectedDevices;
DWORD m_AffectedDeviceID[10];
DWORD m_MediaCapCount;
MEDIA_CAPSm_MediaCaps;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
360

Cisco Device-Specific Extensions
Port Registration per Call

Parameters
DWORD m_MsgType

Equals SLDST_USER_RECEIVE_RTP_INFO

DWORD m_NumAffectedDevices:

TSP returns this value. It contains the number of deviceIDs in the m_AffectedDeviceID array that are
valid. Any device with multiple directory numbers that are assigned to it will have multiple TAPI lines,
one per directory number.

DWORD m_AffectedDeviceID[10]:

TSP returns this value. It contains the list of deviceIDs for any device that is affected by this call. Do
not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount

The number of codecs that are supported for this line.

MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

typedef struct {
DWORD MediaPayload;
DWORD MaxFramesPerPacket;
DWORD G723BitRate;
} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec that is supported on a line. The limit specifies 18. The following
description applies for each member in the MEDIA_CAPS data structure:

MediaPayload is an enumerated integer that contains one of the following values.

enum{
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
361

Cisco Device-Specific Extensions
Parameters

// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;

MaxFramesPerPacket should read as MaxPacketSize and comprises a 16 bit integer that is specified in
milliseconds. It indicates the RTP packet size. Typically, this value gets set to 20.

G723BitRate comprises a six byte field that contains either the G.723.1 information bit rate, or gets
ignored. The values for the G.723.1 field comprises values that are enumerated as follows.

enum
{
Media_G723BRate_5_3 = 1, //5.3Kbps
Media_G723BRate_6_4 = 2 //6.4Kbps
} Media_G723BitRate;

Setting RTP Parameters for Call
The CCiscoLineDevSpecificSetRTPParamsForCall class sets the RTP parameters for a specific call.

This extension only applies if extension version 0x00040000 or higher gets negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificSetRTPParamsForCall

Class Details

class CciscoLineDevSpecificSetRTPParamsForCall: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetRTPParamsForCall () :
CCiscoLineDevSpecific(SLDST_USER_SET_RTP_INFO) {}

virtual ~ CciscoLineDevSpecificSetRTPParamsForCall () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer
DWORD m_RecieveIP; // UDP audio reception IP
DWORD m_RecievePort; // UDP audio reception port
};

Parameters
DWORD m_MsgType

Equals SLDST_USER_SET_RTP_INFO

DWORD m_ReceiveIP

This specifies the RTP audio reception IP address in the network byte order to set for the call.

DWORD m_ReceivePort

This specifies the RTP audio reception port in the network byte order to set for the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
362

Cisco Device-Specific Extensions
Setting RTP Parameters for Call

Redirect Set Original Called ID
The CCiscoLineDevSpecificRedirectSetOrigCalled class redirects a call to another party while it sets the
original called ID of the call to any other party.

This extension only applies if extension version 0x00040000 or higher gets negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificRedirectSetOrigCalled

Class Details

class CCiscoLineDevSpecificRedirectSetOrigCalled: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificRedirectSetOrigCalled () :
CCiscoLineDevSpecific(SLDST_REDIRECT_SET_ORIG_CALLED) {}

virtual ~ CCiscoLineDevSpecificRedirectSetOrigCalled () {}
char m_DestDirn[25];
char m_SetOriginalCalledTo[25];
// subtract virtual function table pointer
virtual DWORD dwSize(void) const {return (sizeof (*this) -4) ;

}

Parameters
DWORD m_MsgType

Equals SLDST_REDIRECT_SET_ORIG_CALLED

char m_DestDirn[25]

Indicates the destination of the redirect. If this request is being used to transfer to voice mail, set this
field to the voice mail pilot number of the DN of the line for the voice mail, to which you want to transfer.

char m_SetOriginalCalledTo[25]

Indicates the DN to which the OriginalCalledParty needs to be set. If this request is being used to transfer
to voice mail, set this field to the DN of the line for the voice mail, to which you want to transfer.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.

Join
The CCiscoLineDevSpecificJoin class joins two or more calls into one conference call. Each call that is being
joined can be in the ONHOLD or the CONNECTED call state.

The Cisco Unified Communications Manager may succeed in joining some calls that are specified in the Join
request, but not all. In this case, the Join request will succeed and the Cisco Unified CommunicationsManager
attempts to join as many calls as possible.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
363

Cisco Device-Specific Extensions
Redirect Set Original Called ID

This extension only applies if extension version 0x00040000 or higher gets negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificJoin

Class Details

class CCiscoLineDevSpecificJoin : public CCiscoLineDevSpecific{
public:

CCiscoLineDevSpecificJoin () : CCiscoLineDevSpecific(SLDST_JOIN) {}
virtual ~ CCiscoLineDevSpecificJoin () {}
DWORD m_CallIDsToJoinCount;
CALLIDS_TO_JOIN m_CallIDsToJoin;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals SLDST_JOIN

DWORD m_CallIDsToJoinCount

The number of callIDs that are contained in the m_CallIDsToJoin parameter.

CALLIDS_TO_JOIN m_CallIDsToJoin

A data structure that contains an array of dwCallIDs to join with the following format:

typedef struct {
DWORD CallID; // dwCallID to Join

} CALLIDS_TO_JOIN[MAX_CALLIDS_TO_JOIN];

where MAX_CALLIDS_TO_JOIN is defined as:

const DWORD MAX_CALLIDS_TO_JOIN = 14;

HCALL hCall (in LineDevSpecific parameter list)

Equals the handle of the call that is being joined with callIDsToJoin to create the conference.

Set User SRTP Algorithm IDs
The CciscoLineDevSpecificUserSetSRTPAlgorithmID class gets used to allow applications to set SRTP
algorithm IDs. To use this class, ensure the lineNegotiateExtVersion API is called before opening the line.
When calling lineNegotiateExtVersion, ensure the highest bit or second highest bit is set on both the
dwExtLowVersion and dwExtHighVersion parameters. This causes the call to lineOpen to behave differently.
The line does not actually opens, but waits for a lineDevSpecific call to complete the open with more

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
364

Cisco Device-Specific Extensions
Class Details

information. Provide the extra information that is required in the
CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

This extension is only available if extension version 0x80070000, 0x4007000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificUserSetSRTPAlgorithmID

Procedure

1. Call lineNegotiateExtVersion for the deviceID of the line that is to be opened. (0x80070000 or 0x4007000
with the dwExtLowVersion and dwExtHighVersion parameters)

2. Call lineOpen for the deviceID of the line that is to be opened.

3. Call lineDevSpecific with a CciscoLineDevSpecificUserSetSRTPAlgorithmID message in the lpParams
parameter to specify SRTP algorithm IDs.

4. Call lineDevSpecific with either CciscoLineDevSpecificPortRegistrationPerCall or
CCiscoLineDevSpecificUserControlRTPStream message in the lpParams parameter.

Class Detail

class CciscoLineDevSpecificUserSetSRTPAlgorithmID: public CCiscoLineDevSpecific{
public:
CciscoLineDevSpecificUserSetSRTPAlgorithmID () :
CCiscoLineDevSpecific(SLDST_USER_SET_SRTP_ALGORITHM_ID),
m_SRTPAlgorithmCount(0),
m_SRTP_Fixed_Element_Size(4)

{
}

virtual ~ CciscoLineDevSpecificUserSetSRTPAlgorithmID () {}
DWORD m_SRTPAlgorithmCount; //Maximum is MAX_CISCO_SRTP_ALGORITHM_IDS

DWORD m_SRTP_Fixed_Element_Size;//Should be size of DWORD, it should be always
4.

DWORD m_SRTPAlgorithm_Offset; //offset from beginning of the message
buffer

virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out
the
virtual function table pointer
};

Supported Algorithm Constants

enum CiscoSRTPAlgorithmIDs{
SRTP_NO_ENCRYPTION = 0,
SRTP_AES_128_COUNTER = 1

};

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
365

Cisco Device-Specific Extensions
Class Detail

Parameters
DWORD m_MsgType

Equals SLDST_USER_SET_SRTP_ALGORITHM_ID

DWORD m_SRTPAlgorithmCount

This numbers of algorithm IDs that are specified in this message.

DWORD m_SRTP_Fixed_Element_Size

Should be size of DWORD, it should be always 4.

DWORD m_SRTPAlgorithm_Offset

Offset from the beginning of the message buffer. This is offset where you start put algorithm ID array.

Be aware that the dwSize should be recalculated based on size of the structure, m_SRTPAlgorithmCount and
m_SRTP_Fixed_Element_Size.

Note

Explicit Acquire
The CCiscoLineDevSpecificAcquire class gets used to explicitly acquire any CTI controllable device.

If a Superprovider application needs to open any CTI Controllable device on the CiscoUnified Communications
Manager system, the application should explicitly acquire that device by using the above interface. After
successful response, it can open the device as usual.

Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificAcquire

Class Details

class CCiscoLineDevSpecificAcquire : public CCiscoLineDevSpecific{
public:

CCiscoLineDevSpecificAcquire () : CCiscoLineDevSpecific(SLDST_ACQUIRE)
{}

virtual ~ CCiscoLineDevSpecificAcquire () {}
char m_DeviceName[16];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
366

Cisco Device-Specific Extensions
Parameters

Parameters
DWORD m_MsgType

Equals SLDST_ACQUIRE

m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

Explicit De-Acquire
The CCiscoLineDevSpecificDeacquire class is used to explicitly de-acquire the explicitly acquired device.

If a Superprovider application has explicitly acquired any CTI Controllable device on the Cisco Unified
Communications Manager system, then the application should explicitly De-acquire that device by using the
above interface.

Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificDeacquire

Class Details

class CCiscoLineDevSpecificDeacquire : public CCiscoLineDevSpecific{
public:

CCiscoLineDevSpecificDeacquire () : CCiscoLineDevSpecific(SLDST_ACQUIRE) {}
virtual ~ CCiscoLineDevSpecificDeacquire () {}
char m_DeviceName[16];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals SLDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Redirect FAC CMC
The CCiscoLineDevSpecificRedirectFACCMC class is used to redirect a call to another party that requires
a FAC, CMC, or both.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
367

Cisco Device-Specific Extensions
Parameters

Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificRedirectFACCMC

If the FAC is invalid, the TSP will return a new device-specific error code LINEERR_INVALIDFAC. If the
CMC is invalid, the TSP will return a new device-specific error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificRedirectFACCMC: public CCiscoLineDevSpecific{
public:

CCiscoLineDevSpecificRedirectFACCMC () :
CCiscoLineDevSpecific(SLDST_REDIRECT_FAC_CMC) {}

virtual ~ CCiscoLineDevSpecificRedirectFACCMC () {}
char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];
// subtract virtual function table pointer
virtual DWORD dwSize(void) const {return (sizeof (*this) -4) ;

}

Parameters
DWORD m_MsgType

Equals SLDST_REDIRECT_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the redirect.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, it must set this parameter
to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC digits, it must set this
parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call to be redirected.

Blind Transfer FAC CMC
The CCiscoLineDevSpecificBlindTransferFACCMC class is used to blind transfer a call to another party that
requires a FAC, CMC, or both. If the FAC is invalid, the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC is invalid, the TSP will return a new device specific error code
LINEERR_INVALIDCMC.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
368

Cisco Device-Specific Extensions
Class Detail

Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificBlindTransferFACCMC

Class Detail

class CCiscoLineDevSpecificBlindTransferFACCMC: public CCiscoLineDevSpecific{
public:

CCiscoLineDevSpecificBlindTransferFACCMC () :
CCiscoLineDevSpecific(SLDST_BLIND_TRANSFER_FAC_CMC) {}

virtual ~ CCiscoLineDevSpecificBlindTransferFACCMC () {}
char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];
// subtract virtual function table pointer
virtual DWORD dwSize(void) const {return (sizeof (*this) -4) ;

}

Parameters
DWORD m_MsgType

Equals SLDST_BLIND_TRANSFER_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the blind transfer.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, it must set this parameter
to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC digits, it must set this
parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call that is to be blind transferred.

CTI Port Third Party Monitor
The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class is used for opening CTI ports in third-party
mode.

To use this class, ensure the lineNegotiateExtVersion API is called before opening the line. When calling
lineNegotiateExtVersion, ensure the highest bit is set on both the dwExtLowVersion and dwExtHighVersion
parameters. This causes the call to lineOpen to behave differently. The line does not actually open, but waits
for a lineDevSpecific call to complete the open with more information. Provide the extra information that is
required in the CCiscoLineDevSpecificCTIPortThirdPartyMonitor class.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
369

Cisco Device-Specific Extensions
Class Detail

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificCTIPortThirdPartyMonitor

Procedure

1. Call lineNegotiateExtVersion for the deviceID of the line that is to be opened. (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

2. Call lineOpen for the deviceID of the line that is to be opened.

3. Call lineDevSpecific with a CCiscoLineDevSpecificCTIPortThirdPartyMonitor message in the lpParams
parameter.

Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.Note

Class Detail

class CCiscoLineDevSpecificCTIPortThirdPartyMonitor: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificCTIPortThirdPartyMonitor () :
CCiscoLineDevSpecific(SLDST_CTI_PORT_THIRD_PARTY_MONITOR) {}
virtual ~ CCiscoLineDevSpecificCTIPortThirdPartyMonitor () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Parameters
DWORD m_MsgType

equals SLDST_CTI_PORT_THIRD_PARTY_MONITOR

Send Line Open
The CciscoLineDevSpecificSendLineOpen class is used for general delayed open purpose. To use this class,
ensure the lineNegotiateExtVersion API is called before opening the line. When calling
lineNegotiateExtVersion, ensure the second highest bit is set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line does not
actually open, but waits for a lineDevSpecific call to complete the open with more information. The extra
information required is provided in the CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificSendLineOpen

Procedure

1. Call lineNegotiateExtVersion for the deviceID of the line that is to be opened. (0x40070000 with the
dwExtLowVersion and dwExtHighVersion parameters).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
370

Cisco Device-Specific Extensions
Class Detail

2. Call lineOpen for the deviceID of the line that is to be opened.

3. Call other lineDevSpecific, like CciscoLineDevSpecificUserSetSRTPAlgorithmIDmessage in the lpParams
parameter to specify SRTP algorithm IDs.

4. Call lineDevSpecific with either CciscoLineDevSpecificSendLineOpen to trigger the lineopen from TSP
side.

Be aware that this extension is only available if extension version 0x40070000 or higher is negotiated.Note

Class Detail

class CciscoLineDevSpecificSendLineOpen: public CCiscoLineDevSpecific
{
public:
CciscoLineDevSpecificSendLineOpen () :
CCiscoLineDevSpecific(SLDST_SEND_LINE_OPEN) {}

virtual ~ CciscoLineDevSpecificSendLineOpen () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Set Intercom SpeedDial
Use the CciscoLineSetIntercomSpeeddial class to allow application to set or reset SpeedDial/Label on an
intercom line.

Be aware that this extension is only available if extension version 0x00080000 or higher is negotiatedNote

CCiscoLineDevSpecific
|
+--CciscoLineSetIntercomSpeeddial

Procedure

1. Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (0x00080000 or higher).

2. Call lineOpen for the deviceID of the line that is to be opened.

3. Wait for line in service.

4. Call CciscoLineSetIntercomSpeeddial to set or reset speed dial setting on the intercom line.

Class Detail

class CciscoLineSetIntercomSpeeddial: public CCiscoLineDevSpecific {
public:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
371

Cisco Device-Specific Extensions
Class Detail

CciscoLineSetIntercomSpeeddial () :
CCiscoLineDevSpecific(SLDST_LINE_SET_INTERCOM_SPEEDDIAL) {}

virtual ~ CciscoLineSetIntercomSpeeddial () {}
DWORD SetOption; //0 = clear app value, 1 = set App Value
char Intercom_DN[MAX_DIRN];
char Intercom_Ascii_Label[MAX_DIRN];
wchar_t Intercom_Unicode_Label[MAX_DIRN];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Parameters
DWORD m_MsgType

Equals SLDST_USER_SET_INTERCOM_SPEEDDIAL

DWORD SetOption

Use this parameter to indicate whether the application wants to set a new intercom speed dial value or
clear the previous value. 0 = clear, 1 = set.

Char Intercom_DN [MAX_DIRN]

A DN array that indicates the intercom target

Char Intercom_Ascii_Label[MAX_DIRN]

Indicates the ASCII value of the intercom line label

Wchar_tIntercom_Unicode_Label[MAX_DIRN]

Indicates the Unicode value of the intercom line label

MAX_DIRN is defined as 25.

Intercom Talk Back
Use the CciscoLineIntercomTalkback class to allow the application to initiate talk back on an incoming
intercom call on an intercom line.

Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CciscoLineIntercomTalkback

Class Detail

class CciscoLineIntercomTalkback: public CCiscoLineDevSpecific{
public:
CCciscoLineIntercomTalkback () :
CCiscoLineDevSpecific(SLDST_INTERCOM_TALKBACK) {}

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
372

Cisco Device-Specific Extensions
Parameters

virtual ~ CciscoLineIntercomTalkback () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Redirect with Feature Priority
CciscoLineRedirectWithFeaturePriority enables an application to redirect calls with specified feature priorities.
The following is the structure of CciscoLineDevSpecific:

CCiscoLineDevSpecific
|
+--CciscoLineRedirectWithFeaturePriority

Be aware that this extension is only available if the extension version 0x00080001 or higher is negotiated.Note

Detail

class CciscoLineRedirectWithFeaturePriority: public CCiscoLineDevSpecific {
public:
CciscoLineRedirectWithFeaturePriority() :
CCiscoLineDevSpecific(SLDST_REDIRECT_WITH_FEATURE_PRIORITY) {}

virtual ~ CciscoLineRedirectWithFeaturePriority () {}
CiscoDoNotDisturbFeaturePriority FeaturePriority;
char m_DestDirn[25];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Parameters
DWORD m_MsgType

Equals SLDST_REDIRECT_WITH_FEATURE_PRIORITY

enum CiscoDoNotDisturbFeaturePriority {CallPriority_NORMAL = 1, CallPriority_URGENT = 2,
CallPriority_EMERGENCY = 3};

This identifies the priorities.

char m_DestDirn[25];

This is redirect destination.

Start Call Monitoring
Use CCiscoLineDevSpecificStartCallMonitoring to allow application to send a start monitoring request for
the active call on a line.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
373

Cisco Device-Specific Extensions
Redirect with Feature Priority

Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificStartCallMonitoring

Class Detail

class CCiscoLineDevSpecificStartCallMonitoring: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificStartCallMonitoring () :
CCiscoLineDevSpecific(SLDST_START_CALL_MONITORING) {}

virtual ~ CCiscoLineDevSpecificStartCallMonitoring () {}
DWORD m_PermanentLineID ;
DWORD m_MonitorMode;
DWORD m_ToneDirection;
// subtract out the virtual function table pointer
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

} ;

Parameters
DWORD m_MsgType

Equals SLDST_START_MONITORING

DWORD m_PermanentLineID

The permanent lineID of the line whose active call has to be monitored.

DWORDMonitorMode

This can have the following enum value:

enum {
MonitorMode_None = 0,
MonitorMode_Silent = 1,
MonitorMode_Whisper = 2, // Not used
MonitorMode_Active = 3 // Not used

} MonitorMode;

Silent Monitoring mode represents the only mode that is supported in which the supervisor cannot talk
to the agent.

Note

DWORD PlayToneDirection

This parameter specifies whether a tone should play at the agent or customer phone when monitoring
starts. It can have following enum values:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
374

Cisco Device-Specific Extensions
Class Detail

enum
{
PlayToneDirection_LocalOnly = 0,
PlayToneDirection_RemoteOnly,
PlayToneDirection_BothLocalAndRemote,
PlayToneDirection_NoLocalOrRemote
} PlayToneDirection

Return Values

-LINERR_OPERATIONFAILED-LINEERR_OPERATIONUNAVAIL
-LINEERR_RESOURCEUNAVAIL
-LINEERR_BIB_RESOURCE_UNAVAIL
-LINERR_PENDING_REQUEST
-LINEERR_OPERATION_ALREADY_INPROGRESS
-LINEERR_ALREADY_IN_REQUESTED_STATE
-LINEERR_PRIMARY_CALL_INVALID
-LINEERR_PRIMARY_CALL_STATE_INVALID

Start Call Recording
Use CCiscoLineDevSpecificStartCallRecording to allow applications to send a recording request for the active
call on that line.

Be aware that this extension is only available if extension version 0x00080000 or higher is negotiatedNote

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificStartCallRecording

Class Detail

class CCiscoLineDevSpecificStartCallRecording: public CCiscoLineDevSpecific{
public:
CCiscoLineDevSpecificStartCallRecording () :
CCiscoLineDevSpecific(SLDST_START_CALL_RECORDING) {}

virtual ~CCiscoLineDevSpecificStartCallRecording () {}

DWORD m_ToneDirection;
DWORD m_InvocationType;

virtual DWORD dwSize(void) const {
// subtract out the virtual function table pointer
return sizeof(*this)-sizeof(void*);
}
};

Parameters
DWORD m_MsgType

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
375

Cisco Device-Specific Extensions
Return Values

Equals SLDST_START_RECORDING

DWORD m_ToneDirection

This parameter specifies whether a tone should play at the agent or customer phone when recording starts. It
can have the following values:

enum {
PlayToneDirection_NoLocalOrRemote = 0,
PlayToneDirection_LocalOnly,
PlayToneDirection_RemoteOnly,
PlayToneDirection_BothLocalAndRemote,

PlayToneDirection_NotApplicable
} PlayToneDirection

DWORD m_InvocationType

This parameter specifies whether the recording status is displayed on the phone (user-controlled recording)
or not displayed (silent recording).

enum RecordingInvocationType {
RecordingInvocationType_SilentRecording = 1,
RecordingInvocationType_UserControlledRecording = 2
}

Return Values

-LINERR_OPERATIONFAILED-LINEERR_OPERATIONUNAVAIL
-LINEERR_INVALCALLHANDLE
-LINEERR_BIB_RESOURCE_UNAVAIL
-LINERR_PENDING_REQUEST
-LINERR_OPERATION_ALREADY_INPROGRESS
-LINEERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING
-LINEERR_RECORDING_CONFIG_NOT_MATCHING

StopCall Recording
Use CCiscoLineDevSpecificStopCallRecording to allow application to stop recording a call on that line.

Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated.Note

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificStopCallRecording

Class Detail

class CCiscoLineDevSpecificStopCallRecording: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificStopCallRecording () :

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
376

Cisco Device-Specific Extensions
Return Values

CCiscoLineDevSpecific(SLDST_STOP_CALL_RECORDING) {}

virtual ~CCiscoLineDevSpecificStopCallRecording () {}

DWORD m_InvocationType;

virtual DWORD dwSize(void) const {
// subtract out the virtual function table pointer
return sizeof(*this)-sizeof(void*);
}

} ;

Parameters
DWORD m_MsgType

Equals SLDST_STOP_RECORDING

DWORD m_InvocationType

This parameter specifies whether the recording status is displayed on the phone (user-controlled recording)
or not displayed (silent recording).

enum RecordingInvocationType
{
RecordingInvocationType_SilentRecording = 1,
RecordingInvocationType_UserControlledRecording = 2
}

Return Values

-LINERR_OPERATIONFAILED-LINEERR_OPERATIONUNAVAIL
-LINEERR_INVALCALLHANDLE
-LINERR_PENDING_REQUEST
-LINEERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING
-LINEERR_NO_RECORDING_SESSION
-LINEERR_RECORDING_SESSION_INACTIVE

Set IPv6 Address and Mode
Use the CciscoLineDevSpecificSetIPv6AddressAndMode class to allow the application to set IPv6 address
and addressing mode during the static registration. To use this class, ensure the lineNegotiateExtVersion API
must be called before opening the line. When calling lineNegotiateExtVersion, ensure the highest bit or the
second highest must be set on both the dwExtLowVersion and dwExtHighVersion parameters. This causes
the call to lineOpen to behave differently. The line does not actually open, but waits for a lineDevSpecific
call to complete the open with more information. The extra information required is provided in the
CciscoLineDevSpecificSetIPv6AddressAndMode class.

CCiscoLineDevSpecific|
+--CciscoLineDevSpecificSetIPv6AddressAndMode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
377

Cisco Device-Specific Extensions
Parameters

This extension is available only if extension version 0x80090000, 0x40090000 or higher is negotiated.Note

Procedure

1. Open Call lineNegotiateExtVersion for the deviceID of the line (0x80090000 or 0x40090000 with the
dwExtLowVersion and dwExtHighVersion parameters)

2. Open Call lineOpen for the deviceID of the line.

3. Call lineDevSpecific with a CciscoLineDevSpecificSetIPv6AddressAndMode message in the lpParams
parameter to specify IPv6 address and the IP Addressing mode as IPv6.

Class Detail

class CciscoLineDevSpecificSetIPv6AddressAndMode: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetIPv6AddressAndMode() :
CCiscoLineDevSpecific(SLDST_USER_SET_IPv6_ADDRESS_AND_MODE),

m_ReceivePort(-1), m_IPAddressMode((IpAddressingMode) 1)
{
}
virtual ~ CciscoLineDevSpecificSetIPv6AddressAndMode()
{
}
char m_ReceiveIPv6Address[16];
DWORD m_ReceivePort;
IpAddressingMode m_IPAddressMode;
virtual DWORD dwSize(void) const
{

return sizeof(*this) -4;
} // subtract out the virtual function table pointer

};

Parameters
DWORDm_MsgType

Equals SLDST_USER_SET_IPv6_ADDRESS

Charm_ReceiveIPv6Address[16]

User has to specify the IPv6 address to register the CTI Port with

DWORDm_ReceivePort

This specifies the port number for the user to register the CTI Port.

Intm_IPAddressMode

This specifies the Addressing mode with which user wants the CTI Port/RP registered.

Set RTP Parameters for IPv6 Calls
Use CciscoLineDevSpecificSetRTPParamsForCallIPv6 class to set the RTP parameters for calls for which
you must specify IPv6 address.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
378

Cisco Device-Specific Extensions
Class Detail

Be aware that this extension is available only if extension version 0x00090000 or higher is negotiated.Note

Class Detail

class CciscoLineDevSpecificSetRTPParamsForCallIPv6: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetRTPParamsForCallIPv6 () :
CCiscoLineDevSpecific(SLDST_USER_SET_RTP_INFO_IPv6) {}
virtual ~ CciscoLineDevSpecificSetRTPParamsForCallIPv6 () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
char m_RecieveIPv6[16]; // UDP audio reception IPv6
DWORD m_RecievePort // UDP audio reception port
};

Parameters
DWORD m_MsgType

Equals SLDST_USER_SET_RTP_INFO_IPv6

DWORD m_ReceiveIPv6

This is the RTP audio reception IPv6 address to set for the call

DWORD m_RecievePort

This is the RTP audio reception port to set for the call.

Direct Transfer
Use the CciscoLineDevSpecificDirectTransfer to transfer calls across lines or on the same line.

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificDirectTransfer

Be aware that this extension is available only if extension version 0x00090001 or higher is negotiated.Note

Class Detail

class CciscoLineDevSpecificDirectTransfer: public CCiscoLineDevSpecific{
public:

CciscoLineDevSpecificDirectTransfer () :
CCiscoLineDevSpecific(SLDST_DIRECT_TRANSFER) {}

virtual ~ CciscoLineDevSpecificDirectTransfer () {}
DWORD m_CallIDsToTransfer;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
379

Cisco Device-Specific Extensions
Class Detail

// subtract out the virtual function table pointer
};

Parameters
DWORD m_MsgType

equals SLDST_DIRECT_TRANSFER

DWORD m_CallIDsToTransfer

Consult dwCallID to be transferred

HCALL hCall (in LineDevSpecific parameter list)

Equals the handle of the call that is being transferred.

RegisterCallPickUpGroupForNotification
The CciscoLineDevSpecificRegisterCallPickupGroupForNotification class is used to register the call Pickup
Group for notification on calls for Pickup.

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificRegisterCallPickupGroupForNotification

This extension is available only if extension version 0x000A0000 or higher is negotiated.Note

Class Detail

class CciscoLineDevSpecificRegisterCallPickupGroupForNotification:
public CCiscoLineDevSpecific

{
public:

CciscoLineDevSpecificRegisterCallPickupGroupForNotification ():
CCiscoLineDevSpecific (SLDST_CALLPICKUP_GROUP_REGISTER) {}

virtual ~ CciscoLineDevSpecificRegisterCallPickupGroupForNotification () {}
char callPickupGroupDN[MAX_DIRN];
char callPickupGroupPartition[MAX_PARTITION];

virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

equals SLDST_CALLPICKUP_GROUP_REGISTER

Char CallPickupGroupDN []

-DN of the pickup Group

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
380

Cisco Device-Specific Extensions
Parameters

Char CallPickupGroupPartition []

-Partition of the PickupGroup

UnRegisterCallPickUpGroupForNotification
The CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification class is used to unregister the call
Pickup Group for notification on calls for Pickup.

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification

This extension is available only if extension version 0x000A0000 or higher is negotiatedNote

Class Details

class CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification:
public CCiscoLineDevSpecific{

Public:
CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification () :

CCiscoLineDevSpecific(SLDST_CALLPICKUP_GROUP_UNREGISTER) {}
virtual ~ CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification

() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

equals SLDST_CALLPICKUP_GROUP_UNREGISTER

CallPickUpRequest
The CciscoLineDevSpecificCallPickupRequest class is used to Pickup the call from the PickGroup.

CCiscoLineDevSpecific

+--CciscoLineDevSpecificCallPickupRequest

This extension is available only if extension version 0x000A0000 or higher is negotiated.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
381

Cisco Device-Specific Extensions
UnRegisterCallPickUpGroupForNotification

Class Details

class CciscoLineDevSpecificCallPickupRequest:
public CCiscoLineDevSpecific{

public:
CciscoLineDevSpecificCallPickupRequest ():

CCiscoLineDevSpecific (SLDST_CALLPICKUP_CALL) {}
virtual ~ CciscoLineDevSpecificCallPickupRequest () {}
DWORD PickupType;
char PickupGroupDN[MAX_DIRN];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

equals SLDST_CALLPICKUP_CALL

Char PickupGroupDN []

-DN of the pickup Group/DN;will be required for GroupCallPickUp and DirectedCallPickUp

DWORD PickupType

-indicates the type of pickup (CtiCallPickUp, CtiGroupCallPickUp, , CtiOtherPickup, DirectedCallPickup)

enum CallPickupType{
CallPickup_Simple = 0,
CallPickup_Group = 1,
CallPickup_Other = 2,
CallPickup_Direct = 3

};

Start Send Media to BIB

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificStartSendMediaToBIBRequest

Description
The CCiscoLineDevSpecificStartSendMediaToBIBRequest class allows the application to initiate agent
greeting to the customer call.

This extension is only available if extension version 0x000B0000 or higher is negotiated.Note

TAPI line handle and TAPI call handle are required for this request.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
382

Cisco Device-Specific Extensions
Class Details

Class Detail

class CCiscoLineDevSpecificStartSendMediaToBIBRequest:
public CCiscoLineDevSpecific{

public:
CCiscoLineDevSpecificStartSendMediaToBIBRequest (): CCiscoLineDevSpecific

(SLDST_START_SEND_MEDIA_TO_BIB) {}
virtual ~ CCiscoLineDevSpecificStartSendMediaToBIBRequest () {}

char m_IVRDN [49];
char m_CGPNTOIVR [49];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

Parameters
DWORD m_MsgType

equals SLDST_START_SEND_MEDIA_TO_BIB

char m_IVRDN [49]

IVR port DN where Agent Greeting will be played from

char m_CGPNTOIVR [49]

The CallingPartyDN passed to IVR. The application can use this field to pass DN as CallingPartyDN
for the agent greeting call.

Stop Send Media to BIB

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificStopSendMediaToBIBRequest

Description
The CCiscoLineDevSpecificStopSendMediaToBIBRequest class allows the application to stop the agent
greeting that is playing on the agent-to-customer call.

This extension is only available if extension version 0x000B0000 or higher is negotiated.Note

TAPI line handle and TAPI call handle are required for this request.

Class Detail

class CCiscoLineDevSpecificStopSendMediaToBIBRequest:
public CCiscoLineDevSpecific
{

public:
CCiscoLineDevSpecificStopSendMediaToBIBRequest ():

CCiscoLineDevSpecific (SLDST_STOP_SEND_MEDIA_TO_BIB) {}
virtual ~ CCiscoLineDevSpecificStopSendMediaToBIBRequest () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
383

Cisco Device-Specific Extensions
Class Detail

// subtract out the virtual function table pointer
};

Parameters
DWORD m_MsgType

equals SLDST_START_SEND_MEDIA_TO_BIB

Agent Zip Tone

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificEnableFeatureSupport

Description
The CCiscoLineDevSpecificPlaytone class is used to play the tone (Zip Tone) to the direction specified in
the request.

This extension is only available if extension version 0x000B0000 or higher is negotiated.Note

Class Detail

class CCiscoLineDevSpecificPlaytone:
public CCiscoLineDevSpecific //AgentZiptone
{
public:
CCiscoLineDevSpecificPlaytone() :
CCiscoLineDevSpecific(SLDST_PLAY_TONE)
{
}
virtual ~ CCiscoLineDevSpecificPlaytone()
{
}
DWORD m_Tone;
DWORD m_ToneDirection;
virtual DWORD dwSize(void) const
{

return sizeof(*this) -4;
} // subtract out the virtual function table pointer

};

Parameters
DWORD m_Tone -Indicates the Tone type

equals CTONE_ZIP

DWORD m_ToneDirection -Indicates the direction of the tone to be played;

equals Tonedirection (Local/Remote)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
384

Cisco Device-Specific Extensions
Parameters

Early Offer
New error Code – LINEERR_REGISTER_GETPORT_SUPPORT_MISMATCH 0xC000000F

Enable Feature

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificEnableFeatureSupport

Description
The CciscoLineDevSpecificEnableFeatureSupport class allows application to enhance or update feature
support.

This extension is only available if extension version 0x000B0000 or higher is negotiated.Note

Class Detail

class CciscoLineDevSpecificEnableFeatureSupport:
public CCiscoLineDevSpecific{
public:
CciscoLineDevSpecificEnableFeatureSupport() :

CCiscoLineDevSpecific(SLDST_ENABLE_FEATURE_SUPPORT)
{
}

virtual ~ CciscoLineDevSpecificEnableFeatureSupport()
{
}
DWORD m_Feature;
DWORD m_Feature_Capability;

//Should have Value supported for Feature specified in m_Feature
virtual DWORD dwSize(void) const
{

return sizeof(*this) -4;
} // subtract out the virtual function table pointer

Parameters
DWORD m_MsgType

equals SLDST_ENABLE_FEATURE_SUPPORT

DWORD m_Feature

Feature value for which the capability needs to be changed and should have a value from the following
Enum:

enum TspFeatureSupport
{

Feature_unknown = 0,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
385

Cisco Device-Specific Extensions
Early Offer

Feature_EarlyOffer = 1
};

DWORD m_Feature_Capability

The Capability information that needs to be changed/updated for the feature. This information changes
depending on the feature.

Early Offer (Get Port) Support:

m_Feature should be Feature_EarlyOffer(1) and

m_Feature_Capability should have a value from following Enum:

enum TspFeatureOption{
Feature_Disable = 0,
Feature_Enable = 1

};

Sample Code:

Here is a sample code that illustrates how applications must use this devspecific type, and fill the Class
Object to enable/disable the Early Offer feature support.

void main(){
… … … ….
CciscoLineDevSpecificEnableFeatureSupport featureObject;
featureObject.m_MsgType = SLDST_ENABLE_FEATURE_SUPPORT;
featureObject.m_Feature = Feature_EarlyOffer(1);
featureObject. m_Feature_Capability = Feature_Enable(1)/ Feature_Disable(0);

int result = TSPI_lineDevSpecific(dwRequestID,hdLine,
dwAddressID, NULL, &featureObject,
sizeof(CciscoLineDevSpecificEnableFeatureSupport));
… … … ….
… … … ….
}
New CiscoLineDevStateOutOfServiceReason_EMLogin and
CiscoLineDevStateOutOfServiceReason_EMLogout values in the
CiscoLineDevStateOtherReason enumeration type in CiscoLineDevSpecificMsg.h:

enum CiscoLineDevStateOutOfServiceReason
{

CiscoLineDevStateOutOfServiceReason_Unknown = 0x00000000,
CiscoLineDevStateOutOfServiceReason_CallManagerFailure = 0x00000001,
CiscoLineDevStateOutOfServiceReason_ReHomeToHigherPriorityCM = 0x00000002,

CiscoLineDevStateOutOfServiceReason_NoCallManagerAvailable = 0x00000003,
CiscoLineDevStateOutOfServiceReason_DeviceFailure = 0x00000004,
CiscoLineDevStateOutOfServiceReason_DeviceUnregistered = 0x00000005,
CiscoLineDevStateOutOfServiceReason_EnergyWisePowerSavePlus = 0x00000006,

CiscoLineDevStateOutOfServiceReason_EMLogin = 0x00000007,
CiscoLineDevStateOutOfServiceReason_EMLogout = 0x00000008,
CiscoLineDevStateOutOfServiceReason_CtiLinkFailure = 0x00000101

};
New CiscoLineDevStateCloseReason enumeration type in CiscoLineDevSpecificMsg.h:
enum CiscoLineDevStateCloseReason
{

CiscoLineDevStateCloseReason_Unknown = 0,
CiscoLineDevStateCloseReason_EMLogin = 1,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
386

Cisco Device-Specific Extensions
Parameters

CiscoLineDevStateCloseReason_EMLogout = 2
};

New CiscoLineDevStateOtherReason enumeration type in CiscoLineDevSpecificMsg.h:
enum CiscoLineDevStateOtherReason
{
CiscoLineDevStateOtherReason_Unknown = 0,
CiscoLineDevStateOtherReason_OtherLineInactive = 1,
CiscoLineDevStateOtherReason_OtherLineActive = 2,
CiscoLineDevStateOtherReason_OtherLineCapsChange = 3
};

New LINEERR_DEVICE_INACTIVE error is returned if an operation is invoked
on a line device in “inactive” state.

UpdateMonitorMode

CCiscoLineDevSpecific
|
+--CciscoLineDevSpecificMonitoringUpdateMode

Description
The CciscoLineDevSpecificMonitoringUpdateMode class allows the application to toggle between the silent
monitoring and whisper coaching modes, and vice versa.

This extension is only available if extension version 0x000B0000 or higher is negotiated.Note

Class Detail

class CciscoLineDevSpecificMonitoringUpdateMode :
public CCiscoLineDevSpecific
{

public:
CciscoLineDevSpecificMonitoringUpdateMode ():

CCiscoLineDevSpecific (SLDST_UPDATE_MONITOR_MODE) {}
virtual ~ CciscoLineDevSpecificMonitoringUpdateMode () {}

DWORD m_MonitorMode;
DWORD m_ActiveToneDirection;

virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

equals SLDST_UPDATE_MONITOR_MODE

DWORD m_MonitorMode

Monitoring mode to toggle to

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
387

Cisco Device-Specific Extensions
UpdateMonitorMode

DWORD m_ActiveToneDirection

Direction of the tone to be played

Add Remote Destination
CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificAddRemoteDestination

Description

The CciscoLineDevSpecificAddRemoteDestination class is used to add new Remote Destination to CTI
Remote Device.

This extension is only available on CTI Remote Device Line and if extension version 0x000C0000 or higher
is negotiated.

Note

Class Details

class CciscoLineDevSpecificAddRemoteDestination: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificAddRemoteDestination() :
CCiscoLineDevSpecific(SLDST_ADD_REMOTE_DESTINATION)

{
}

virtual ~ CciscoLineDevSpecificAddRemoteDestination()
{
}

char m_RDNumber [MAX_CTI_LINE_DIR_SIZE];
wchar_t m_UnicodeRDName [MAX_CTI_RD_UNICODE_DISPLAY_STRING];
DWORD m_ActiveRD;

virtual DWORD dwSize(void) const
{

returnsizeof(*this) - sizeof(void*);
} // subtract out the virtual function table pointer

};

Parameters

DWORD m_MsgType

Equals SLDST_ADD_REMOTE_DESTINATION

char m_RDNumber [MAX_CTI_LINE_DIR_SIZE]

Remote Destination Number [*Mandatory Field]

wchar_t m_UnicodeRDName [MAX_UNICODE_DISPLAY_STRING]

unicode Remote Destination Name

DWORD m_activeRD

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
388

Cisco Device-Specific Extensions
Add Remote Destination

0 – if this Remote Destination is not Active

1 or greater – when this Remote Destination need to be set as Active Remote Destination

Remove Remote Destination
CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificRemoveRemoteDestination

Description

The CciscoLineDevSpecificRemoveRemoteDestination class is used to remove Remote Destination from
List of Remote Destinations of CTI Remote Device.

This extension is only available on CTI Remote Device Line and if extension version 0x000C0000 or higher
is negotiated.

Note

Class Details

class CciscoLineDevSpecificRemoveRemoteDestination: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificRemoveRemoteDestination() :
CCiscoLineDevSpecific(SLDST_REMOVE_REMOTE_DESTINATION)

{
}

virtual ~ CciscoLineDevSpecificRemoveRemoteDestination()
{
}

char m_RDNumber [MAX_CTI_LINE_DIR_SIZE];

virtual DWORD dwSize(void) const
{

returnsizeof(*this) - sizeof(void*);
} // subtract out the virtual function table pointer

};

Parameters

DWORD m_MsgType

Equals SLDST_REMOVE_REMOTE_DESTINATION

char m_RDNumber [MAX_CTI_LINE_DIR_SIZE]

Remote Destination Number [*Mandatory Field]

Remote Destination can be removed using Remote Destination Number which is used a unique key for Remote
Destinations on a CTI Remote Device.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
389

Cisco Device-Specific Extensions
Remove Remote Destination

Update Remote Destination
CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificUpdateRemoteDestination

Description

The CciscoLineDevSpecificUpdateRemoteDestination class is used to update Remote Destination information
on a CTI Remote Device.

This extension is only available on CTI Remote Device Line and if extension version 0x000C0000 or higher
is negotiated.

Note

Class Details

class CciscoLineDevSpecificUpdateRemoteDestination: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificUpdateRemoteDestination() :
CCiscoLineDevSpecific(SLDST_UPDATE_REMOTE_DESTINATION)

{
}

virtual ~ CciscoLineDevSpecificUpdateRemoteDestination()
{
}

char m_RDNumber [MAX_CTI_LINE_DIR_SIZE];
wchar_t m_UnicodeRDName [MAX_CTI_RD_UNICODE_DISPLAY_STRING];
char m_NewRDNumber [MAX_CTI_LINE_DIR_SIZE];
DWORD m_ActiveRD;

virtual DWORD dwSize(void) const
{

returnsizeof(*this) - sizeof(void*);
} // subtract out the virtual function table pointer

};

Parameters

DWORD m_MsgType

Equals SLDST_UPDATE_REMOTE_DESTINATION.

char m_RDNumber [MAX_CTI_LINE_DIR_SIZE]

Current Remote Destination Number which need to be updated [*Mandatory Field]

wchar_t m_UnicodeRDName [MAX_UNICODE_DISPLAY_STRING]

unicode Remote Destination Name

char m_NewRDNumber [MAX_CTI_LINE_DIR_SIZE]

New Remote Destination Number [*Mandatory Field]

DWORD m_activeRD

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
390

Cisco Device-Specific Extensions
Update Remote Destination

0 – if this Remote Destination is not Active

1 or greater – when this Remote Destination need to be set as Active Remote Destination

lineHold Enhancement
The CciscoLineDevSpecificHoldEx class is used to put a call on hold and specifies media content that is
played while a call is on hold.

Message Details
class CciscoLineDevSpecificHoldEx: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificHoldEx() :
CCiscoLineDevSpecific(SLDST_HOLD_EX) {}

virtual ~ CciscoLineDevSpecificHoldEx() {}
char m_MediaContentId [MAX_CISCO_TSP_MEDIA_CONTENT_ID_SIZE];
DWORD m_MediaContentIdLength;
virtual DWORD dwSize(void) const {return sizeof(*this) - sizeof(void*);}

};

Parameters
char m_MediaContentId [MAX_CISCO_TSP_MEDIA_CONTENT_ID_SIZE]

String that represents media content identifier (mediaContentID). Only known to UCM (uploaded to UCM)
media content can be played.

DWORD m_MediaContentIdLength

Actual length of the string in the m_MediaContentId field.

Cisco Line Device Feature Extensions
CCiscoLineDevSpecificFeature represents the parent class. Currently, it consist of only one subclass:
CCiscoLineDevSpecificFeature_DoNotDisturb, which allows applications to enable and disable the
Do-Not-Disturb feature on a device.

This following sections describe the line device feature-specific extensions to the TAPI structures that Cisco
TSP supports:

• CCiscoLineDevSpecificFeature, on page 391

• Do-Not-Disturb, on page 393

• Do-Not-Disturb Change Notification Event, on page 393

CCiscoLineDevSpecificFeature
This section provides information on how to invoke Cisco-specific TAPI extensions with the
CCiscoLineDevSpecificFeature class, which represents the parent class to all the following classes.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
391

Cisco Device-Specific Extensions
lineHold Enhancement

Be aware that this virtual class is provided for informational purposes only.Note

CCiscoLineDevSpecificFeature

Header File
The file CiscoLineDevSpecific.h contains the corresponding constant, structure, and class definitions for the
Cisco lineDevSpecificFeature extension classes.

Class Detail

class CCiscoLineDevSpecificFeature
{
public:
CCicsoLineDevSpecificFeature(const DWORD msgType): m_MsgType(msgType) {;}
virtual ~ CCicsoLineDevSpecificFeature() {;}
DWORD GetMsgType(void) const {return m_MsgType;}
void* lpParams(void) const {return (void*)&m_MsgType;}
virtual DWORD dwSize(void) const = 0;

private:
DWORD m_MsgType;

};

Functions
lpParms()

Function that can be used to obtain a pointer to the parameter block

dwSize()

Function that returns size of the parameter block area

Parameter
m_MsgType

Specifies the type of message. The parameter value uniquely identifies the feature to invoke on the device.
The PHONEBUTTONFUNCTION_ TAPI_Constants definition lists the valid feature identifiers.
Currently, the only recognized value specifies PHONEBUTTONFUNCTION_DONOTDISTURB
(0x0000001A).

Each subclass of CCiscoLineDevSpecificFeature includes a unique value that is assigned to the
m_MsgType parameter.

Subclasses
Each subclass of CCiscoLineDevSpecificFeature carries a unique value that is assigned to the m_MsgType
parameter. If you are using C instead of C++, this represents the first parameter in the structure.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
392

Cisco Device-Specific Extensions
Header File

Do-Not-Disturb
Use the CCiscoLineDevSpecificFeature_DoNotDisturb class in conjunction with the request to enable or
disable the DND feature on a device.

The Do-Not-Disturb feature gives phone users the ability to go into a Do Not Disturb (DND) state on the
phone when they are away from their phones or simply do not want to answer the incoming calls. A phone
softkey, DND, allows users to enable or disable this feature.

CCiscoLineDevSpecificFeature
|
+--CCiscoLineDevSpecificFeature_DoNotDisturb

Class Detail

class CCiscoLineDevSpecificFeature_DoNotDisturb :
public CCiscoLineDevSpecificFeature
{
public:
CCiscoLineDevSpecificFeature_DoNotDisturb()

: CCiscoLineDevSpecificFeature(PHONEBUTTONFUNCTION_DONOTDISTURB),
m_Operation((CiscoDoNotDisturbOperation)0) {}
virtual ~CCiscoLineDevSpecificFeature_DoNotDisturb() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

CiscoDoNotDisturbOperation m_Operation;
};

Parameters
DWORD m_MsgType

Equals PHONEBUTTONFUNCTION_DONOTDISTURB.

CiscoDoNotDisturbOperation m_Operation

Specifies a requested operation and can comprise one of the following enum values:

enum CiscoDoNotDisturbOperation {
DoNotDisturbOperation_ENABLE = 1,
DoNotDisturbOperation_DISABLE = 2

};

Do-Not-Disturb Change Notification Event
Cisco TSP notifies applications via the LINE_DEVSPECIFICFEATUREmessage about changes in the DND
configuration or status. To receive change notifications, an application needs to enable the
DEVSPECIFIC_DONOTDISTURB_CHANGED message flag with a lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

The LINE_DEVSPECIFICFEATUREmessage notifies the application about device-specific events that occur
on a line device. In the case of a Do-Not-Disturb Change Notification, the message includes information about
the type of change that occurred on a device and the resulting feature status or configured option.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
393

Cisco Device-Specific Extensions
Do-Not-Disturb

Message Details

LINE_DEVSPECIFICFEATUREdwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PHONEBUTTONFUNCTION_DONOTDISTURB;
dwParam2 = (DWORD) typeOfChange;
dwParam3 = (DWORD) currentValue;

enum CiscoDoNotDisturbOption {
DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,
DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

enum CiscoDoNotDisturbNotification {
DoNotDisturb_STATUS_CHANGED = 1,
DoNotDisturb_OPTION_CHANGED = 2

};

Parameters
dwDevice

A handle to a line device

dwCallbackInstance

The callback instance that is supplied when the line is opened

dwParam1

Always equal to PHONEBUTTONFUNCTION_DONOTDISTURB for the Do-Not-Disturb change
notification

dwParam2

Indicates type of change and can comprise one of the following enum values:

enum CiscoDoNotDisturbNotification {
DoNotDisturb_STATUS_CHANGED = 1,
DoNotDisturb_OPTION_CHANGED = 2

};

dwParam3

If the dwParm2 indicates status change with the value DoNotDisturb_STATUS_CHANGED, this
parameter can comprise one of the following enum values:

enum CiscoDoNotDisturbStatus {
DoNotDisturbStatus_UNKNOWN = 0,
DoNotDisturbStatus_ENABLED = 1,
DoNotDisturbStatus_DISABLED = 2

};

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
394

Cisco Device-Specific Extensions
Message Details

If the dwParm2 indicates option change with the value DoNotDisturb_OPTION_CHANGED, this
parameter can comprise one of the following enum values:

enum CiscoDoNotDisturbOption {
DoNotDisturbOption_NONE = 0,
DoNotDisturbOption_RINGEROFF = 1,
DoNotDisturbOption_REJECT = 2

};

Cisco Phone Device-Specific Extensions
The following table lists and describes the subclasses of CiscoPhoneDevSpecific.

Table 22: Cisco Phone Device-Specific TAPI Functions

SynopsisCisco Functions

The CCiscoPhoneDevSpecific class represents the parent class
to the following classes.

CCiscoPhoneDevSpecific, on page 395

Allows the application to send the Device Specific XSI data
through CTI.

Device Data PassThrough, on page 397

Allows the application to acquire any CTI-controllable device
that can get opened later in superprovider mode.

Explicit Acquire, on page 366

Allows the application to deacquire a CTI-controllable device
that was explicitly acquired.

Explicit De-Acquire, on page 367

Allows the application to request secure RTP indicator for calls
on the device.

Request Call RTP Snapshot, on page 401

Allows the application to set status bit map to enable specific
DEVICE_DEVSPECIFICmessages to be sent to the application.

Set Status Msgs, on page 398

Sets the Unicode display on the phone.Set Unicode Display, on page 399

CCiscoPhoneDevSpecific
This section provides information on how to perform Cisco TAPI-specific functions with the
CCiscoPhoneDevSpecific class, which represents the parent class to all the following classes.

Be aware that this virtual class is provided for informational purposes only.Note

CCiscoPhoneDevSpecific|
+--CCiscoPhoneDevSpecificDataPassThrough
|
+--CCiscoPhoneDevSpecificSetStatusMsgs

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
395

Cisco Device-Specific Extensions
Cisco Phone Device-Specific Extensions

|
+--CCiscoPhoneDevSpecificSetUnicodeDisplay
|
+--CCiscoPhoneDevSpecificAcquire
|
+--CCiscoPhoneDevSpecificDeacquire
|
+--CCiscoPhoneDevSpecificGetRTPSnapshot

Header File
The file CiscoLineDevSpecific.h contains the constant, structure, and class definition for the Cisco phone
device-specific classes.

Class Detail

class CCiscoPhoneDevSpecific
{
public :

CCiscoPhoneDevSpecific(DWORD msgType):m_MsgType(msgType) {;}
virtual ~CCiscoPhoneDevSpecific() {;}
DWORD GetMsgType (void) const { return m_MsgType;}
void *lpParams(void) const {return (void*)&m_MsgType;}
virtual DWORD dwSize(void) const = 0;

private :
DWORD m_MsgType ;

}

Functions
lpParms()

Function that can be used to obtain the pointer to the parameter block

dwSize()

Function that will give the size of the parameter block area

Parameter
m_MsgType

Specifies the type of message.

Subclasses
Each subclass of CCiscoPhoneDevSpecific represents a different value that is assigned to the parameter
m_MsgType. If you are using C instead of C++, this represents the first parameter in the structure.

Enumeration
The CiscoPhoneDevSpecificType enumeration includes valid message identifiers.

enum CiscoPhoneDevSpecificType
{

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
396

Cisco Device-Specific Extensions
Header File

CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST = 1,
CPDST_SET_DEVICE_STATUS_MESSAGES,
CPDST_SET_DEVICE_UNICODE_DISPLAY,
CPDST_ACQUIRE,
CPDST_DE_ACQUIRE,
CPDST_REQUEST_DEVICE_SNAPSHOT_INFO

};

Device Data PassThrough
XSI-enabled IP phones allow applications to directly communicate with the phone and access XSI features
(for example, manipulate display, get user input, play tone, and so on). To allow TAPI applications to have
access to some of these XSI capabilities without having to setup and maintain an independent connection
directly to the phone, TAPI will provide the ability to send device data through the CTI interface. This feature
gets exposed as a Cisco Unified TSP device-specific extension.

PhoneDevSpecificDataPassthrough request only gets supported for the IP phone devices. Application must
open a TAPI phone device with minimum extension version 0x00030000 to make use of this feature.

The CCiscoPhoneDevSpecificDataPassThrough class is used to send the device-specific data to CTI-controlled
IP phone devices.

Be aware that this extension requires applications to negotiate extension version as 0x00030000.Note

CCiscoPhoneDevSpecific
|
+--CCiscoPhoneDevSpecificDataPassThrough

Class Detail

class CCiscoPhoneDevSpecificDataPassThrough :
public CCiscoPhoneDevSpecific
{
public:

CCiscoPhoneDevSpecificDataPassThrough () :
CCiscoPhoneDevSpecific(CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST)
{
memset((char*)m_DeviceData, 0, sizeof(m_DeviceData)) ;

}
virtual ~CCiscoPhoneDevSpecificDataPassThrough() {;}
// data size determined by MAX_DEVICE_DATA_PASSTHROUGH_SIZE
TCHAR m_DeviceData[MAX_DEVICE_DATA_PASSTHROUGH_SIZE] ;
// subtract out the virtual funciton table pointer size
virtual DWORD dwSize (void) const {return (sizeof (*this)-4) ;}

}

Parameters
DWORD m_MsgType

Equals CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
397

Cisco Device-Specific Extensions
Device Data PassThrough

DWORD m_DeviceData

This character buffer contains the XML data that is to be sent to phone device.

Be aware that MAX_DEVICE_DATA_PASSTHROUGH_SIZE = 2000.Note

A phone can pass data to an application and it can get retrieved by using PhoneGetStatus
(PHONESTATUS:devSpecificData). See PHONESTATUS description for further details.

Set Status Msgs
PhoneDevSpecificSetStatusMsgs allows the application to set status bit map to enable specific
DEVICE_DEVSPECIFIC messages to be sent to the application.

The application must open a TAPI phone device with minimum extension version 0x00030000 to use this
feature.

Be aware that this extension requires applications to negotiate extension version as 0x00030000.Note

CCiscoPhoneDevSpecific
|
+--CCiscoPhoneDevSpecificSetStatusMsgs

Class Detail

class CCiscoPhoneDevSpecificSetStatusMsgs:public CCiscoPhoneDevSpecific{
public:
CCiscoPhoneDevSpecificSetStatusMsgs() :
CCiscoPhoneDevSpecific (CPDST_SET_DEVICE_STATUS_MESSAGES) {;}
virtual ~CCiscoPhoneDevSpecificSetStatusMsgs() {;}
DWORD m_DevSpecificStatusMsgFlags ; // PHONE_DEVSPECIFIC

// subtract virtual function table pointer
virtual DWORD dwSize(void) const {return (sizeof (*this) -4) ; }

} ;

Parameters
DWORD m_MsgType

equals CPDST_SET_DEVICE_STATUS_MESSAGES.

DWORD m_DevSpecificStatusMsgFlags

Bit map of PHONE_DEVSPECIFIC event flag

const DWORD DEVSPECIFIC_DEVICE_DATA_PASSTHROUGH_EVENT = 0x00000001;

const DWORD DEVSPECIFIC_DEVICE_SOFTKEY_PRESSED_EVENT = 0x00000002;

const DWORD DEVSPECIFIC_DEVICE_STATE_EVENT = 0x00000004;

const DWORD DEVSPECIFIC_DEVICE_PROPERTY_CHANGED_EVENT = 0x00000008;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
398

Cisco Device-Specific Extensions
Set Status Msgs

Set Unicode Display
PhoneDevSpecificSetUnicodeDisplay sets the Unicode display on the phone.

The application must open a TAPI phone device with minimum extension version 0x00060000 to use this
feature.

Be aware that this extension requires applications to negotiate extension version as 0x00060000.Note

CCiscoPhoneDevSpecific
|
+--CCiscoPhoneDevSpecificSetUnicodeDisplay

Class Detail

{
public:

CCiscoPhoneDevSpecificSetUnicodeDisplay() :
CCiscoPhoneDevSpecific (CPDST_SET_DEVICE_UNICODE_DISPLAY) {;}

virtual ~CCiscoPhoneDevSpecificSetUnicodeDisplay() {;}
DWORD dwRow;

DWORD dwColumn;
DWORD dwSizeOfUnicodeStr;
wchar_t UnicodeDisplay[MAX_UNICODE_DISPLAY_STRING];

// subtract virtual function table pointer
virtual DWORD dwSize(void) const {return (sizeof (*this) -4) ; }

} ;

Parameters
DWORD m_MsgType

Equals CPDST_SET_DEVICE_UNICODE_DISPLAY.

DWORD m_dwRow

Row number on the phone display where the Unicode string must be displayed

DWORD m_dwColumn

Column number on the phone display where the Unicode string must be displayed

DWORD m_dwSizeOfUnicodeStr

Size of the Unicode string

wchar_t UnicodeDisplay[MAX_UNICODE_DISPLAY_STRING];

Unicode display string, with maximum size of MAX_UNICODE_DISPLAY_STRING

MAX_UNICODE_DISPLAY_STRING = 100

Explicit Acquire
The CCiscoPhoneDevSpecificAcquire class gets used to explicitly acquire any CTI controllable device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
399

Cisco Device-Specific Extensions
Set Unicode Display

If a Super-provider application needs to open any CTI-controllable device on the CiscoUnified Communications
Manager system, the application should explicitly acquire that device by using the preceding interface. After
successful response, it can open the device as usual.

Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.Note

CCiscoPhoneDevSpecific
|
+--CCiscoPhoneDevSpecificAcquire

Class Details

class CCiscoPhoneDevSpecific Acquire : public CCiscoPhoneDevSpecific{
public:

CCiscoPhoneDevSpecificAcquire () : CCiscoPhoneDevSpecific (CPDST_ACQUIRE)
{}

virtual ~ CCiscoPhoneDevSpecificAcquire () {}
char m_DeviceName[16];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals CPDST_ACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

Explicit Deacquire
The CCiscoPhoneDevSpecificDeacquire class gets used to explicitly de-acquire an explicitly acquired device.

If a SuperProvider application explicitly acquired any CTI-controllable device on the Unified Communications
Manager system, the application should explicitly de-acquire that device by using this interface.

Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.Note

CCiscoPhoneDevSpecific
|
+--CCiscoPhoneDevSpecificDeacquire

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
400

Cisco Device-Specific Extensions
Class Details

Class Details

class CCiscoPhoneDevSpecificDeacquire : public CCiscoPhoneDevSpecific{
public:

CCiscoPhoneDevSpecificDeacquire () : CCiscoPhoneDevSpecific (CPDST_ACQUIRE)
{}

virtual ~ CCiscoPhoneDevSpecificDeacquire () {}
char m_DeviceName[16];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals CPDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Request Call RTP Snapshot
The CCiscoPhoneDevSpecificGetRTPSnapshot class gets used to request Call RTP snapshot event from the
device. There will be LineCallDevSpecific event for each call on the device.

Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.Note

CCiscoPhoneDevSpecific
|
+--CCiscoPhoneDevSpecificGetRTPSnapshot

Class Details

class CCiscoPhoneDevSpecificGetRTPSnapshot:
public CCiscoPhoneDevSpecific{

public:
CCiscoPhoneDevSpecificGetRTPSnapshot () :
CCiscoPhoneDevSpecific (CPDST_REQUEST_RTP_SNAPSHOT_INFO) {}

virtual ~ CCiscoPhoneDevSpecificGetRTPSnapshot () {}
char m_DeviceName[16];
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer

};

Parameters
DWORD m_MsgType

Equals CPDST_DEACQUIRE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
401

Cisco Device-Specific Extensions
Class Details

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Hunt Group Login Status
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus is added in LineDevSpecificMsg.h. This class allows
the application to set the HuntGroup Login Status of the device to login or logout.
{
|
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus
}

Class Detail
class CCiscoPhoneDevSpecificSetHuntGroupLoginStatus: public CCiscoPhoneDevSpecific
{
public:
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus () :
CCiscoPhoneDevSpecific(CPDST_REQUEST_DEVICE_HUNTGROUP_LOGIN_STATUS)
{
}
virtual ~CCiscoPhoneDevSpecificSetHuntGroupLoginStatus()
{
;
}
CiscoDeviceHuntGroupLoginStatus m_HuntGroupLoginStatus;
virtual DWORD dwSize(void) const
{
return (sizeof(*this) - sizeof(void*));
}
};

The request is sent by the applicationwith CPDST_REQUEST_DEVICE_HUNTGROUP_LOGIN_STATUS
message type. enum CiscoPhoneDevSpecificType.
{
|
+- CPDST_REQUEST_DEVICE_HUNTGROUP_LOGIN_STATUS
}

Parameter
CiscoDeviceHuntGroupLoginStatus m_HuntGroupLoginStatus is an enumeration.

Enumeration
The following enumeration is added to the LineDevSpecifcMsg.h:
enum CiscoDeviceHuntGroupLoginStatus
{
CiscoDeviceHuntGroupLoginStatus_NotApplicable = 0,
CiscoDeviceHuntGroupLoginStatus_Login = 1,
CiscoDeviceHuntGroupLoginStatus_Logout = 2
};

where:

• CiscoDeviceHuntGroupLoginStatus_NotApplicable is for devices which do not support Hunt Groups.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
402

Cisco Device-Specific Extensions
Hunt Group Login Status

• CiscoDeviceHuntGroupLoginStatus_Login is to set the Hunt Group Login Status to Login.

• CiscoDeviceHuntGroupLoginStatus_Logout is to set the Hunt Group Login Status to Logout

Redirect Enhancement
A new message type is added in LineDevSpecific message: CciscoLineDevSpecificRedirectEx :
SLDST_REDIRECT_EX, This message type contains the new RedirectDeviceName field.

CCiscoLineDevSpecificRedirectEx enables an application to redirect calls. The following is the structure of
CciscoLineDevSpecific:
CCiscoLineDevSpecific
+-- CCiscoLineDevSpecificRedirectEx

Class Details
class CCiscoLineDevSpecificRedirectEx: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificRedirectEx () :
CCiscoLineDevSpecific(SLDST_REDIRECT_EX)

{
}
virtual ~ CCiscoLineDevSpecificRedirectEx ()
{
}
DWORD m_RedirectBitMask;
CiscoDoNotDisturbFeaturePriority FeaturePriority;
char m_DestDirn[MAX_DESTINATION_DIRECTORY_NUMBER];
char m_SetOriginalCalledTo[MAX_DEVICE_SIZE];
char m_FAC[MAX_FAC_CMC_DIGITS];
char m_CMC[MAX_FAC_CMC_DIGITS];
char m_RedirectDeviceName[MAX_DEVICE_SIZE];
DWORD m_ApplicationXMLDataSize;
TCHAR m_ApplicationXMLData[MAX_XML_DATA_SIZE];
CiscoCallingSearchSpace m_callingSearchSpace;

virtual DWORD dwSize(void) const
{

return sizeof(*this) - sizeof(void*);
} // subtract out the virtual function table pointer

};

Parameters
DWORD m_RedirectBitMask

This bit mask field indicates which fields in CciscoLineRedirectEx class are valid and used by applications.

Following is the Enum Definition which is used to update this bitmask field:
enum RedirectInfoBitMask
{
RedirectInfo_None = 0x00000000,
RedirectInfoSetOriginalCalledTo = 0x00000001,
RedirectInfo_FAC= 0x00000002,
RedirectInfo_CMC= 0x00000004,
RedirectInfo_RedirectDeviceName = 0x00000008,

RedirectInfo_CallingSearchSpace = 0x00000010,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
403

Cisco Device-Specific Extensions
Redirect Enhancement

RedirectInfo_ApplicationXMLData = 0x00000020
};

CiscoCallingSearchSpace m_callingSearchSpace:

typedef enum
{

CiscoCallingSearchSpace_Default = 0,
CiscoCallingSearchSpace_CallingParty = 1,
CiscoCallingSearchSpace_RedirectingParty = 2

} CiscoCallingSearchSpace;

where CiscoCallingSearchSpace_Default is to use CSS of party being redirected,
CiscoCallingSearchSpace_CallingParty is to use CSS of party being redirected i.e calling party after redirect
CiscoCallingSearchSpace_RedirectingParty is to use CSS of redirecting party.

CiscoDoNotDisturbFeaturePriority FeaturePriority;

Feature priority is introduced and defined in the enum type for making calls or redirecting existing calls.

The following enum defines the priority as:
{

CallPriority_NORMAL = 1
CallPriority_URGENT = 2
CallPriority_EMERGENCY = 3

};

char m_DestDirn[MAX_DESTINATION_DIRECTORY_NUMBER];

Indicates the destination address where the call needs to be redirected.

char m_SetOriginalCalledTo[MAX_DEVICE_SIZE];

Indicates the DN to which the OriginalCalledParty needs to be set.

char m_FAC[MAX_FAC_CMC_DIGITS];

Indicates the FAC digits. If the application does not want to pass any FAC digits, it can set this parameter to
a NULL string.

char m_CMC[MAX_FAC_CMC_DIGITS];

Indicates the CMC digits. If the application does not want to pass any FAC digits, it can set this parameter to
a NULL string.

char m_RedirectDeviceName[MAX_DEVICE_SIZE];

Indicates the name of the device for which call needs to be redirected to.

DWORD m_ApplicationXMLDataSize;

Indicates the size of the xml data that application sends to the call manager.

TCHAR m_ApplicationXMLData[MAX_XML_DATA_SIZE];

Indicates the content of the xml data.

Applications are allowed to send the xml data within the range of 0 to 10000 characters.

CiscoCallingSearchSpace m_callingSearchSpace;

Indicates the calling search space which applications can set to the css of calling party or that of redirecting
party, while doing a redirect.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
404

Cisco Device-Specific Extensions
Parameters

Constants
#define MAX_DEVICE_SIZE 49

#define MAX_DESTINATION_DIRECTORY_NUMBER 49

#define MAX_XML_DATA_SIZE 10000

Phone State Event
When the capability of the device changes, a PHONE_STATE event is fired with an indication of what is
changed.

Parameters

PHONE_STATE

dwParam1 - PHONE_STATE

dwParam2 - PHONESTATE_CAPSCHANGE (0x00040000)

dwParam3 - CiscoPhoneCapsDevSpecificStatus -
PHONECAPS_DEVSPECIFIC_HUNTGROUP_LOGIN_STATUS(0x00000001)

dwParam4 - updated value of HuntGroup Login Status of the device

The following enumerator is added:
enum CiscoPhoneCapsDevSpecificStatus
{

PHONECAPS_DEVSPECIFIC_HUNTGROUP_LOGIN_STATUS = 0x00000001
};

where PHONECAPS_DEVSPECIFIC_HUNTGROUP_LOGIN_STATUS will notify the application about
the successful change in the HuntGroup Login status of the device.

Messages
This section describes the line device specific messages that the Cisco Unified TSP supports. An application
receives nonstandard TAPI messages in the following LINE_DEVSPECIFIC messages:

• A message to signal when to stop and start streaming RTP audio.

• A message that contains the call handle of active calls when the application starts up.

• A message that indicates to set the RTP parameters based on the data of the message.

• A message that indicates secure media status.

The message type represents an enumerated integer with the following values:

enum CiscoLineDevSpecificMsgType{
SLDSMT_START_TRANSMISION = 1,
SLDSMT_STOP_TRANSMISION,
SLDSMT_START_RECEPTION,
SLDSMT_STOP_RECEPTION,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
405

Cisco Device-Specific Extensions
Constants

SLDST_LINE_EXISTING_CALL,
SLDSMT_OPEN_LOGICAL_CHANNEL,
SLDSMT_CALL_TONE_CHANGED,
SLDSMT_LINECALLINFO_ DEVSPECIFICDATA,
SLDSMT_HOLD_REVERSION,
SLDSMT_LINE_PROPERTY_CHANGED,
SLDSMT_MONITORING_STARTED,
SLDSMT_MONITORING_ENDED,
SLDSMT_RECORDING_STARTED,
SLDSMT_RECORDING_ENDED,
SLDSMT_NUM_TYPE,
SLDSMT_IP_ADDRESSING_MODE_CHANGED,
SLDSMT_START_TRANSMISION_ADDRESSING_MODE,
SLDSMT_START_RECEPTION_ADDRESSING_MODE,
SLDSMT_DEVICE_STATE,
SLDSMT_MONITORING_TERMINATED,
SLDSMT_MEDIA_TO_BIB_STARTED,
SLDSMT_MEDIA_TO_BIB_ENDED,
SLDSMT_MONITORING_MODE_UPDATED,
SLDSMT_RTP_GET_IP_PORT
SLDSMT_MULTIMEDIA_STREAMSDATA,
SLDSMT_ANNOUNCEMENT_STARTED,
SLDSMT_ANNOUNCEMENT_ENDED,
SLDSMT_RECORDING_FAILED
};

Announcement Events

SLDSMT_ANNOUNCEMENT_STARTED

When an announcement starts, the SLDSMT_ANNOUNCEMENT_STARTED message is sent to the
application. The format of the parameters follows:

LINE_DEVSPECIFIC

hDevice -TAPI call handle

dwParam1 - SLDSMT_ANNOUNCEMENT_STARTED

dwParam2 -unused

dwParam3 -unused

SLDSMT_ANNOUNCEMENT_ENDED

When an announcement ends, the SLDSMT_ANNOUNCEMENT_ENDEDmessage is sent to the application.
If the announcement does not play, the application analyzes the cause code parameter to verify whether the
announcement was successful and the failure reason. The format of the parameters follows:

LINE_DEVSPECIFIC

hDevice -TAPI call handle

dwParam1 - SLDSMT_ANNOUNCEMENT_ENDED

dwParam2 -result (0 or error code in case of failure)

dwParam3 -unused

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
406

Cisco Device-Specific Extensions
Announcement Events

SLDSMT_RECORDING_FAILED

An SLDSMT_RECORDING_FAILED is generated to the application when a recording is unable to restart
after being interrupted. The application must then restart the recording. The format of the parameters follows:

LINE_DEVSPECIFIC

hDevice -TAPI call handle

dwParam1 -SLDSMT_RECORDING_FAILED (0x1C)

dwParam2 -cause code for failure

dwParam3 -unused

Start Transmission Events

SLDSMT_START_TRANSMISION

When a message is received, the RTP stream transmission starts and:

• dwParam2 specifies the network byte order IP address of the remote machine to which the RTP stream
should be directed.

• dwParam3, specifies the high-order word that is the network byte order IP port of the remote machine
to which the RTP stream should be directed.

• dwParam3, specifies the low-order word that is the packet size, in milliseconds, to use.

The application receives these messages to signal when to start streaming RTP audio. At extension version
1.0 (0x00010000), the parameters have the following format:

• dwParam1 contains the message type.

• dwParam2 contains the IP address of the remote machine.

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream should
be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2.0 (0x00020000), start transmission uses the following format:

• dwParam1:from highest order bit to lowest

• First two bits blank

• Precedence value 3 bits

• Maximum frames per packet 8 bits

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
407

Cisco Device-Specific Extensions
Start Transmission Events

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream should
be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 4.0 (0x00040000), start transmission has the following format:

• hCall – The call of the Start Transmission event

• dwParam1:from highest order bit to lowest

• First two bits blank

• Precedence value 3 bits

• Maximum frames per packet 8 bits

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream should
be directed in the high-order word and the packet size in milliseconds in the low-order word.

Start Reception Events

SLDSMT_START_RECEPTION

When a message is received, the RTP stream reception starts and:

• dwParam2 specifies the network byte order IP address of the local machine to use.

• dwParam3, specifies the high-order word that is the network byte order IP port to use.

• dwParam3, specifies the low-order high-order word that is the packet size, in milliseconds, to use.

When a message is received, the RTP stream reception should commence.

At extension version 1, the parameters have the following format:

• dwParam1 contains the message type.

• dwParam2 contains the IP address of the remote machine.

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream should
be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2 start reception uses the following format:

• dwParam1:from highest order bit to lowest

• First 13 bits blank

• G723 bit rate 2 bits

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
408

Cisco Device-Specific Extensions
Start Reception Events

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream should
be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 4.0 (0x00040000), start reception uses the following format:

• hCall – The call of the Start Reception event

• dwParam1:from highest order bit to lowest

• First 13 bits blank

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream should
be directed in the high-order word and the packet size in milliseconds in the low-order word.

Stop Transmission Events

SLDSMT_STOP_TRANSMISION

When a message is received, transmission of the streaming should stop.

At extension version 1.0 (0x00010000), stop transmission uses the following format:

• dwParam1 – Message type

At extension version 4.0 (0x00040000), stop transmission uses the following format:

• hCall – The call for which the Stop Transmission event applies.

• dwParam1 – Message type

Stop Reception Events

SLDSMT_STOP_RECEPTION

When a message is received, reception of the streaming should stop.

At extension version 1.0 (0x00010000), stop reception uses the following format:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
409

Cisco Device-Specific Extensions
Stop Transmission Events

• dwParam1 -message type

At extension version 4.0 (0x00040000), stop reception uses the following format:

• hCall – The call for which the Stop Reception event applies.

• dwParam1 – Message type

Existing Call Events

SLDST_LINE_EXISTING_CALL

These events inform the application of existing calls in the PBXwhen it starts up. The format of the parameters
follows:

• dwParam1 – Message type

• dwParam2 – Call object

• dwParam3 – TAPI call handle

Open Logical Channel Events

SLDSMT_OPEN_LOGICAL_CHANNEL

When a call has media established at a CTI Port or Route Point that is registered for Dynamic Port Registration,
receipt of this message indicates that an IP address and UDP port number need to be set for the call.

This extension is only available if extension version 0x00040000 or higher gets negotiated.Note

The following format of the parameters applies:

• hCall -The call for which the Open Logical Channel event applies

• dwParam1 – Message type

• dwParam2 – Compression Type

• dwParam3 – Packet size in milliseconds

At extension version 9.0 (0x00090000), start transmission has the following format:

• hCall -The call the Open Logical Channel event is for

• dwParam1: from highest order bit to lowest

• First eight bits blank

• Maximum frames per packet 8 bits

• Compression type 8 bits

• Message type 8 bits

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
410

Cisco Device-Specific Extensions
Existing Call Events

• dwParam2 contains the IP addressing mode

• dwParam3: Packet size in milliseconds

At extension version B.0 (0x000B0000), Open Logical channel has the following format:

• hCall -The call the Open Logical Channel event is for

• dwParam1: from highest order bit to lowest

• First sixteen bits blank

• Compression type 8 bits

• Message type 8 bits

• dwParam2: from highest order bit to lowest

• First twenty three bits blank

• SetRTPInfo (twenty fourth bit from MSB/ninth bit from LSB)

• IP addressing mode 8 bits

• dwParam3: Packet size in milliseconds

LINECALLINFO_DEVSPECIFICDATA Events

SLDSMT_LINECALLINFO_ DEVSPECIFICDATA

This message indicates that the DEVSPECIFICDATA information is changed in the DEVSPECIFIC portion
of the LINECALLINFO structure for the different fields.

The fields are only available if the negotiated version contains support for the particular feature.Note

The following format applies for the parameters:

• hCall -The call handle

• dwParam1 -Message type

• dwParam2

SLDST_SRTP_INFO | SLDST_QOS_INFO |SLDST_PARTITION_INFO |
SLDST_EXTENDED_CALL_INFO | SLDST_CALL_ATTRIBUTE_INFO|SLDST_CCM_CALLID|
SLDST_CALL_SECURITY_STATUS | SLDST_NUMBER_TYPE_CHANGED |
SLDST_GLOBALIZED_CALLING_PARTY_CHANGED |
SLDST_FAR_END_IP_ADDRESS_CHANGED | SLDST_UNIQUE_CALL_REF_ID_INFO
SLDST_DEVICE_VIDEO_CAP_INFO | SLDST_MULTIMEDIA_STREAMS_INFO

The bit mask values follow:

0x00000001SLDST_SRTP_INFO

0x00000002SLDST_QOS_INFO

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
411

Cisco Device-Specific Extensions
LINECALLINFO_DEVSPECIFICDATA Events

0x00000004SLDST_PARTITION_INFO

0x00000008SLDST_EXTENDED_CALL_INFO

0x00000010SLDST_CALL_ATTRIBUTE_INFO

0x00000020SLDST_CCM_CALL_ID

0x00000040SLDST_SECURITY_STATUS_INFO

0x00000080SLDST_NUMBER_TYPE_CHANGED

0x00000100SLDST_GLOBALIZED_CALLING_PARTY_CHANGED

0x00000200SLDST_FAR_END_IP_ADDRESS_CHANGED

0x00000400SLDST_UNIQUE_CALL_REF_ID_INFO

0x00000800SLDST_DEVICE_VIDEO_CAP_INFO

0x00001000SLDST_MULTIMEDIA_STREAMS_INFO

For example, if there are changes in SRTP andQoS but not in Partition, then both the SLDST_SRTP_INFO
and SLDST_QOS_INFO bits are set. The value for dwParam2 = SLDST_SRTP_INFO |
SLDST_QOS_INFO = 0x00000011

• dwParam3 -If a change occurs in the SRTP information, then this field contains the CiscoSecurityIndicator.

enum CiscoSecurityIndicator
{
SRTP_MEDIA_ENCRYPT_KEYS_AVAILABLE,
SRTP_MEDIA_ENCRYPT_USER_NOT_AUTH,
SRTP_MEDIA_ENCRYPT_KEYS_UNAVAILABLE,
SRTP_MEDIA_NOT_ENCRYPTED
};

dwParam3 is used when dwParam2 has the SRTP bit mask set.Note

Call Tone Changed Events

SLDSMT_CALL_TONE_CHANGED

When a tone change occurs on a call, receipt of this message indicates the tone and the feature that caused
the tone change.

Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated. In the
Cisco Unified TSP 4.1 release and later, this event only gets sent for Call Tone Changed Events where the
tone equals CTONE_ZIPZIP and the tone gets generated as a result of the FAC/CMC feature.

Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
412

Cisco Device-Specific Extensions
Call Tone Changed Events

The format of the parameters follows:

• hCall—The call for which the Call Tone Changed event applies

• dwParam—Message type

• dwParam2—CTONE_ZIPZIP, 0x31 (Zip Zip tone), CTONE_ZIP, 0x32 (Zip tone)

• dwParam3—If dwParam2 is CTONE_ZIPZIP, this parameter contains a bitmask with the following
possible values:

• CZIPZIP_FACREQUIRED—If this bit is set, it indicates that a FAC is required.

• CZIPZIP_CMCREQUIRED—If this bit is set, it indicates that a CMC is required.

• If dwParam2 is CTONE_ZIP, this parameter contains direction mode with the following possible
values:

0 -Tone is played at local End

1 -Tone is played at Remote End

For a DN that requires both codes, the first event always applies for the FAC and CMC code. The application
optionally can send both codes separated by # in the same request. The second event generation remains
optional based on what the application sends in the first request.

Note

Line Property Changed Events

SLDSMT_LINE_PROPERTY_CHANGED

When a line property is changed, a LINEDEVSPECIFIC event is fired with indication of the changes.

This extension is available only if extension version 0x00080000 or higher is negotiated.Note

The format of the parameters follows:

dwParam1 -Message type

dwParam2 -indication type -CiscoLinePropertyChangeType

enum CiscoLinePropertyChangeType
{
LPCT_INTERCOM_LINE = 0x00000001,
LPCT_RECORDING_TYPE = 0x00000002,
LPCT_MAX_CALLS = 0x00000004,
LPCT_BUSY_TRIGGER = 0x00000008,
LPCT_LINE_INSTANCE = 0x00000010,
LPCT_LINE_LABEL = 0x00000020,
LPCT_VOICEMAIL_PILOT = 0x00000040,
LPCT_DEVICE_IPADDRESS = 0x00000080,
LPCT_NEWCALL_ROLLOVER = 0x00000100,
LPCT_CONSULTCALL_ROLLOVER = 0x00000200,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
413

Cisco Device-Specific Extensions
Line Property Changed Events

LPCT_JOIN_ON_SAME_LINE = 0x00000400,
LPCT_JOIN_ACROSS_LINE = 0x00000800,
LPCT_DIRECTTRANSFER_ON_SAME_LINE = 0x00001000,
LPCT_DIRECTTRANSFER_ACROSS_LINE = 0x00002000
};

dwParam3 -default = 0,

In case, dwParam2 = LPCT_INTERCOM_LINE, dwParam3 is the result of the change

Enum CiscoIntercomLineChangeResult
{
IntercomSettingChange_successful = 0;
IntercomSettingRestorationFail = 1
}

If dwParam2 = LPCT_RECORDING_TYPE, dwParam3 will have a new Recording Type:

enum recordType
{
RecordType_NoRecording = 0,
RecordType_AutomaticRecording = 1,
RecordType_ApplicationInvokedCallRecording = 2,
RecordType_DeviceInvokedCallRecording = 3
};

Phone Property Changed Events

CPDSMT_PHONE_PROPERTY_CHANGED_EVENT

When a Phone property is changed, a PHONE_DEVSPECIFIC event is fired with indication of what has been
changed.

The following format of the parameters applies:

dwParam1 – SLDSMT_LINE_PROPERTY_CHANGED (0x04)

dwParam2 – indication type – CiscoLinePropertyChangeType

dwParam3 – updated based on dwParam2 (LinePropertyChangeType)

CiscoPhonePropertyChangeType

enum CiscoPhonePropertyChangeType
{

PPCT_DEVICE_IPADDRESS = 0x00000001,
PPCT_NEWCALL_ROLLOVER = 0x00000002,
PPCT_CONSULTCALL_ROLLOVER = 0x00000004,
PPCT_JOIN_ON_SAME_LINE = 0x00000008,
PPCT_JOIN_ACROSS_LINE = 0x00000010,
PPCT_DIRECTTRANSFER_ON_SAME_LINE = 0x00000020,
PPCT_DIRECTTRANSFER_ACROSS_LINE = 0x00000040,
PPCT_DEVICE_MULTIMEDIACAP_INFO = 0x00000080,
PPCT_DEVICE_HUNTGROUP_LOGIN_INFO = 0x00000090,

};

PPCT_DEVICE_MULTIMEDIACAP_INFO

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
414

Cisco Device-Specific Extensions
Phone Property Changed Events

Indicates or notifies application that Device Multi Media Capability Information on the Line/Device has
changed.

PPCT_DEVICE_HUNTGROUP_LOGIN_INFO

Indicates or notifies application that DeviceHuntGroup Login Status of the device has been changed.

Monitoring Started Event

SLDSMT_MONITORING_STARTED

When monitoring starts on a particular call, this event is triggered for the monitored call to inform the
application.

This event is available only if extension version 0x00080000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1—Message type

• dwParam2—0

• dwParam3—0

Monitoring Ended Event

SLDSMT_MONITORING_ENDED

When monitoring is stopped for a particular call, this event is triggered for the monitored call to inform the
application.

This event is available only if extension version 0x00080000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1—Message type

• dwParam2—Reason code

• dwParam3—0

Recording Started Event

SLDSMT_RECORDING _STARTED

When recording starts on a particular call, this event is triggered to inform the same to the application.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
415

Cisco Device-Specific Extensions
Monitoring Started Event

This event is available only if extension version 0x00080000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1—Message type

• dwParam2—0

• dwParam3—0

Recording Ended Event

SLDSMT_RECORDING _ENDED

When recording is stopped on a particular call, this event is triggered to inform the same to the application.

This event is available only if extension version 0x00080000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1—Message type

• dwParam2—Reason code

• dwParam3—0

Recording Failure Event

SLDSMT_RECORDING_FAILED

When a recording is started and another feature can cause the recording to stop and start again. If the recording
does not restart, an SLDSMT_RECORDING_FAILEDmessage is generated to the application. The application
then restarts the recording.

The format of the parameters follows:

• LINE_DEVSPECIFIC
• hDevice -TAPI call handle
• dwParam1 - SLDSMT_RECORDING_FAILED (0x1C)
• dwParam2 -cause code for failure
• dwParam3 -unused

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
416

Cisco Device-Specific Extensions
Recording Ended Event

Silent Monitoring Session Terminated Event

SLDSMT_MONITORING_TERMINATED

When Monitoring Session is toned down as security capabilities of the supervisor do not meet or exceed the
capabilities of agent, this event is fired on the supervisor to inform the same to the application.

This event is only available if extension version 0x000A0000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1 – Message type -SLDSMT_MONITORING_TERMINATED

• dwParam2 – TransactionID – which is unique for the Monitoring session

• dwParam3 – New Cause Code -LINEDISCONNECTMODE_INCOMPATIBLE

Media to BIB Started Event

SLDSMT_MEDIA_TO_BIB_STARTED

This event indicates that agent greeting call has been successfully set up.

This event is only available if extension version 0x000B0000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1 – Message type -SLDSMT_MEDIA_TO_BIB_STARTED

• dwParam2 – reserved (0)

• dwParam3 – reserved (0)

Media to BIB Ended Event

SLDSMT_MEDIA_TO_BIB_ENDED

This event indicates that the agent greeting has ended.

This event is only available if extension version 0x000B0000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1 – Message type -SLDSMT_MEDIA_TO_BIB_ENDED

• dwParam2 – result code:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
417

Cisco Device-Specific Extensions
Silent Monitoring Session Terminated Event

• non 0: Agent Greeting was successfully played

• 0: Agent Greeting was not successfully played dwParam3 – result code

Get IP and Port Event

SLDSMT_RTP_GET_IP_PORT

This event indicates that the application has to set the RTP Port and IP information using existing SetRTP
devspecific Extension. The application has to set the RTP information only for Dynamically Registered CTI
Ports or Route Points and for static Registered CTI Ports, application has to open the port used for registration.

This event is available only if extension version 0x000B0000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1 – Message type -SLDSMT_RTP_GET_IP_PORT

• dwParam2 – IP Addressing Capability (from highest order bit to lowest)

• First twenty three bits blank

• SetRTPInfo (twenty fourth bit from MSB or ninth bit from LSB)

• IP addressing mode 8 bits

• dwParam3 – reserved (0)

MultiMedia Streams Data Notification Event

SLDSMT_MULTIMEDIA_STREAMSDATA

When MultiMediaStreams Data Information is changed on a Call,
SLDSMT_MULTIMEDIA_STREAMSDATA message is sent to the application.

The format of the parameters follows:

LINE_DEVSPECIFIC

hDevice – TAPI call handle

dwParam1 – SLDSMT_MULTIMEDIA_STREAMSDATA

dwParam2 – unused

dwParam3 – unused

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
418

Cisco Device-Specific Extensions
Get IP and Port Event

Monitor Mode Update Event

SLDSMT_MONITORING_MODE_UPDATED

This event indicates that the monitoring mode has been successfully updated to the value in dwParam1 and
is sent to active supervisor and agent lines.

This event is available only if extension version 0x000B0000 or higher is negotiated.Note

The format of the parameters follows:

• dwParam1 – Message type -SLDSMT_MONITORING_MODE_UPDATED

• dwParam2 – monitoring mode

enum
{

MonitorMode_Silent = 1,
MonitorMode_Whisper = 2,
MonitorMode_Active = 3 // Not currently used

} MonitorMode;

• dwParam3 – active tone direction

enum
{

PlayToneDirection_NoLocalOrRemote = 0,
PlayToneDirection_LocalOnly,
PlayToneDirection_RemoteOnly,
PlayToneDirection_BothLocalAndRemote

} PlayToneDirection

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
419

Cisco Device-Specific Extensions
Monitor Mode Update Event

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
420

Cisco Device-Specific Extensions
Monitor Mode Update Event

C H A P T E R 7
Cisco TSP Media Driver

Cisco Media Driver introduces a new and innovative way for TAPI-based applications to provide media
interaction such as play announcements, record calls, and so on.

Cisco TSP 8.0(1) includes support for both Cisco Media Driver and Cisco Wave Driver, but only one driver
can be active at any given time.

Cisco Media Driver offers several advantages:

• Simplified Installation and Management—Cisco Media Driver configuration can be completed through
the Cisco TSP Installation Wizard. Channel and port settings are consistently and automatically applied
to all configured TSP instances.

• Performance and Scalability—CiscoMedia Driver can scale to support up to 1000 configured ports with
hundreds of simultaneously active media channels. Refer to the application vendor's Installation Guide
to determine the number of channels supported by the TAPI application.

• Codec Support—Cisco Media Driver supports 8KHz, 16-bit PCM, G.711 a-law, G.711 u-law natively.
Additionally, G.729a can be supported when pass-through mode is enabled.

• Reliability—Cisco Media Driver runs as an independent process, similar to Windows applications,
providing greater application stability and reliability. Creating and debugging media applications is now
much easier.

• Cisco Rtp Library Components, on page 421
• TAPI Application Support, on page 423
• EpAPI Functions, on page 426
• EpApi Error Codes, on page 441
• Callback Function, on page 442
• Data Structures, on page 443
• Trace Options, on page 445
• Known Problems or Limitations, on page 446

Cisco Rtp Library Components
Header Files

The following header files contain declaration of all functions, data structures, etc. exposed by Cisco Rtp
Library.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
421

• ciscortpapi.h

• ciscortpbase.h

• ciscortpcbcs.h

• ciscortpcodec.h

• ciscortperr.h

• ciscortpep.h

• ciscortpip.h

In order to use Cisco Rtp Library functionality a typical application would only need to explicitly include
ciscortpapi.h and ciscortpep.h files.

Import Library

The following import library has to be linked with an application in order to use Cisco Rtp Library functionality:

• cmrtplib.lib

DLLs

The following DLLs are installed as a part of CiscoTSP plug-in and used by Cisco Rtp Library:

Windows 32bit OS (x86):

• ciscortplib.dll

• ciscortpmon.dll

• ciscortpg711a.dll

• ciscortpg711u.dll

• ciscortpg729.dll

• ciscortppcm16.dll

Windows 64bit OS (x64):

• ciscortplib64.dll

• ciscortpmon64.dll

• ciscortpg711a64.dll

• ciscortpg711u64.dll

• ciscortpg72964.dll

• ciscortppcm1664.dll

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
422

Cisco TSP Media Driver
Cisco Rtp Library Components

TAPI Application Support

CiscoTSP and Cisco Rtp Library Interaction
In order to allow TAPI applications to associate TAPI line device with Rtp Library media endpoints Cisco
TSP implements two new device classes: ciscowave/in and ciscowave/out. If TAPI line device is capable to
terminate media by means of Cisco Rtp Library, an application can use ciscowave/in and ciscowave/out device
class names in the TAPI lineGetID() function to obtain associated media device identifiers. Media device
identifier can be used in Cisco Rtp Library APIs to create media endpoints and manipulate media on a
corresponding TAPI line device.

The following figure shows high level view of TAPI application which uses Cisco TAPI service provider and
Cisco Rtp Library functionalities.
Figure 30: TAPI Application with Cisco Components

Codec Advertisement
CiscoMedia Driver devices advertise G.711 support natively. Cisco Unified CM automatically invokesMedia
Termination Points (MTPs) when needed to provide transcoding (see Example 1). If MTPs are not configured
and transcoding is required, call setup fails (see Example 2).

Example 1

1. G729PassThrough set to OFF (default).

2. TSP application registers CTI port 1.

3. CTI port 1 advertises G.711 support (default).

4. Unified CM is configured with MTPs, which can be used if transcoding is needed.

5. CTI port 1 calls Device 1000.

6. Device 1000 only supports G.729, so an MTP is inserted to provide transcoding.

Example 2

1. G729PassThrough set to OFF (default).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
423

Cisco TSP Media Driver
TAPI Application Support

2. TSP application registers CTI port 1.

3. CTI port 1 advertises G.711 support (default).

4. Unified CM is not configured with MTPs for transcoding.

5. CTI port 1 calls Device 1000.

6. Device 1000 only supports G.729 and no MTPs are available, so call setup fails.

Applications which natively support G.729 can change the default codec advertisement by setting the
G729PassThrough registry option to ON (1).

The TSP application is then responsible for playing the appropriate media file (G.711 or G.729) based on the
compatible codecs supported by the Device receiving the media (see Example 3 below).

The Registry key can be found at:

• Windows XP: HKEY_Local_Machine/Software/Cisco Systems, Inc./ RtpLib/G729PassThrough

• Windows Vista: HKEY_USERS\S-1-5-20\Software\Cisco Systems, Inc.\ RtpLib\G729PassThrough

Example 3

1. G729PassThrough set to ON.

2. TSP application registers CTI port 1.

3. CTI port 1 advertises G.711 and G.729 support.

4. Unified CM is not configured with MTPs for transcoding.

5. CTI port 1 calls Device 1000.

6. Device 1000 only supports G.729, so the application plays the appropriate G.729 media file.

Typical TAPI Application Message Flow
The message flow in the following figure is described in steps 1 and 2.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
424

Cisco TSP Media Driver
Typical TAPI Application Message Flow

Figure 31: Typical TAPI Application Message Flow 1

1. Initialize TAPI, get LINEINFO for available line devices, find devices which are capable of using Cisco
Rtp Library functionalities

2. Get media device identifier associated with a particular line device

The message flow in the following figure is described in steps 3 to 5.
Figure 32: Typical TAPI Application Message Flow 2

3. Initialize Rtp Library

4. Subscribe for media stream events for relevant devices using Cisco lineDevSpecific extension

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
425

Cisco TSP Media Driver
Typical TAPI Application Message Flow

5. Start monitoring media events

The message flow in following figure is described in steps 6 to 10.
Figure 33: Typical TAPI Application Message Flow 3

6. Create media endpoint

7. Get in/out stream handle and start data streaming

8. Receive / transmit data

9. Stop data streaming, close endpoint

10. Close EpAPI before exiting the program

EpAPI Functions

EpApiInit
Initializes EpApi and Rtp Library.

Syntax

CMAPI bool EpApiInit (
PRTPLIBTRACE pTraceCallback,
USHORT portRangeStart,
USHORT numPorts,
int IPAddressFamily,
PRTPADDR pDefaultRtpAddr
);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
426

Cisco TSP Media Driver
EpAPI Functions

Parameters

pTraceCallback

Pointer to an application callback function to be called with the trace record data passed to it.

portRangeStart

First port number in the continuous range of UDP ports (port pool) which can be used to create endpoints.

numPorts

Number of ports in the UDP port range (port pool) which can be used to create endpoints.

IPAddressFamily

IP address family to be used by Rtp Library to create endpoints can be set to:

• AF_UNSPEC: both AF_INET and AF_INET6 can be used.

• AF_INET: AF_INET only can be used.

• AF_INET6: AF_INET6 only can be used.

This settings can be overwritten by the pDefaultRtpAddr parameter.

pDefaultRtpAddr

IP address to be used use by Rtp Library to create endpoints. If not NULL, only this address will be used.

Return Value

If no errors occurs, this function returns true. If an error occurs, false is returned, and a specific error code
can be retrieved by calling EpApiGetLastError.

DescriptionError code

Unable to create endpoint with specified IP address familyEP_ERR_ADDR_NOTAVAIL

The following describes a possible cause of the error:

Invalid number of UDP ports

EP_ERR_PARAM_INVALID

Already initializedRTP_ERR_INITALREADY

Unable to create high resolution timerRTP_ERR_TIMER_NOTAVAIL

Remarks

An error code can be set even when EpApiInit returns true. In some cases a default action / value can be
assumed even if a parameter or registry settings is invalid. In those cases EpApiInit returns true but also set
a proper error code to indicate an issue.

EpApiInitByDefault
Initializes EpApi and Rtp Library with default settings.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
427

Cisco TSP Media Driver
EpApiInitByDefault

Syntax

CMAPI bool EpApiInitByDefault (
PRTPLIBTRACEpTraceCallback,

);

Parameters

pTraceCallback

Pointer to an application callback function to be called with the trace record data passed to it.

Return Value

If no errors occurs, this function returns true. If an error occurs, false is returned, and a specific error code
can be retrieved by calling EpApiGetLastError.

DescriptionError code

Already initializedRTP_ERR_INITALREADY

Remarks

Rtp Library will be initialized as if registry is set as follows:

• UDPPortRangeStart = 50000

• UDPPortRangeEnd = 50999

EpApiClose
Closes EpApi.

Syntax

CMAPI bool EpApiClose ();

Return Value

If no errors occurs, this function returns true. If an error occurs, false is returned, and a specific error code
can be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Remarks

As a result of this function execution all active sessions, connections and streams will be terminated, timers
closed and all data freed.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
428

Cisco TSP Media Driver
EpApiClose

EpLocalAddressGetAll
Returns an array of RTPADDR structures which contain local IP addresses available for use by Rtp Library.

Syntax

CMAPI int EpLocalAddressPortGetAll(
PRTPADDR pBuffer,
int * pBufSize

);

Parameters

pBuffer

Pointer to a memory buffer to fill in with array of RTPADDR structures or NULL.

pBufSize

• IN—Length of the buffer (in bytes), pointed to by pBuffer.

• OUT—Space in the buffer used or required.

Return Value

If no errors occurs, this function returns a number of available local IP addresses and an array of RTPADDR
structures in the pBuffer.

If pBuffer parameter value is NULL, the function returns the number of available local IP addresses and the
pBufSize will contain the buffer size required for the RTPADDR structure array.

If an error occurs, 0 is returned and a specific error code can be retrieved by calling EpApiGetLastError. In
case of EP_ERR_PARAM_INVALID error, pBufSize will contain the size of the required buffer.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Buffer is not large enough.EP_ERR_PARAM_INVALID

EpLocalAddressPortGet
Reserves port from the port pool and returns it together with a local IP address.

Syntax

CMAPI PRTPADDR EpLocalAddressPortGet();

Return Value

If no errors occurs, this function returns pointer to RTPADDR structure with the first (or default) local IP
address used by Rtp Library and reserved UDP port number.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
429

Cisco TSP Media Driver
EpLocalAddressGetAll

If an error occurs, NULL is returned and a specific error code can be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

No UDP port available.RTP_ERR_PORT_NOTAVAIL

EpLocalAddressPortGetByFamily
Reserves port from the port pool and returns it alone with a local IP address for the specified family.

Syntax

CMAPI PRTPADDR EpLocalAddressPortGetByFamily(
int IPAddressFamily

);

Parameters

IPAddressFamily

IP address family: AF_INET or AF_INET6

Returns: Pointer to RTPADDR structure or NULL.

Return Value

If no errors occurs, this function returns pointer to RTPADDR structure with the first local IP address for the
specified family used by Rtp Library and reserved UDP port number. If an error occurs, NULL is returned
and a specific error code can be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

No IP address available for specified familyRTP_ERR_ADDR_NOTAVAIL

No UDP port available.RTP_ERR_PORT_NOTAVAIL

EpLocalAddressPortGetByIdx
Reserves UDP port from the Rtp Library port pool and returns it in the RTPADDR data structure alone with
the IP address of the network interface card specified by the index parameter.

Syntax

CMAPI PRTPADDR EpLocalAddrPortGetByIdx (
int index

);

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
430

Cisco TSP Media Driver
EpLocalAddressPortGetByFamily

Parameters

index

Index in the list of available local network addresses returned by EpLocalAddressGetAll function call.

Return Value

If no error occurs, this function returns pointer to RTPADDR structure which contains local IP address and
reserved UDP port number. If an error occurs, NULL is returned, and a specific error code can be retrieved
by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Invalid index value.EP_ERR_PARAM_INVALID

No UDP port available.RTP_ERR_PORT_NOTAVAIL

Remarks

List of available local network addresses can be obtained by EpLocalAddressGetAll function call.

EpLocalAddrPortFree
Returns local UDP port previously reserved by EpLocalAddressGet, EpLocalAddressGetByIdx or
EpLocalAddressGetByFamily back to the port pool.

Syntax

CMAPI bool EpLocalAddrPortFree (
PRTPADDR pLocalAddrPort

);

Parameters

pLocalAddrPort

Pointer to RTPADDR data structure which contains port number of previously reserved local UDP port.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
431

Cisco TSP Media Driver
EpLocalAddrPortFree

Remarks

Local UDP could is reserved by EpLocalAddressGet, EpLocalAddressGetByIdx or
EpLocalAddressGetByFamily.

EpOpenById
Creates media endpoint based on TSP data associated with the specified media device identifier.

Syntax

CMAPI HANDLE EpOpenById (
DWORD deviceId,
StreamDirection streamDir,
PRTPDATACALLBACK pCallback

);

Parameters

deviceId

Media device identifier obtained by calling TAPI lineGetID() for ciscowave/in or ciscowave/out device
class.

streamDir

Stream direction. This parameter can be one of the following values:

• ToApp

• ToNwk

• Both

pCallback

Pointer to an application callback function to be called when data buffer is received/sent or an error
occurred.

Return Value

If no errors occurs, this function returns a handle which can be used to reference the endpoint. If an error
occurs, NULL is returned, and a specific error code can be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

The following describes a possible cause of the error:

• Specified device identifier is invalid.
• Required data associated with device identifier data is
missing

• Specified stream direction is invalid

EP_ERR_PARAM_INVALID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
432

Cisco TSP Media Driver
EpOpenById

Remarks

Endpoint is created based on a data associated by TSP with the deviceId.

EpClose
Close endpoint created by EpOpen.

Syntax

CMAPI bool EpClose (
HANDLE hEp

);

Parameters

hEp

Endpoint handle returned by EpOpen.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified endpoint handle is invalid.EP_ERR_HANDLE_INVALID

EpGetStreamHandle
Returns endpoint stream handle for a specified stream type and direction

Syntax

CMAPI HANDLE EpGetStreamHandle (
HANDLE hEp,
StreamType streamType,
StreamDirection streamDir

);

Parameters

hEp

Endpoint handle returned by EpOpen.

streamType

Stream type. This parameter can be one of the following values:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
433

Cisco TSP Media Driver
EpClose

• STREAM_TYPE_AUDIO

• STREAM_TYPE_VIDEO

streamDir

Stream direction. This parameter can be one of the following values:

• ToApp

• ToNwk

Return Value

If no errors occurs, this function returns stream handle which can be used to reference the stream. If an error
occurs, NULL is returned, and a specific error code can be retrieved by calling EpApiGetLastError

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified endpoint handle is invalid.EP_ERR_HANDLE_INVALID

Specified stream type or direction is invalid.EP_ERR_PARAM_INVALID

EpStreamStart
Enables data flow on a specified stream

Syntax

CMAPI bool EpStreamStart (
HANDLE hStream,
PRTPDATACALLBACK pCallback

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

pCallback

Pointer to an application callback function to be called when data buffer is received/sent or an error
occurred.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
434

Cisco TSP Media Driver
EpStreamStart

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified endpoint handle is invalid.EP_ERR_HANDLE_INVALID

Address (protocol-IPaddress-port) is already in use.EP_ERR_ADDR_INUSE

Remarks

EpStreamStart() should be explicitly called by an application in order to stream data flow (open socket, port).
It is not done implicitly by the Rtp Library as it was done before by the Cisco kernel mode wave driver.

EpStreamStop
Disables data flow on a specified stream.

Syntax

CMAPI bool EpStreamStop (
HANDLE hStream

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

Return Value

If no errors occurs, this function returns true. If an error occurs, false is returned, and a specific error code
can be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

Remarks

EpStreamStop() should be explicitly called by an application in order to disable stream data flow. It is not
done implicitly by the Rtp Library as it was done before by the Cisco kernel mode wave driver.

EpStreamRead
Read data from a stream.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
435

Cisco TSP Media Driver
EpStreamStop

Syntax

CMAPI bool EpStreamRead (
HANDLE hStream,
PUCHAR pBuffer,
int bufLen,
PVOID pAppData,
PRTPDATACALLBACK pCallback

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

pBuffer

Pointer to a buffer for incoming data.

bufLen

Buffer size.

pAppData

Pointer to an application data area. It will be associated with the buffer and will be passed back to the
application callback function as the pAppData parameter.

pCallback

Pointer to an application callback function to be called when data buffer is received or an error occurred.

Return Value

If no errors occurs, this function returns true. If an error occurs, false is returned, and a specific error code
can be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

EpStreamWrite
Write data to a stream.

Syntax

CMAPI bool EpStreamWrite (
HANDLE hStream,
PUCHAR pBuffer,
int bufLen,
PVOID pAppData,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
436

Cisco TSP Media Driver
EpStreamWrite

PRTPDATACALLBACK pCallback
);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

pBuffer

Pointer to a buffer which contains data.

bufLen

Data length

pAppData

Pointer to an application data area. It will be associated with the buffer and will be passed back to the
application callback function as the pAppData parameter.

pCallback

Pointer to an application callback function to be called when data buffer has been written or an error
occurred.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

EpStreamCodecInGet
Returns stream inbound codec format information.

Syntax

CMAPI bool EpStreamCodecInGet (
HANDLE hStream,
PWAVEFORMATEX pWaveFormat

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
437

Cisco TSP Media Driver
EpStreamCodecInGet

pWaveFormat

Pointer to a WAVEFORMATEX data structure. Upon successful completion of the request this structure
is filled with stream inbound codec format data.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

EpStreamCodecInSet
Sets stream inbound codec format.

Syntax

CMAPI bool EpStreamCodecInSet (
HANDLE hStream,
PWAVEFORMATEX pWaveFormat,
ULONG pktSizeMs

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

pWaveFormat

Pointer to a WAVEFORMATEX data structure which contains codec information.

pktSizeMs

Packet size in milliseconds. If value 0 (zero) is specified a default value (20) is used.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
438

Cisco TSP Media Driver
EpStreamCodecInSet

EpStreamCodecOutGet
Returns stream outbound codec format information.

Syntax

CMAPI bool EpStreamCodecOutGet (
HANDLE hStream,
PWAVEFORMATEX pWaveFormat

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

pWaveFormat

Pointer to a WAVEFORMATEX data structure. Upon successful completion of the request this structure
is filled with stream outbound codec format data.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

EpStreamCodecOutSet
Sets stream outbound codec format.

Syntax

CMAPI bool EpStreamCodecInSet (
HANDLE hStream,
PWAVEFORMATEX pWaveFormat,
ULONG pktSizeMs

);

Parameters

hStream

Stream handle returned by EpGetStreamHandle.

pWaveFormat

Pointer to a WAVEFORMATEX data structure which contains codec information.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
439

Cisco TSP Media Driver
EpStreamCodecOutGet

pktSizeMs

Packet size in milliseconds. If value 0 (zero) is specified a default value (20) is used.

Return Value

If no error occurs, this function returns true. If an error occurs, false is returned, and a specific error code can
be retrieved by calling EpApiGetLastError.

DescriptionError code

EpAPI is not initialized.EP_ERR_INIT

Specified stream handle is invalid.EP_ERR_HANDLE_INVALID

EpApiTraceLevelSet
Sets EpApi (Rtp Library) trace level.

Syntax

CMAPI bool EpApiTraceLevelSet (
int traceLevel

);

Parameters

traceLevel

Required Rtp Library trace level. This parameter can be one of the following values:

Table 23: Error Codes for EpApiTraceLevelSet

DescriptionTrace level

Output only error messages (reported in Windows Event Log).0 -Error

Output alarms and error messages (reported in Windows Event
Log).

1 -Alarm

Output warnings, alarms and error messages (reported inWindows
Event Log).

2 -Warning

Output informational messages, alarms, warnings, and error
messages (not reported in Windows Event Log).

3 -Info

Output debug information, informational messages, alarms,
warnings, and error messages (not reported in Windows Event
Log).

4 -Debug

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
440

Cisco TSP Media Driver
EpApiTraceLevelSet

Return Value

Current trace level.

EpApiGetLastError
Retrieves last-error code value. The last-error code is maintained on a per-thread basis.

Syntax

CMAPI int EpApiGetLastError();

Parameters

This function has no parameters.

Return Value

The return value is the calling thread's last error code.

EpApi Error Codes
Most of the EpApi functions do not return a specific cause of an error when the function returns but rather
set global error code value which can be retrieved by calling EpApiGetLastError function. The following list
describes possible error codes returned by EpApiGetLastError function. Errors are listed in numerical order.

Table 24: Error Codes for EpApi

DescriptionReturn code/Value

No error occurred.EP_ERR_OK

0

EpAPI is not initialized.EP_ERR_INIT

17002

Invalid parameter.EP_ERR_PARAM_INVALID

17003

Unable to create endpoint with specified IP address familyEP_ERR_ADDR_NOTAVAIL

17100

Address (Protocol -IP address -port) is already in use.EP_ERR_ADDR_INUSE

17101

Invalid endpoint or stream handle.EP_ERR_HANDLE_INVALID

17102

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
441

Cisco TSP Media Driver
EpApiGetLastError

Callback Function
An application can define a callback function in order to receive information about such things as operation
completions, data transfers, and errors. Callback functions can be specified when an endpoint is created, when
a stream callback is opened, and when a stream callback operation is initiated. If a callback operation is not
specified a corresponding stream callback is invoked, if defined. If a stream callback is not specified a
corresponding callback endpoint is invoked, if defined.

If the callback function is defined, it is invoked for every operation that is initiated on a corresponding stream,
endpoint, etc. Consideration should be given to the case where a callback function is defined as a method in
an object that is dynamically created and destroyed. In that case destruction should not occur until all initiated
operations are complete.

Note

Endpoint Callback

Syntax

typedef void (WINAPI *PRTPENDPOINTCALLBACK) (
HANDLE hEp,
HANDLE hStream,
DWORD dwError,
PUCHAR pData,
DWORD dwDataSize,
LPVOID pUserData,
bool bIsSilence,
StreamDirection streamDir

);

Parameters

hEp

Endpoint handle

hStream

Rtp stream handle

dwError

If not 0 (zero), indicates an error

pData

Endpoint handle

dwDataSize

Number of bytes received / transferred.

pUserData

Application data associated with an operation.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
442

Cisco TSP Media Driver
Callback Function

bIsSilence

If set to true, indicates that silence has been detected.

streamDir

Stream direction. Can be one of the following:

• ToApp

• ToNwk

Data Callback

Syntax

typedef void (WINAPI *PRTPDATACALLBACK) (
HANDLE hStream,
DWORD dwError,
PUCHAR pData,
DWORD dwDataSize,
LPVOID pUserData,
bool bIsSilence,

);

Parameters

hStream

Rtp stream handle

dwError

If not 0 (zero), indicates an error

pData

Endpoint handle

dwDataSize

Number of bytes received / transferred.

pUserData

Application data associated with an operation.

bIsSilence

If set to true, indicates that silence has been detected.

Data Structures

RTPADDR
Basic endpoint data structure which contains all endpoint related data, such as IP address, UDP port number,
etc.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
443

Cisco TSP Media Driver
Data Structures

typedef struct sRTPAddrInfo {
ADDRINFOT info,
SOCKADDR_STORAGE addr,
SOCKET sock,
bool multicast,
DWORD dscp,
SRTPINFO2 srtp,
RTPSIL silence,
ULONG pktSizeMs

} RTPADDR, *PRTPADDR;

Where:

info

System defined ADDRINFOT structure

addr

System defined SOCKADDR_STORAGE structure

sock

System defined SOCKET data (bound socket)

multicast

If set to true, RTPADDR instance represents multicast address, otherwise unicast.

dscp

DSCP / QoS data

srtp

SRTP data

silence

Silence processing parameters

pktSizeMs

Packet size in milliseconds

RTPSIL
Contains silence processing related data for a specific endpoint. It uses the following SilenceType enumeration:

typedef enum {
Off = 0,
Packets = Off + 1,
Energy = Packets +1

} SilenceType;

typedef struct {
SilenceType type,
ULONG duration,
ULONG threshold,
ULONG currentOffset,
bool detecting

} RTPSIL, *PRPTSIL;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
444

Cisco TSP Media Driver
RTPSIL

Where:

type

Silence detection type as it is defined in SilenceType.

duration

Duration in milliseconds.

threshold

Energy threshold.

currentOffset

Silence offset (G.729).

detecting true

Silence detection enabled.

RTPCODEC

typedef struct {
WAVEFORMATEX wfe;
WORD (WINAPI *formatTag) ();
WORD * (WINAPI *supported) (ULONG & nmb);
ULONG (WINAPI *fmtBytesToThis) (WORD fmt, ULONG len);
ULONG (WINAPI *thisBytesToFmt) (ULONG len, WORD fmt);
UCHAR (WINAPI *pad) ();
PXLATE xlateTo;
PXLATE xlateFrom;
PRTPSIL (WINAPI *silenceInit)(PRTPSIL ps, SilenceType type,

ULONG duration, ULONG threshold);
ULONG (WINAPI *silenceSet) (PRTPSIL, PUCHAR, ULONG);
bool (WINAPI *isSilence) (PRTPSIL, ULONG pcktSizeInMs,

bool & beenChanged, PUCHAR, ULONG);
void (WINAPI *silenceFree)(PRTPSIL);

} RTPCODEC, *PRTPCODEC;

Trace Options
Rtp Library have several logging options to facilitate application debugging and trouble-shooting:

Reporting in the Windows Event Log

Sending trace data to the OutputDebugString and can be view by any “trace listener”, for example Sysinternals
DebugView

Providing trace data to an application in the trace callback

Trace Level
Trace level specifies what messages are to be included in trace output and is defined as follows:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
445

Cisco TSP Media Driver
RTPCODEC

DescriptionTrace level

Output only error messages (reported in Windows Event Log).0 -Error

Output alarms and error messages (reported in Windows Event
Log).

1 -Alarm

Output warnings, alarms and error messages (reported inWindows
Event Log).

2 -Warning

Output informational messages, alarms, warnings, and error
messages (not reported in Windows Event Log).

3 -Info

Output debug information, informational messages, alarms,
warnings, and error messages (not reported in Windows Event
Log).

4 -Debug

Trace level can be set and modified with the EpApiTraceLevelSet() function.

Trace Callback Function
An application can set trace callback. The callback function will be invoked by Rtp Library whenever it is
ready to record a trace and will be provided with the trace record data. Trace callback can be set and modified
when EpApi is initialized. Trace callback function type is declared as follows:

Syntax

typedef void (WINAPI *PRTPLIBTRACE) (
int level,
const _TCHAR *pData

);

Parameters

level

Current trace record level.

pData

Pointer to the current trace record data.

Known Problems or Limitations
Below is the list of currently known Rtp Library problems and limitations:

• CSCsy13584 – RtpLib: The only supported PCM encoding is 8k16bit, mono

• There is no G.729 transcoding available

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
446

Cisco TSP Media Driver
Trace Callback Function

C H A P T E R 8
Cisco Unified TAPI Examples

This chapter provides examples that illustrate how to use the Cisco Unified TAPI implementation. This chapter
includes the following subroutines:

• MakeCall, on page 447
• OpenLine, on page 448
• CloseLine, on page 451

MakeCall
STDMETHODIMP CTACtrl::MakeCall(BSTR destNumber, long pMakeCallReqID,
long hLine, BSTR user2user, long translateAddr) {
AFX_MANAGE_STATE(AfxGetStaticModuleState())

USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::Makecall %s %d %d %s %d\n",
T2A((LPTSTR)destNumber), pMakeCallReqID, hLine, T2A((LPTSTR)user2user),
translateAddr);

//CtPhoneNo m_pno;
CtTranslateOutput to;

//LPCSTR pszTranslatable;
CString sDialable;

CString theDestNumber(destNumber);

CtCall* pCall;
CtLine* pLine = CtLine::FromHandle((HLINE)hLine);

if (pLine = = NULL) {
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pLine = = NULL\n");
return S_FALSE;

} else {
pCall = new CtCall(pLine);
pCall->AddSink(this);

sDialable = theDestNumber;

if (translateAddr) {
//m_pno.SetWholePhoneNo((LPCSTR)theDestNumber);
//pszTranslatable = m_pno.GetTranslatable();
if (TSUCCEEDED(to.TranslateAddress(pCall->GetLine()->GetDeviceID(),

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
447

(LPCSTR)theDestNumber))) {
sDialable = to.GetDialableString();

}
}
TRESULT tr = pCall->MakeCall((LPCSTR)sDialable, 0, this);
if(TPENDING(tr) || TSUCCEEDED(tr)) {
//GCGC the correct hCall pointer is not being returned yet
if (translateAddr)
Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),
sDialable.AllocSysString());

else
Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),destNumber);

return S_OK;
} else {
//GCGC delete the call that was created above.
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pCall->MakeCall

failed\n");
delete pCall;
return S_FALSE;

}
}

}

OpenLine
STDMETHODIMP CTACtrl::OpenLine(long lDeviceID, BSTR lineDirNumber,
long lPriviledges, long lMediaModes, BSTR receiveIPAddress,
long lreceivePort) {
USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::OpenLine %d %s %d %d %s %d\n",

lDeviceID, T2A((LPTSTR)lineDirNumber), lPriviledges, lMediaModes,
T2A((LPTSTR)receiveIPAddress), lreceivePort);

int lineID;
TRESULT tr;
CString strReceiveIP(receiveIPAddress);
CString strReqAddress(lineDirNumber);

//bool bTermMedia = ((!strReceiveIP.IsEmpty()) && (lreceivePort! = 0));
bool bTermMedia = (((lMediaModes & LINEMEDIAMODE_AUTOMATEDVOICE) ! = 0) &&

(lreceivePort! = 0) && (!strReceiveIP.IsEmpty()));
CtLine* pLine;

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_DETAILED, "TAC: --> OpenLine()\n");

if ((lDeviceID<0) && !strcmp((char *)lineDirNumber, "")) {
tracer->tracef(SDI_LEVEL_ERROR, "TCD: error -bad device ID and no dirn to

open\n");
return S_FALSE;
}
lineID = lDeviceID;

if (lDeviceID<0) {
//search for line ID in list of lines.
CtLineDevCaps ldc;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
448

Cisco Unified TAPI Examples
OpenLine

int numLines = ::TfxGetNumLines();
for(DWORD nLineID = 0; (int)nLineID < numLines; nLineID++) {
if(/*ShouldShowLine(nLineID) &&*/ TSUCCEEDED(ldc.GetDevCaps(nLineID))) {
CtAddressCaps ac;
tracer->tracef(SDI_LEVEL_DETAILED, "CTACtrl::OpenLine :

Calling ac.GetAddressCaps %d 0\n", nLineID);
if (TSUCCEEDED(ac.GetAddressCaps(nLineID, 0))) {
// GCGC only one address supported
CString strCurrAddress(ac.GetAddress());
if (strReqAddress = = strCurrAddress) {
lineID = nLineID;
break;
}
}

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error -GetAddressCaps() failed\n");
}
}
}

if (lDeviceID<0) {
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error -could not find dirn %s to open line.\n",(LPCSTR)lineDirNumber);

return S_FALSE;
}

// if we are to do media termination; negotiate the extensions version

DWORD retExtVersion;
if (bTermMedia) {
TRESULT tr3;
tracer->tracef(SDI_LEVEL_DETAILED,

"TAC: lineNegotiateExtVersion -appHandle = %d, deviceID = %d, API ver = %d,

HiVer = %d, LoVer = %d\n", CtLine::GetAppHandle(), lineID,
CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L,
0x80000000 | 0x00020000L);

tr3 = ::lineNegotiateExtVersion(CtLine::GetAppHandle(),
lineID, CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L, // TAPI v1.3,
0x80000000 | 0x00020000L,
&retExtVersion);

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineNegotiateExtVersion returned: %d\n", tr3);

}

pLine = new CtLine();
tr = pLine->Open(lineID, this, lPriviledges, lMediaModes);
if(TSUCCEEDED(tr)) {
if (bTermMedia) {
if (retExtVersion = = 0x10000) {
CiscoLineDevSpecificUserControlRTPStream dsucr;
dsucr.m_RecievePort = lreceivePort;
dsucr.m_RecieveIP = ::inet_addr((LPCSTR)strReceiveIP);
TRESULT tr2;

tr2 = ::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

} else {

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
449

Cisco Unified TAPI Examples
OpenLine

//GCGC here put in the new calls to set the media types!
CiscoLineDevSpecificUserControlRTPStream2 dsucr;
dsucr.m_RecievePort = lreceivePort;
dsucr.m_RecieveIP = ::inet_addr((LPCSTR)strReceiveIP);
dsucr.m_MediaCapCount = 4;

dsucr.m_MediaCaps[0].MediaPayload = 4;
dsucr.m_MediaCaps[0].MaxFramesPerPacket = 30;
dsucr.m_MediaCaps[0].G723BitRate = 0;
dsucr.m_MediaCaps[1].MediaPayload = 9;
dsucr.m_MediaCaps[1].MaxFramesPerPacket = 90;
dsucr.m_MediaCaps[1].G723BitRate = 1;
dsucr.m_MediaCaps[2].MediaPayload = 9;
dsucr.m_MediaCaps[2].MaxFramesPerPacket = 90;
dsucr.m_MediaCaps[2].G723BitRate = 2;
dsucr.m_MediaCaps[3].MediaPayload = 11;
dsucr.m_MediaCaps[3].MaxFramesPerPacket = 90;
dsucr.m_MediaCaps[3].G723BitRate = 0;

TRESULT tr2;

tr2 = ::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

}
}

CtAddressCaps ac;
LPCSTR pszAddressName;
if (TSUCCEEDED(ac.GetAddressCaps(lineID, 0))) {
// GCGC only one address supported
pszAddressName = ac.GetAddress();
} else {
pszAddressName = NULL;
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error -GetAddressCaps() failed.\n");
}

OpenedLine((long)pLine->GetHandle(), pszAddressName, 0);

// now let's try to open the associated phone device
// Get the phone from the line

DWORDnPhoneID;
bool b_phoneFound = false;
CtDeviceID did;
if((m_bUsesPhones) && TSUCCEEDED(did.GetID("tapi/phone", pLine->GetHandle()))

) {
nPhoneID = did.GetDeviceID();
tracer->tracef(SDI_LEVEL_DETAILED,

"TAC: Retrieved phone device %d for line.\n",nPhoneID);

// check to see if phone device is already open

long hPhone;
CtPhone* pPhone;
if (!m_deviceID2phone.Lookup((long)nPhoneID,hPhone)) {
tracer->tracef(SDI_LEVEL_SIGNIFICANT,

"TAC: phone device not found in open list, opening it...\n");

pPhone = new CtPhone();
TRESULT tr_phone;
tr_phone = pPhone->Open(nPhoneID,this);
if (TSUCCEEDED(tr_phone)) {

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
450

Cisco Unified TAPI Examples
OpenLine

::phoneSetStatusMessages(pPhone->GetHandle(),
PHONESTATE_DISPLAY | PHONESTATE_LAMP |
PHONESTATE_HANDSETHOOKSWITCH | PHONESTATE_HEADSETHOOKSWITCH |
PHONESTATE_REINIT | PHONESTATE_CAPSCHANGE | PHONESTATE_REMOVED,
PHONEBUTTONMODE_KEYPAD | PHONEBUTTONMODE_FEATURE |
PHONEBUTTONMODE_CALL |
PHONEBUTTONMODE_LOCAL | PHONEBUTTONMODE_DISPLAY,
PHONEBUTTONSTATE_UP | PHONEBUTTONSTATE_DOWN);

m_phone2line.SetAt((long)pPhone->GetHandle(), (long)pLine->GetHandle());
m_line2phone.SetAt((long)pLine->GetHandle(),(long)pPhone->GetHandle());
m_deviceID2phone.SetAt((long)nPhoneID,(long)pPhone->GetHandle());
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), 1);
} else {
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error -phoneOpen failed with code %d\n", tr_phone);
}
} else {
pPhone = CtPhone::FromHandle((HPHONE)hPhone);
long theCount;

if (m_phoneUseCount.Lookup((long)pPhone->GetHandle(),theCount))
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), theCount+1);
else {
//GCGC this would be an error condition!
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error -m_phoneUseCount does not contain phone entry.\n");
}
}
} else {
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error -could not retrieve PhoneID for line.\n");
}
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <--OpenLine()\n");
return S_OK;
} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error -lineOpen failed: %d\n", tr);
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <--OpenLine()\n");
OpenLineFailed(tr,0);
delete pLine;
return S_FALSE;
}
}

CloseLine
STDMETHODIMP CTACtrl::CloseLine(long hLine) {
AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::CloseLine %d\n", hLine);

CtLine* pLine;
pLine = CtLine::FromHandle((HLINE) hLine);

if (pLine! = NULL) {
// close the line
pLine->Close();
// remove it from the list
delete pLine;
long hPhone;

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
451

Cisco Unified TAPI Examples
CloseLine

long theCount;
if ((m_bUsesPhones) && (m_line2phone.Lookup(hLine,hPhone))) {
CtPhone* pPhone = CtPhone::FromHandle((HPHONE)hPhone);
if (pPhone! = NULL) {
if (m_phoneUseCount.Lookup(hPhone,theCount))
if (theCount>1) {
// decrease the number of lines using this phone
m_phoneUseCount.SetAt(hPhone,theCount-1);
}
else {
//nobody else is using this phone, so let's remove it.
m_deviceID2phone.RemoveKey((long)pPhone->GetDeviceID());
m_phone2line.RemoveKey(hPhone);
m_phoneUseCount.RemoveKey(hPhone);

//now let's close the phone
pPhone->Close();
}

}
//either way, remove the map entry from line to phone.
m_line2phone.RemoveKey(hLine);
}
return S_OK;
}
else
return S_FALSE;

}

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
452

Cisco Unified TAPI Examples
CloseLine

A P P E N D I X A
Message Sequence Charts

This appendix contains message sequences or call scenarios and illustrates a subset of these scenarios that are
supported by the Cisco Unified TSP. Be aware that the event order is not guaranteed in all cases and can vary
depending on the scenario and the event.

This appendix contains the following sections:

• Abbreviations, on page 454
• 3XX, on page 455
• Agent Greeting, on page 455
• Agent Zip Tone, on page 472
• Announcement Call, on page 480
• Blind Transfer, on page 483
• Call Control Discovery, on page 485
• CallFwdAll Notification, on page 503
• Calling Party IP Address, on page 507
• Calling Party Normalization, on page 508
• Call PickUp, on page 511
• Call Queuing, on page 518
• Call Recording for SIP or TLS Authenticated calls, on page 554
• CCMEncryption Enhancements, on page 555
• CIUS Session Persistency, on page 556
• Click to Conference, on page 559
• Conference Enhancements, on page 568
• CTI Remote Device, on page 574
• CTI RD Call Forwarding, on page 652
• Video Capabilities and Multimedia Information, on page 653
• Direct Transfer Across Lines, on page 684
• Do Not Disturb-Reject, on page 693
• Drop Any Party, on page 695
• Early Offer, on page 709
• End-To-End Call Trace, on page 722
• EnergyWise Deep Sleep Mode Use Cases, on page 755
• Extension Mobility Cross Cluster, on page 766
• Extension Mobility Memory Optimization Option, on page 773
• External Call Control, on page 777

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
453

• Forced Authorization and Client Matter Code Scenarios, on page 790
• Gateway Recording, on page 802
• Hunt List, on page 813
• Hunt Pilot Connected Number Feature, on page 877
• Hunt Group Login Status, on page 899
• Intercom, on page 903
• IPv6 Use Cases, on page 906
• Join Across Lines, on page 912
• Logical Partitioning, on page 927
• Manual Outbound Call, on page 930
• Monitoring and Recording, on page 933
• NuRD (Number Matching for Remote Destination) Support, on page 940
• Park Monitoring, on page 940
• Persistent Connection Use Cases, on page 951
• Presentation Indication, on page 965
• Redirect to Device, on page 973
• Redirect Set Original Called (TxToVM), on page 977
• Refer and Replace Scenarios, on page 979
• Secure Conferencing, on page 990
• Secure Monitoring and Recording, on page 995
• Shared Lines-Initiating a New Call Manually, on page 1019
• SRTP, on page 1024
• Support for Cisco IP Phone 6900 Series, on page 1025
• Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases, on page 1035
• Swap or Cancel, on page 1039
• Unrestricted Unified CM, on page 1062
• LineHold Enhancement, on page 1064
• Whisper Coaching, on page 1064

Abbreviations
The following list gives abbreviations that are used in the CTI events that are shown in each scenario:

• NP—Not Present

• LR—LastRedirectingParty

• CH—CtiCallHandle

• GCH—CtiGlobalCallHandle

• RIU—RemoteInUse flag

• DH—DeviceHandle

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
454

Message Sequence Charts
Abbreviations

3XX
Application monitors B.

Table 25: 3XX

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

TSPI: LINE_APPNEWCALL

Reason = LINECALL

REASON_REDIRECT

A calls external phone that is
running SIP, which has
CFDUNC set to B

Agent Greeting

Configuration
Customer Phone—IP Phone A with DN 1001.

Agent Phone—IP Phone B with DN 1002.

Agent Phone—IP Phone C with DN 1002 (shared line)

Supervisor Phone—IP Phone D with DN 1003.

IVR1—with DN 5555

IVR2—with DN 6666

Procedure
Application monitoring all lines on all devices.

New extension is negotiated when application opens lines.

SRTP is also supported at IVR side, can be variation of following use cases.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
455

Message Sequence Charts
3XX

Table 26: StartSendMediaToBIB Success Case

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit is set

Media event sent to application

(StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
with 5555 and CgpnToIVR

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB by feature

IVR1 selects/plays agent’s greeting

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
456

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 5555:

Call goes IDLE

IVR1 drops call after agent greeting completes

Table 27: StopSendMediaToBIB Success Case

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

At 5555:

CONNECTED

Calling = 5555

Called = 5555

Connected =

Agent playing is in progress…

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 5555:

Call goes IDLE

StopTransmissionEvent

Application issues
CCiscoLineDevSpecificStopSendMediaToBIBRequest on 1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
457

Message Sequence Charts
Message Sequence Charts

Table 28: StartSendMediaToBIB Failure While Monitoring in Progress at Agent Side

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1003:

CCiscoLineDevSpecificStartCallMonitoring request successful,
monitoring is in session

Application issues CCiscoLineDevSpecificStartCallMonitoring
on 1003 to monitor active call on 1002

At 1002:

LINE_REPLY returns with LINEERR_RESOURCEUNAVAIL

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

Table 29: StartSendMediaToBIB Followed by Monitoring Request

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
458

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call redirected to BIB

IVR1 selects/plays agent’s greeting

At 1003:

LINE_REPLY returns with LINEERR_RESOURCEUNAVAIL

Application issues CCiscoLineDevSpecificStartCallMonitoring
on 1003 to monitor active call on 1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
459

Message Sequence Charts
Message Sequence Charts

Table 30: StartSendMediaToBIB While Recording Is in Session

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

CCiscoLineDevSpecificStartCallRecording will be successful
and recording is in session

Application sends CCiscoLineDevSpecificStartCallRecording to
1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
460

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call redirected to BIB

IVR1 selects/plays agent’s greeting

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 5555:

Call goes IDLE

IVR1 drops call after agent greeting completes

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
461

Message Sequence Charts
Message Sequence Charts

Table 31: StartSendMediaToBIB Followed by Recording Request

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
462

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

CCiscoLineDevSpecificStartCallRecording will be successful
and recording is in session

Application sends CCiscoLineDevSpecificStartCallRecording to
1002

Table 32: StartSendMediaToBIB Failure While Barge in Session

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002 (device C)

Barge call is created.

Phone C (1002) barges in

At 1002 (B):

LINE_REPLY with LINEERR_RESOURCEUNAVAIL

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
(B)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
463

Message Sequence Charts
Message Sequence Charts

Table 33: StartSendMediaToBIB Followed by Barge From Shared Line

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Barge will fail on phone CPhone C (1002 shared line) try to barge in

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
464

Message Sequence Charts
Message Sequence Charts

Table 34: This Behavior Is Also Seen During Consult Operation. Agent Holds Call While Agent Greeting Is Being Played

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
465

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event Call will go
on hold

With StopReception and StopTransmission event

At 5555:

Call goes IDLE

1002 put call on hold

At 1002:

Call will go CONNECTED with StartTransmission and
StartReception.

1002 Unhold scenario

Table 35: Agent Redirects Call While Agent Greeting Is Being Played

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
466

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

At 1003:

New call from 1002

At 1002:

Call goes IDLE

No MEDIA_TO_BIB_ENDED event

At 5555:

Call goes IDLE

Application redirects call on 1002 to 1003

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
467

Message Sequence Charts
Message Sequence Charts

Table 36: IVR1 Redirects Call to IVR2

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002

(CM feature creates server call to IVR 5555, 5555 answers call)

Server-IVR call is redirected to BIB

IVR1 selects/plays agent’s greeting

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
468

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 5555:

Call goes IDLE

At 6666:

Calling =

Called = 6666

Connected = Redirecting = 5555

Redirection = 6666

CallAttributeBitMask = BIBCall

(StartTransmissionEvent)

Application redirect call on IVR1 to IVR2

IVR2 answers and plays second agent greeting

At 1002:

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_ENDED,0,0) event

At 6666:

Call goes IDLE

IVR2 drops call after agent greeting completes

Table 37: Application-2 Opened Line After Agent Greeting Is in Playing

Events, requests and responsesAction

At 1001:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1002

At 1002:

CONNECTED

Calling = 1001

Called = 1002

Connected = 1001

Make call from 1001 to 1002, and 1002 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
469

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

Application-1 issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
with 5555 and CgpnToIVR

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB by feature

IVR1 selects/plays agent’s greeting

At 1002 (from application-2):

CallAttributeBitMask SendMediaToBIB will be set to indicate
agent greeting is playing on the agent line.

Application-2 opens agent line from another client

CallAttributeBitMask = BIBCallApplication 2 opens IVR line

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
470

Message Sequence Charts
Message Sequence Charts

Table 38: Start Agent Greeting After Conference Is Setup

Events, requests and responsesAction

At 1001:

CONNECTED

CONFERENCED

Calling = 1001, Called = 1002, Connected = 1002

CONFERENCED

Calling = 1001, Called = 1003, Connected = 1003At 1002:

CONNECTED

CONFERENCED

Calling = 1001, Called = 1002, Connected = 1001

CONFERENCED

Calling = 1002, Called = 1003, Connected = 1003

At 1003:

CONNECTED

CONFERENCED

Calling = 1002, Called = 1003, Connected = 1002

CONFERENCED

Calling = 1003, Called = 1001, Connected = 1001

Make call from 1001 to 1002, 1002 answers, 1002 sets up
conference to 1003, 1003 answers, and 1002 completes

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
471

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At 1002:

the request is successful

Application receives LineCallDevSpecific
(SLDSMT_MEDIA_TO_BIB_STARTED) event

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = CgpnToIVR

Called = 5555

Connected = CgpnToIVR

CallAttributeBitMask = ServerCall bit will be set

At 5555:

CONNECTED, dwreason =LINECALLREASON_UNKNOWN
(unknown) ExtendedCallReason = CtiReasonSendMediaToBIB

Calling = 5555

Called = 5555

Connected =

CallAttributeBitMask = ServerCall bit will be set

Media event sent to application (StartTransmissionEvent)

1001 and 1002 also hears the agent greeting

Application issues
CCiscoLineDevSpecificStartSendMediaToBIBRequest on 1002
with 5555 and CgpnToIVR

(CM feature creates server call to IVR1 5555, 5555 answers call)

Server-IVR call is redirected to BIB by feature

IVR1 selects/plays agent’s greeting

Agent Zip Tone
The devices mentioned in the use cases below also apply to SIP TNP phones.

Configuration
SCCP phones: A (Customer/Remote), B (Agent/Local).

All Lines are Opened with Ext Version – 0x000B0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
472

Message Sequence Charts
Agent Zip Tone

Table 39: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent. PlayToneDirection – Remote

Expected eventsAction

Zip Tone is played at A.

LINE_DEVSPECIFIC Event with dwParam1 =
SLDSMT_CALL_TONE_CHANGEDdwParam2=CTONE_ZIP,
dwParam3 = 0(local) is reported on A and
alsoLINE_DEVSPECIFIC Event with dwParam1 =
SLDSMT_CALL_TONE_CHANGEDdwParam2=CTONE_ZIP,
dwParam3 = 1(Remote) is reported on B.

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line A and B.

A calls B;B answers the Call

B issues LineDevSpecific (start PlayTone) request with Agent
callid and ZIP Tone as input.

Table 40: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent. PlayToneDirection – Local

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local) is fired for B indicating Zip
Tone has been played on B.

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line A and B.

A calls B;B answers the Call

B issues LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
473

Message Sequence Charts
Message Sequence Charts

Table 41: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent. PlayToneDirection –
BothLocalandRemote/NoLocalOrRemote

Expected eventsAction

LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

LineInitialize.

LineOpen on A,B

A calls B; B answers the Call

B issues LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input

Table 42: Application Issues the Play Tone Request (with Unsupported Tone) When the Call Is Established Between Customer and Agent. PlayToneDirection – Local

Expected eventsAction

LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONFAILED.

LineInitialize.

LineOpen on A,B

A calls B; B answers the Call

B issues LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input

Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote

Configuration

A (Customer/Remote) is SCCP Phone.

B (Agent/local) is a CTIport/Route Point

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
474

Message Sequence Charts
Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote

Table 43: Application Issues the Play Tone Request on a CTI Port with PlayToneDirection – Local/Remote

Expected eventsAction

LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

Zip Tone is played at A.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local)) is fired for A indicating Zip
Tone has been played on A

And also Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote) is fired for B

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line A.

A calls B;B answers the Call

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input, and direction as local.

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input, and direction as remote.

Application Issues the Play Tone Request When the Call Is Established Between Customer and
Agent (Shared Line). PlayToneDirection -Local

Configuration

SCCP phones: A (Customer/ Remote), B, B’ (Agent/Local)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
475

Message Sequence Charts
Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Shared Line). PlayToneDirection -Local

Table 44: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Shared Line). PlayToneDirection – Local

Expected eventsAction

LineInitialize.

LineOpen on A, B, B’

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B and B’.

A calls B;B and B’ starts ringing; B answers the Call

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Variants:

B’ issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input direction remote.

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input direction remote.

A issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input direction remote.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
476

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local)) is fired for B indicating Zip
Tone has been played on B.

There is no Zip Tone played at B’and no Zip tone notification on
B’.

The LineDevSpecific (start PlayTone) request fails with Error
LINEERR_OPERATIONFAILED

Zip Tone is played at A.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local))) will be fired for A also
Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote) will be fired for B.

There is no Zip Tone played at B’and no Zip tone notification on
B’.

Zip Tone is played at B and B’.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local))) is fired for B and B’ also
Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
477

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CTONE_ZIP, dwParam3 = 1(remote) is fired for A.

Table 45: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Intercom Line). PlayToneDirection – Local

Expected eventsAction

The LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

The LineDevSpecific (start PlayTone) request fails with error
LINEERR_OPERATIONUNAVAIL.

LineInitialize.

Phone A have 2 lines: Line1 is a normal line with X, Line2 is a
intercom line (B), SpeedDial DN = D

Phone B have 2 lines: Line1 is a normal line with Y, Line2 is a
intercom line (D)

LineOpen on B,D

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B, D

B calls D; D starts ringing; D answers the Call

D issues the LineDevSpecific (start PlayTone) request with
agent(D) callid and ZIP Tone as input.

Variant 1:

D issues the LineDevSpecific (start PlayTone) request with
agent(D) callid and ZIP Tone as input, and direction as remote.

Conference Scenario: PlayToneDirection -local.

Configuration

A, B, and C are SCCP Phones.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
478

Message Sequence Charts
Conference Scenario: PlayToneDirection -local.

Table 46: Conference Scenario. PlayToneDirection – Local

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local)) is fired for B indicating Zip
Tone has been played on B.

The LineDevSpecific (start PlayTone) request will be Success.

But there will be no Tone played on the Coneference members.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote)) is fired for B

LineInitialize.

LineOpen on A, B, and C

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B.

A calls B; B answers the call; B sets up the conference with C; B
completes the conference.

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Variant 1:

B issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input and direction as Remote

Application Issues the Play Tone Request When the Call Is Established Between Customer and
Agent Agent Puts the Call on Hold. PlayToneDirection -Remote

Configuration

A and B are SCCP Phones.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
479

Message Sequence Charts
Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent Agent Puts the Call on Hold. PlayToneDirection -Remote

Table 47: Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent, Agent Puts the Call on Hold. PlayToneDirection –
Remote

Expected eventsAction

Zip Tone is played at B.

Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 1(remote)) is fired for A also
Line_DevSpecific (dwparam1 =
SLDSMT_CALL_TONE_CHANGED, dwParam2 =
CTONE_ZIP, dwParam3 = 0(local) is fired for B.

LineInitialize.

LineOpen on A,B

The CallToneChangedEvent message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B.

A calls B;B answers the Call; B puts the Call on hold

A issues the LineDevSpecific (start PlayTone) request with agent
callid and ZIP Tone as input.

Announcement Call
Prerequisites

Pre-conditions to all announcement call use cases, unless specified otherwise:

• CTIRD (CTI Remote Device -Name: CTIRD-1)

• Remote Destinations configured on CTIRD-1:

• RD1-(Name: Mobile, Number: 914086271309)

• Line-A (DN -1000) - Line-A configured on CTIRD-1 (shared line of Enterprise
• DN -1000 configured on EP-1)

• EP-1 (Enterprise Phone - SCCP -IP Phone)

• Line-A' -DN -1000 configured on EP-1

• Provider is opened (lineInitializeEx successfully executed)
• All relevant lines are opened with Extension version 0x000D0000 and in service

Persistent call has been created on A / RD-1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
480

Message Sequence Charts
Announcement Call

Announcement with ID "WelcomeID" is defined on CUCM.

Table 48: Create Announcement Call

TAPI StructureTAPI MessagesAction

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000002

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + OFFERING)

LINE_CALLSTATEdwParam1= 0x40000004

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + ACCEPTED)

Create Announcement Call:

LineMakeCall() on Line-A:

lpCallParams:

devSpecific =

Cisco_ CallParamsDevSpecific {

dwCallPriority = 0x00000000;

dwDevSpecificFlags = 0x00000004

(Cisco_ CALLPARAMS_
DEVSPECIFICFLAGS_
ANNOUNCEMENTCALL)

}

CallData = "WelcomeID"

LINECALLINFO (hCall-2)
dwOrigin = OUTBOUND
dwReason = DIRECT CallerID =
5000

CallerIDName=RD5000CalledID
= A

ConnectedID = 5000

In DevSpecific portion:

CallAttributeType = 0x00008000
(TSPCallAttribute_
AnnouncementCall)

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000100

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + CONNECTED)

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
STARTED

dwParam2 = 0 dwParam3 = 0

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
ENDED

dwParam2 = 0 dwParam3 = 0

LINE_ CALLSTATE dwParam1

=

0x40004000

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + DIS

CONNECTED)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
481

Message Sequence Charts
Message Sequence Charts

TAPI StructureTAPI MessagesAction

LINE_CALLSTATEdwParam1= 0x40000001

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + IDLE

)

Persistent call has been created on A / RD-1.

Announcement with ID "WelcomeID" is defined on CUCM.

Table 49: Drop Announcement Call

TAPI StructuresTAPI MessagesAction

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000002

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + OFFERING)

LINE_CALLSTATE dwParam1 = 0x40000004

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + ACCEPTED)

Create Announcement Call:

LineMakeCall() on Line-A:

lpCallParams:

devSpecific =

Cisco_ CallParamsDevSpecific {

dwCallPriority = 0x00000000;

dwDevSpecificFlags = 0x00000004

(Cisco_ CALLPARAMS_
DEVSPECIFICFLAGS_
ANNOUNCEMENTCALL)

}

CallData = "WelcomeID"

LINECALLINFO (hCall-2)
dwOrigin = OUTBOUND
dwReason = DIRECT CallerID =
5000

CallerIDName = RD5000
CalledID = A

ConnectedID = 5000

In DevSpecific portion:

CallAttributeType = 0x00008000
(TSPCallAttribute_
AnnouncementCall)

LINE_ CALLSTATE

hDevice = hCall-2 dwParam1 = 0x40000100

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + CONNECTED)

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
STARTED

dwParam2 = 0 dwParam3 = 0

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
482

Message Sequence Charts
Message Sequence Charts

TAPI StructuresTAPI MessagesAction

LINE_ CALLDEVSPECIFIC

hDevice = hCall-2

dwParam1=SLDSMT_ANNOUNCEMENT_
ENDED

dwParam2 = 0 dwParam3 = 0

LINE_CALLSTATE dwParam1 = 0x40004000
(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + DIS CONNECTED)

LINE_CALLSTATE dwParam1 = 0x40000001

(CLDSMT_ ANNOUNCEMENT_ CALL_
STATE + IDLE

)

Drop AnnouncementtCall:

(while announcement being played)

LineDrop() on Line-A:

Precondition: No Persistent call on CTIRD-1

Table 50: Negative -Create Announcement Call Failed / No Persistent Call

TAPI
Structures

TAPI MessagesAction

LINE_ REPLY

LINEERR_ NO_ PERSISTENT_ CALL_ EXISTS
(0xC0000021)

Create Announcement Call:

LineMakeCall() on Line-A:

lpCallParams:

devSpecific =

Cisco_ CallParamsDevSpecific {

dwCallPriority = 0x00000000;

dwDevSpecificFlags = 0x00000004

(Cisco_ CALLPARAMS_ DEVSPECIFICFLAGS_
ANNOUNCEMENTCALL)

}

CallData = "WelcomeID"

Blind Transfer
The following table describes the message sequences for Blind Transfer when A calls B, B answers, and A
and B are connected.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
483

Message Sequence Charts
Blind Transfer

Table 51: Message Sequences for Blind Transfer

TAPI structuresTAPI messagesCTI messagesAction

Party AParty B does a
lineBlindTranfser() to blind
transfer call from party A to
party C

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

CallPartyInfoChangedEvent,

CH = C1,

CallingChanged = False,

Calling = A,

CalledChanged = True,

Called = C,

OriginalCalled = B,

LR = B,

Cause = BlindTransfer

Party B

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = NULL

dwRedirectionID = NULL

TSPI: LINE_CALLSTATE

|hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = IDLE

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C2,

State = Idle,

Reason = Direct,

Calling = A,

Called = B,

OriginalCalled = B,

LR = NULL

Party C

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = TRANSFER

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_APPNEWCALL
hDevice = C

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C3,

origin = Internal_Inbound,

Reason = BlindTransfer,

Calling = A,

Called = C,

OriginalCalled = B,

LR = B

Party A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
484

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

CallStateChangeEvent,

CH = C1,

State = Ringback,

Reason = Direct,

Calling = A,

Called = C,

OriginalCalled = B,

LR = B

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = RINGBACK
dwParam2 = 0

dwParam3 = 0

Party C

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = OFFERING
dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C3,

State = Offering,

Reason = BlindTransfer,

Calling = A,

Called = C,

OriginalCalled = B, LR = B

Call Control Discovery

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2

Configuration
SCCP phone A(1900) are registered to cluster A

Phones A are associated with the end-user cluster1

SCCP phone B(1000) registered to cluster B

Phones B are associated with the end-user cluster2

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network. TAPI is observing
A.

Procedure

Application monitors A

Application sends a lineMakeCall at A to call B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
485

Message Sequence Charts
Call Control Discovery

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

A receives NewCallEvent and
CallStateChangeEvent (Dialtone/Dialing)

A dials 1000, this call first will be
intercepted by CCD Requesting Feature,
and CCD Requesting feature will extend
this call to SIP trunk

LineA: LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = / RedirectingID = /
RedirectionID =

A receives CallStateChangeEvent
(PROCEEDING)

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, that is,
14089721000. Call is sent out to a PSTN
GW

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
486

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

A:CPIC event received on party A

LineA: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

CallReason =
LINECALLREASON_DIRECT

LINECALLINFO.dwCallID =
0x00400BBA

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900(A)

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1000:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID =
1000(B)

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1000

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover(2B)

A receivesCPIC andCallStateChangeEvent
(Ringback/connected)

Provide TSPI_LinegetcallInfo on A
connected with B

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, that is,
14089721000. Call is sent out to a PSTN
GW

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN Failover
Rule Not Set

Configuration

SCCP phone A are registered to cluster A.

Phones A are associated with the end-user “cluster1”.

SCCP phone B(1000) registered to cluster B.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
487

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN Failover Rule Not Set

Phones B are associated with the end-user “cluster2”.

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network is not set.

Procedure

Application monitors A.

Application sends a lineMakeCall at A to call B.

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

A receives NewCallEvent and
CallStateChangeEvent (Dialtone/Dialing)

A dials 1000, this call first will be
intercepted by CCD Requesting Feature,
and CCD Requesting feature will extend
this call to SIP trunk

A:A receives CPIC event

LineA: LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = / RedirectingID = /
RedirectionID =

A receives CallStateChangeEvent
(PROCEEDING)

SIP trunk rejects this call due to lack of
bandwidth

LineA: LINE_CALLSTATE
(LINECALLSTATE_Disconnected)

EVENT = LINE_CALLSTATE = 2

m_lpfnEventProc = 0xXXX

m_htLine = 0x000XXXX

htCall = 0x000XXX

A receives CallStateChangeEvent
(disconnected)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
488

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

dwParam1 =
0x00004000(LINECALLSTATE_DISCONNECTED)

dwParam2 =
0x00200000(LINEDISCONNECTMODE_SAFCCD)

dwParam3 = 0x00000004

LINECALLINFO.dwCallID =
0x00400BCF

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 10XX:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID =

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID=1000:

LINECALLINFO.dwRedirectionIDName
= CCD Pattern

LINECALLINFO.dwRedirectingID=1000:

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover

Provide TSPI_linegetcallinfo on the
Disconnected call

Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to Phone
C(1000) on Cluster2 with PSTN Failover Rule Set

Configuration

SCCP phone A and B are registered to cluster A.

Phones A and B are associated with the end-user cluster1.

SCCP phone C(1000) registered to cluster B.

Phones C are associated with the end-user cluster2.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
489

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to Phone C(1000) on Cluster2 with PSTN Failover Rule Set

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network.

Procedure

Application monitors A and B.

Application sends a lineMakeCall at A to call B

Table 52: Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1, B Redirects to Phone C(1000) on Cluster2 with PSTN Failover Rule Set

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

CallerID = A / CalledID = B

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected).

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected).

A dials B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
490

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

B: receives CPIC event

LineB: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover

A, B and C are in conference.

B setsupconference, consult call to C(1000),
this call first will be intercepted by CCD
Requesting Feature, and CCD Requesting
feature will extend this call to SIP trunk

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000's
PSTN failover number, i.e. 14089721000.
Call is sent out to a PSTN GW

TSPI_linegetcallinfo on the consult call
between B and C.

B completes conference.

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on
Cluster 2 with PSTN Failover Rule

Configuration

SCCP phone A and B are registered to cluster A.

Phones A(1900) and B(1901) are associated with the end-user cluster1.

SCCP phone C(1000) registered to cluster B.

Phones C are associated with the end-user cluster2.

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
491

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 with PSTN Failover Rule

Procedure

Application monitors A and B.

Application sends a lineMakeCall at A to call B.

Table 53: Basic Call Initiated From TAPI From Phone A and B on Cluster 1, B Transfers to Phone C(1000) on Cluster 2 with PSTN Failover Rule

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected).

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A(1900) dials B(1901)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
492

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

B(1901) setups transfer to C(1000)

This call first will be intercepted by CCD
Requesting Feature, and CCD Requesting
feature will extend this call to SIP trunk

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, i.e. 14089721000.
Call is sent out to a PSTN GW.

TSPI_linegetcallinfo on Consult call on B
with C.

B completes transfer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
493

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

LINECALLINFO.dwCallID =
0x00400BBA

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1901(B)

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1000:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID =
1000(C)

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1000

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

Extendedcallreason =
CtiReasonSAF_CCD_PSTNFailover

B:

LINE_CALLSTATE
(LINECALLSTATE_DISCONNECTED)

ExtendCallReason =

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
494

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

CtiReasonTransferredCall

Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone C(1000)
on Cluster 2 with PSTN Failover Rule

Configuration

SCCP phone A and B are registered to cluster A

Phones A(1900) and B(1901) are associated with the end-user cluster1

SCCP phone C(1000) registered to cluster B

Phones C are associated with the end-user cluster2

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network

Procedure

Application monitors A and B

Application sends a lineMakeCall at A to call B

Table 54: Call Initiated From TAPI From Phone A and B on Cluster 1, B Sets Up Conference to Phone C(1000) on Cluster 2 with PSTN Failover Rule

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

CallerID = A / CalledID = B

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected)

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A dials B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
495

Message Sequence Charts
Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone C(1000) on Cluster 2 with PSTN Failover Rule

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

B: receives CPIC event

LineB: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

ExtendCallReason =
CtiReasonSAF_CCD_PSTNFailover

A, B and C are in conference

B setsupconference, consult call to C(1000),
this call first will be intercepted by CCD
Requesting Feature, and CCD Requesting
feature will extend this call to SIP trunk

SIP trunk rejects this call due to no more
bandwidth available

CCD Requesting feature will start PSTN
failover by directing this caller to 1000’s
PSTN failover number, that is,
14089721000. Call is sent out to a PSTN
GW

TSPI_linegetcallinfo on the consult call
between B and C

B completes conference

Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk

Configuration

SCCP phone A(1900) are registered to cluster A

Phones A are associated with the end-user cluster1

SCCP phone B(1000) registered to cluster B

Phones B are associated with the end-user cluster2

CUCM learns a pattern 10XX, no PSTN failover rule as SAF network has unlimited Bandwidth, TAPI is
observing A

Procedure

Application monitors A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
496

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk

Application sends a lineMakeCall at A to call B

Table 55: Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

A receives NewCallEvent and
CallStateChangeEvent (Dialtone/Dialing)

A dials 1000

LineA: LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = / RedirectingID = /
RedirectionID =

A receives CallStateChangeEvent
(PROCEEDING)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
497

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

A:CPIC event received on party A

LineA: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

CallReason =
LINECALLREASON_DIRECT

CallerID = A / CalledID = 1000 /
ConnectedID = 1000 / RedirectingID =
1000 / RedirectionID = 1000

LINECALLINFO.dwCallID=0x00400FB1

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1000:

LINECALLINFO.dwCalledIDName =
CCD Pattern

LINECALLINFO.dwConnectedID= 1000

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID=1000:

LINECALLINFO.dwRedirectingIDName
= CCD Pattern

A receives CallStateChangeEvent
(Ringback/connected)

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000) on
Cluster 2 Over SAF Trunk

Configuration

SCCP phone A and B are registered to cluster A

Phones A and B are associated with the end-user cluster1

SCCP phone C(1000) registered to cluster B

Phones C are associated with the end-user cluster2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
498

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000) on Cluster 2 Over SAF Trunk

CUCM learns a pattern 10XX, from SAF network as unlimited Bandwidth

Procedure

Application monitors A and B

Application sends a lineMakeCall at A to call B

Table 56: Basic Call Initiated From TAPI From Phone A and B on Cluster 1, B Redirects to Phone C(1000) on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected)

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A dials B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
499

Message Sequence Charts
Procedure

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DISCONNECTED)

ExtendCallReason = CtiReasonRedirect

A:CPIC event received on A

LineA: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK)

LineA: LINE_CALLSTATE
(LINECALLSTATE_CONNECTED)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

LINECALLINFO.dwCallID=0x00400FB2

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1900

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1901

LINECALLINFO.dwCalledIDName =

LINECALLINFO.dwConnectedID= 1000

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1000

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1901

LINECALLINFO.dwRedirectingIDName
=

ExtendCallReason = CtiReasonRedirect

A receives CallStateChangeEvent
(Connected)

B redirects call to 1000 over ICT trunk

TSPI_linegetcallinfo on A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
500

Message Sequence Charts
Message Sequence Charts

Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on
Cluster 2 Over SAF Trunk

Configuration

SCCP phone A and B are registered to cluster A

Phones A and B are associated with the end-user cluster1

SCCP phone C(1000) registered to cluster B

Phones C are associated with the end-user cluster2

CUCM learns a pattern 10XX, plus PSTN failover rule as 0:1408972 from SAF network, SAF network has
unlimited bandwidth.

Procedure

Application monitors A and B

Application sends a lineMakeCall at A to call B

Table 57: Basic Call Initiated From TAPI From Phone A and B on Cluster 1, B Transfers to Phone C(1000) on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

A:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING,
LINECALLSTATE_CONNECTED,)

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_RINGING,
LINECALLSTATE_CONNECTED)

A receives NewCallEvent and
CallStateChangeEvent
(Dialtone/Dialing/Proceeding
/ringback/connected)

B receives NewCallEvent and
CallStateChangeEvent (offering/ringing/
connected)

A calls B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
501

Message Sequence Charts
Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 Over SAF Trunk

TAPI messagesCTI messagesAction

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING/Proceeding)

LineB: LINE_CALLSTATE
(LINECALLSTATE_RINGBACK /
LINECALLSTATE_CONNECTED)

CallReason =
LINECALLREASON_DIRECT

B:

LINE_APPNEWCALL,
LINE_CALLSTATE
(LINECALLSTATE_DISCONNECTED)

ExtendCallReason =
CtiReasonTransferredCall

B: receives CPIC event

B setup transfers to C(1000), through the
ICT(SAF) trunk

Complete transfer on B

TSPI_linegetcallinfo on disconnected call
on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
502

Message Sequence Charts
Message Sequence Charts

TAPI messagesCTI messagesAction

A:

LineA: LINE_CALLSTATE
(LINECALLSTATE_CONNECTED)/
LINE_CALLINFO

CallReason =
LINECALLREASON_DIRECT

LINECALLINFO.dwCallID=0x00400FB4

LINECALLINFO.dwOrigin = 0x00000001

LINECALLINFO.dwReason=0x00000001

LINECALLINFO.dwCallerID = 1000

LINECALLINFO.dwCallerIDName =

LINECALLINFO.dwCalledID = 1901

LINECALLINFO.dwCalledIDName =

LINECALLINFO.dwConnectedID= 1000

LINECALLINFO.dwConnectedIDName
=

LINECALLINFO.dwRedirectionID= 1900

LINECALLINFO.dwRedirectionIDName
=

LINECALLINFO.dwRedirectingID= 1901

LINECALLINFO.dwRedirectingIDName
=

ExtendCallReason =
CtiReasonTransferredCall

A receives CallStateChangeEvent
(Connected)

TSPI_linegetcallinfo on A

CallFwdAll Notification
This section describes the CallFwdAll Notification usecases.

Application Pressed CFwdAll on TAPI Monitored Device
Application opens the line with new ExtVersion 0x000A0000. User presses CFwdAll softkey on A when
device is in on-hook condition.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
503

Message Sequence Charts
CallFwdAll Notification

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

NewCallEvent received for AUser presses CFwdAll softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask 0x00000040

LineGetCallInfo on A

TAPI Monitored Device Goes Off Hook
Application opens the line with new ExtVersion 0x000A0000. Device goes off hook.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

NewCallEvent received for AA goes off-hook

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A

Application Monitors Off Hook Device
Device goes off hook. Application does a LineInitialize and opens line A with new ExtVersion 0x000A0000

Expected resultsCTI eventsAction

Device goes offhook

ExistingCallEvent received at ALineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain CallType 00000000

LineGetCallInfo on A

Application Monitors Device After User Presses CFwdAll
User presses CFwdAll softkey on the device. Application does a LineInitialize and opens line A with new
ExtVersion 0x000A0000.

Expected resultsCTI eventsAction

User presses CFwdAll softkey on
the device

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
504

Message Sequence Charts
TAPI Monitored Device Goes Off Hook

Expected resultsCTI eventsAction

ExistingCallEvent received for ALineInitialize

LineOpen on A with new
ExtVesrion 0x000A0000

LINECALLINFO::DEVSPECIFIC
would contain
CallAttributeBitMask : 0x00000040

LineGetCallInfo on A

User Presses CFwdAll Softkey After Device Is Off Hook
TAPI application does a LineInitialize and opens line A with new ExtVersion 0x000A0000. Device goes off
hook and user presses CFwdAll softkey.

Expected resultsCTI eventsAction

ExistingCallEvent received for ALineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

NewCallEvent received for AA goes off-hook

User presses CFwdAll softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A

User Presses CFwdAll Softkey on a Multiline Device
TAPI application does LineInitialize and opens all lines-A1 and A2 for the device with new ExtVersion
0x000A0000. User presses the CFwdAll softkey.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A1,

LineOPen on A2 with new ExtVesrion
0x000A0000

NewCallEvent received for A1User presses CFwdAll softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

LineGetCallInfo on A1

User Presses CFwdAll on a Multiline Device by Selecting a Line
TAPI application does a LineInitialize and opens all lines-A1 and A2 for the device with new ExtVersion
0x000A0000. User selects line A2 and presses CFwdAll softkey.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
505

Message Sequence Charts
User Presses CFwdAll Softkey After Device Is Off Hook

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A1,

LineOPen on A2 with new ExtVesrion
0x000A0000

NewCallEvent received for A1User selects line A2 and presses CFwdAll
softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A2

Shared Line Scenario on Pressing CFwdAll Softkey
TAPI application does a LineInitialize and opens a shared line Awith new ExtVersion 0x000A0000 on devices
P and Q. User presses CFwdAll softkey on device P.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A

LineOpen on A’ with new ExtVesrion
0x000A0000

NewCallEvent received at A

NewCallEvent received at A’ for RIU call

On device P, user presses ‘CFwdAll’
softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000000

LineGetCallInfo on A

Cancellation of CFwdAll
TAPI application does a LineInitialize and open line Awith new ExtVersion 0x000A0000. User sets CFwdAll
for line A by pressing CFwdAll softkey followed by CallFwdAll destination number.

Later, user presses ‘CFwdAll’ softkey again to cancel CFwdAll setting.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A with new ExtVesrion
0x000A0000

NewCallEvent received for AUser presses CFwdAll and enters FwdAll
destination

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
506

Message Sequence Charts
Shared Line Scenario on Pressing CFwdAll Softkey

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000040

LineGetCallInfo on A

NewCallEvent received for AUser again presses ‘CFwdAll’ softkey

LINECALLINFO::DEVSPECIFIC would
contain CallAttributeBitMask : 0x00000080

LineGetCallInfo on A

Calling Party IP Address

Basic Call
TAPI application monitors party B

Party A represents an IP phone

A calls B

IP Address of A is available to TAPI application that is monitoring party B

Consultation Transfer
TAPI application monitors party C

Party B represents an IP phone

A talks to B

B initiates a consultation transfer call to C

IP Address of B is available to TAPI application that is monitoring party C.

B Completes the transfer

Calling IP address of A is not available to TAPI application that is monitoring party C (not a supported
scenario).

Consultation Conference
TAPI application monitors party C

Party B represents an IP phone

A talks to B

B initiates a consultation conference call to C

IP Address of B is available to TAPI application that is monitoring party C.

B Completes the conference

Calling IP address of A and B is not available to TAPI application that is monitoring party C (not a supported
scenario)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
507

Message Sequence Charts
Calling Party IP Address

Redirect
TAPI application monitors party B and party C

Party A represents an IP phone

A calls B

IP Address of A is available to TAPI application that is monitoring party B

Party A redirects B to party C

Calling IP address is not available to TAPI application that is monitoring party B (not a supported scenario)

Calling IP address B is available to TAPI application that is monitoring party C

Calling Party Normalization

Incoming Call From PSTN to End Point
TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party =
5551212, Displayed Called
Party = 2000, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party = +14085551212,
Calling Party Number Type =
SUBSCRIBER, Called Party
Number Type = UNKNOWN,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
5551212, UnModified Called
Party = 2000, UnModified
Original Called Party = 2000,
Modified Calling Party =
5551212,Modified Called Party
= 2000, Modified Original
Called Party = 2000, Globalized
Calling party = +14085551212,
Calling Party Number Type =
SUBSCRIBER, Called Party
Number Type = UNKNOWN,
Original Called Party Number
Type, = UNKNOWN State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets offered from a
PSTN number
5551212/<SUBSCRIBER>
through a San Jose gateway to
a CCM end point 2000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
508

Message Sequence Charts
Redirect

Incoming Call From National PSTN to CTI-Observed End Point

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party =
9725551212, Displayed Called
Party = 2000, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party = +19725551212,
Calling Party Number Type =
NATIONAL, Called Party
Number Type = UNKNOWN,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
9725551212, UnModified
Called Party = 2000,
UnModified Original Called
Party = 2000, Modified Calling
Party = 9725551212, Modified
Called Party = 2000, Modified
Original Called Party = 2000,
Globalized Calling party =
+19725551212, Calling Party
Number Type = NATIONAL,
Called Party Number Type =
UNKNOWN, Original Called
Party Number Type, =
UNKNOWNState =Connected,
Origin = OutBound, Reason =
Direct

A Call gets offered from a
Dallas PSTN number
5551212/<NATIONAL>
through a San Jose gateway to
a CCM end point 2000

Incoming Call From International PSTN to CTI-Observed End Point

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party =
011914422221111, Displayed
Called Party = 2000, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party =
+914422221111, Calling Party
Number Type =
INTERNATIONAL, Called
Party Number Type =
UNKNOWN,Redirection Party
Number Type = , Redirecting
Party Number Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
011914422221111, UnModified
Called Party = 2000,
UnModified Original Called
Party = 2000, Modified Calling
Party = 011914422221111,
Modified Called Party = 2000,
Modified Original Called Party
= 2000, Globalized Calling
party = +914422221111, Calling
Party Number Type =
INTERNATIONAL, Called
Party Number Type =
UNKNOWN, Original Called
Party Number Type, =
UNKNOWNState =Connected,
Origin = OutBound, Reason =
Direct

A Call gets offered from a
PSTN number in India
22221111/<INTERNATIONAL>
through a San Jose gateway to
a CCM end point 2000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
509

Message Sequence Charts
Incoming Call From National PSTN to CTI-Observed End Point

Outgoing Call From CTI-Observed End Point to PSTN Number

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party = 2000,
Displayed Called Party =
5551212, DisplayedRedirection
Party = , Displayed Redirected
Party = , Globalized Calling
Party = +14085551212, Calling
Party Number Type =
UNKNOWN, Called Party
Number Type = SUBSCRIBER,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
2000, UnModified Called Party
= 5551212, UnModified
Original Called Party =
5551212, Modified Calling
Party = 2000, Modified Called
Party = 5551212, Modified
Original Called Party =
5551212, Globalized Calling
party = +14085551212, Calling
Party Number Type =
UNKNOWN, Called Party
Number Type = SUBSCRIBER,
Original Called Party Number
Type, = SUBSCRIBER State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets initiated from a
CCM end point 2000 through a
San Jose gateway to a PSTN
number
5551212/<NATIONAL>

Outgoing Call From CTI-Observed End Point to National PSTN Number

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party = 2000,
Displayed Called Party =
9725551212, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party = +19725551212,
Calling Party Number Type =
UNKNOWN, Called Party
Number Type = NATIONAL,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
2000, UnModified Called Party
= 9725551212, UnModified
Original Called Party =
9725551212, Modified Calling
Party = 2000, Modified Called
Party = 9725551212, Modified
Original Called Party =
9725551212, GlobalizedCalling
party = +19725551212, Calling
Party Number Type =
UNKNOWN, Called Party
Number Type = NATIONAL,
Original Called Party Number
Type, = NATIONAL State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets initiated from a
CCM end point 2000 through a
San Jose gateway to a Dallas
PSTN number
9725551212/<NATIONAL>

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
510

Message Sequence Charts
Outgoing Call From CTI-Observed End Point to PSTN Number

Outgoing Call From CTI-Observed End Point to International PSTN Number

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO

Displayed Calling Party = 2000,
Displayed Called Party =
011914422221111, Displayed
Redirection Party = , Displayed
Redirected Party = , Globalized
Calling Party =
+914422221111, Calling Party
Number Type = UNKNOWN,
Called Party Number Type =
INTERNATIONAL,
Redirection Party Number Type
= , Redirecting Party Number
Type =

LINE_CALLSTATE =
CONNECTED

CallStateChangedEvent,
UnModified Calling Party =
2000, UnModified Called Party
= 011914422221111,
UnModified Original Called
Party = 011914422221111,
Modified Calling Party = 2000,
Modified Called Party =
011914422221111, Modified
Original Called Party =
011914422221111, Globalized
Calling party = +914422221111,
Calling Party Number Type =
UNKNOWN, Called Party
Number Type =
INTERNATIONAL, Original
Called Party Number Type, =
INTERNATIONAL State =
Connected, Origin =OutBound,
Reason = Direct

A Call gets initiated from a
CCM end point 2000 through a
San Jose gateway to a PSTN
number in India
914422221111/<INTERNATIONAL>

Call PickUp

Registering CallPickUpGroup for Notification

Configuration
Service parameter “Auto Call Pickup Enabled” is enabled.

Devices/Lines: 1000:P1,1001:P1.1002:P1,4000:P1 and 4001:P1

Pickup group P1:1111 is configured

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
511

Message Sequence Charts
Outgoing Call From CTI-Observed End Point to International PSTN Number

Expected eventsAction

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpenSuccessful

LineInService Event as well

LineOpen for P1:1111

DN and Partition information will be pickup Group DN and
partition.

LineName – “CtiCallPickupDevice”

LineType -LINEDEVCAPSDEVSPECIFIC_PICKUPDN
-0x00000004

LineInfo

UnRegistering CallPickUpGroup for Notification

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Line Open SuccessfulLineOpen for P1:1111

Line_Reply with success.

LINE_REMOVE event will be sent to Application for P1:1111

Application sends
CciscoLineDevSpecificUnRegisterCallPickupGroupForNotification
on new line opened for PickUpGroup P1:1111

Re-Registering CallPickUpGroup for Notification

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
512

Message Sequence Charts
UnRegistering CallPickUpGroup for Notification

Expected eventsAction

Line Open SuccessfulLineOpen for P1:1111

Line_Reply with Error “LINEERR_OPERATIONUNAVAIL”Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Variant : Test the Same with UnRegister

Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Replywith Error Code “LINEERR_OPERATIONFAILED”Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with InValid DN or Partition

Variant : Test the Same with UnRegister

CallPickUp After Enabling Auto Call Pickup Enabled

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Line Open SuccessfulLineOpen for P1:1111

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
513

Message Sequence Charts
Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information

Expected eventsAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin : Outbound

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo on new call on P1:1111

Events on P1:1000:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1002, Connected = 4000, dwReason =
Direct, dwOrigin = Internal.

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

First incoming Call will be picked up

(i.e call from 4000 will be picked up by 1000)

Varaint : P1:4000 calls P1:1002 and P1:4001 calls P1:1002

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

CallPickUp with Auto Call Pickup Enabled Disabled

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
514

Message Sequence Charts
CallPickUp with Auto Call Pickup Enabled Disabled

Expected eventsAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

Events on P1:1000:

Call 1:

LINE_NEWCALL and

LINE_CALLSTATE with state =

LINECALLSTATE_IDLE

First call will go IDLE state after Proceeding state.Note

Call2:

LINE_NEWCALL and

LINE_CALLSTATE with state =

LINECALLSTATE_OFFERING

Once the call is Answered

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1002, Connected = 4000, dwReason =
PickUp, dwOrigin = Outbound

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

CallPickup Request will be successful and the newcall will be
created and the call will be in Offering state

Varaint : Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
515

Message Sequence Charts
Message Sequence Charts

CallPickUp with Multiple Calls Available

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCaps with Extension Version – 000A0000

Line_Reply with success

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4001 calls P1:1001

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4001

dwCalledID : 1001

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo on Call

LineGetCallInfo on Call2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
516

Message Sequence Charts
CallPickUp with Multiple Calls Available

Expected eventsAction

Events on P1:1000:

Call 3:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1002, Connected = 4000, dwReason =
Direct, dwOrigin = Internal

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:1000

CallPickupGroup Changed for a Device on AdminPage
Pickup group P1:9999 is configured

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Changed CallPickUp Group DN and Partition Information will
be sent to application

Now from Admin page change the CallPickupGroup of 1000:P1
line to None or some other group P1:9999

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

CallPickUpGroup Partition or DN Information Updated

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
517

Message Sequence Charts
CallPickupGroup Changed for a Device on AdminPage

Expected eventsAction

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

LINE_REMOVE for the line P1:1111Now From Admin Pages change the Partition or DN information
of the Pickup Group

Changed CallPickUp Group DN and Partition Information will
be sent to application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

CallPickUpGroup Is Deleted

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_REMOVE for the line P1:1111Now From Admin Pages Pickup Group 1111:P1 is deleted

Call Queuing
HP1 is a Huntpilot with the below configuration:

"Queue Calls" check box is selected.

“Display Line Group Member DN as Connected Party" check box is selected.

HP1: LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
518

Message Sequence Charts
CallPickUpGroup Is Deleted

HP2: LG1

A, B (IP phones/CTI Ports)

Table 58: Basic Hunt List Call (HP1 Has at Least One Member Free)

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = A

HuntPilot = HP1

App initiates call from A to HP1 and call is answered by LG1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
519

Message Sequence Charts
Message Sequence Charts

Table 59: Basic Hunt List Call. HP1 Has All Members Busy (LG1)

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = HP1

HuntPilot =

App initiates call from A to HP1 and call is Queued.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
520

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
521

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:Call on LG1 goes idle (LG1 is free). Queued call from A is
de-queued and offered on LG1. LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A,

Called = HP1

HuntPilot = HP1

LG1 Answers the call. At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A
Variance: Repeat and verify info when

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
522

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Same as aboveDisplay Line Group Member DN as Connected Party is enabled

Table 60: Hunt List Call to HP1 When Queue Depth Is Reached. (Maximum Number of Callers Allowed in Queue = 2)

Expected eventsAction

At A:

LINE_CALLSTATE -DISCONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

HP1 has 2 queued calls.

App initiates call from A to HP1, call is disconnected

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
523

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A

Called = HP1

Connected = A

Variance:

Destination When Queue is Full = B

B Answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
524

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Destination When Queue is Full = HP2

Call on LG1 of HP2 goes idle (LG1 is free). Queued call from A
is de-queued and offered on LG1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
525

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1 of HP2

HuntPilot = HP2

At LG1 of HP2:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x30(CallDeQueueAgentsBusy)

Caller = A

Called = HP1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
526

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected = A

Table 61: Hunt List Call to HP1 and Maximum Wait Time in Queue Is Met

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = HP1

HuntPilot =

At A:

LINE_CALLSTATE -DISCONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

HuntMember LG1 of HP1 is busy.

App initiates call from A to HP1.

Maximum wait time at queue is reached.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
527

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A

Called = HP1

Connected = A

Variance:

Destination When maximum wait time in Queue expires = B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
528

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Destination maximum wait time in Queue expires = HP2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
529

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A Called = HP1

HuntPilot = HP1

Connected = LG1 of HP2

HuntPilot = HP2

At LG1 of HP2:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2f(CallDeQueueTimerExpired)

Caller = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
530

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Called = HP1

Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
531

Message Sequence Charts
Message Sequence Charts

Table 62: Hunt List Call to HP1 and No Agents Logged In or Registered

Expected eventsAction

App initiates call from A to HP1. (None of the Huntmembers are
registered or logged in).

DestinationWhen There Are No Agents Logged In or Registered
= ' B'

Call offered on B.

B Answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
532

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = B

HuntPilot =

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A

Called = HP1

Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
533

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A,

Called = HP1

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = B

HuntPilot = HP2

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x31(CallDeQueueAgentsUnavailable)

Caller = A

Called = HP1

Connected = A

App initiates call from A to HP1. (None of the Huntmembers are
registered or logged in).

DestinationWhen There Are No Agents Logged In or Registered
= 'HP2'

Call offered on HP2.

HP2 Answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
534

Message Sequence Charts
Message Sequence Charts

Table 63: Basic Hunt List Call. A Calls B, and B Redirects/forwards/transfers the Call to HP1

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

Connected = A

App initiates call from A to B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
535

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

The call on B is transferred to HP1 (Blind transfer).

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
536

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At B:

LINE_CALLSTATE -IDLE

CallReason = x1(Direct)

ExtendedCallReason = x7(BlindTransferCall)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x100(LINECALLREASON_TRANSFER)

ExtendedCallReason = x7(BlindTransferCall)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected =

HuntPilot =

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A Called = B,

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason=x100(LINECALLREASON_TRANSFER)

Caller = A

Called = HP1,

HuntPilot = HP1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
537

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected = A

HuntPilot =

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
538

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Call on B is redirected to HP1

LG1 Answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
539

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At B:

LINE_CALLSTATE -IDLE

CallReason = x1(Direct)

ExtendedCallReason = x6(Redirect)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x6(Redirect)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At A:

LIN_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x6(Redirect)

Caller = A,

Called = B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
540

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

HuntPilot =

Connected = LG1

HuntPilot =

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
541

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Variance:

Call on B is forwarded to HP1 (Forward All)

LG1 Answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
542

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -RING_BACK

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x8(LINECALLREASON_FWDUNCOND)

ExtendedCallReason = x5(ForwardAllCall)

Caller = A

Called = B,

HuntPilot =

Connected =

HuntPilot =

At A:

LIN_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = B,

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x8(LINECALLREASON_FWDUNCOND)

ExtendedCallReason = x5(ForwardAllCall)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
543

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Caller = A,

Called = B

Connected = LG1

Table 64: Basic Hunt List Call. HP1 Has All Members Busy (LG1), Queued Call on A Is Redirected

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

At A:

LINE_CALLSTATE -CONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x2d(CallQueue)

Caller = A

Called = HP1,

HuntPilot = HP1

Connected = HP1

HuntPilot =

App initiates call from A to HP1 and call is Queued.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
544

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Queued Call on A is redirected to B. B Answers.

Call on LG1 goes idle (LG1 is free). Queued call from B is
de-queued and offered on LG1.

LG1 Answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
545

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x6(Redirect)

Caller = HP1

Called = B,

HuntPilot =

Connected = HP1

HuntPilot =

At LG1:

LINE_CALLSTATE -ACCEPTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = B,

Called = HP1

HuntPilot = HP1

At B:

LINE_CALLSTATE -CONNECTED

CallReason = x40(LINECALLREASON_REDIRECT)

ExtendedCallReason = x2e(CallDeQueue)

Caller = B

Called = B

HuntPilot =

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

CallReason = x400(unknown)

ExtendedCallReason = x2e(CallDeQueue)

Caller = B

Called = HP1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
546

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

HuntPilot = HP1

Connected = B

Table 65: Hunt List Call to HP1 and No Agents Logged In or Registered

Expected eventsAction

At A:

LINE_CALLSTATE -DISCONNECTED

CallReason = x1(Direct)

ExtendedCallReason = x1(DirectCall)

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1. (None of the Huntmembers are
registered or logged in).

Call is disconnected.

FailOver or FailBack Scenario
Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application

LineGetDevCapswith ExtensionVersion – 000A0000 on 1000:P1

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
547

Message Sequence Charts
FailOver or FailBack Scenario

Expected eventsAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

OutofService for the line P1:1111

INService for the line P1:1111.

There will not be any notification for the existing calls.Note

Stop Primary CTI Manager

GroupCallPickup

Configuration

Service parameter “Auto Call Pickup Enabled” is enabled.

Pickup group P1:1111 is configured and opened

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222

P1:4000 and P1:4001 are configured

ExpectedAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

LineGetDevCaps with Extension Version – 000A0000 on
P1:2000CallPickUp Group DN and Partition Information will be
sent to application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
548

Message Sequence Charts
GroupCallPickup

ExpectedAction

LINE_CALLINFO

dwCallState : PickupCallState (0x10000000)

dwCallerId : 4000

dwCalledID : 1002

dwCallorigin: Internal

dwCallReason : Direct

Check for all fields of Calling and Called Information

LineGetCallInfo

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupCallPickup option and GroupPickUp DN 1111 on
P1:2000Events on P1:2000:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4000, Called = 1111, Connected = 4000, dwReason =
Direct, dwOrigin = Internal

There is no notification at P1:1111 after the call has
been pickup.

Note

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupCallPickup option and GroupPickUp DN 1111 on P1:2000

OtherCallPickup

Configuration

Service parameter “Auto Call Pickup Enabled” is enabled.

Pickup groups P1:1111, P1:2222, P1:3333 is configured and opened

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222

P1:3000, P1:3001, P1:3002 are all in pickup group P1:3333

P1:1111, and P1:2222 are sub-groups, in order of priority, of pickup group P1:3333.

P1:4000 and P1:4001 are configured.

Expected EventAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
549

Message Sequence Charts
OtherCallPickup

Expected EventAction

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:2000

P1:4001 calls P1:1000

Events on P1:3000:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 4001, Called = 1000, Connected = 4001, dwReason =
Direct, dwOrigin = Internal

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
OtherPickup option on P1:3000

Group DN is not requiredNote

DirectCallPickup

Expected EventAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
550

Message Sequence Charts
DirectCallPickup

Expected EventAction

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

P1:4001 calls P1:1000

Events on P1:1001:

LINE_NEWCALL and

LINE_CALLSTATE with state =
LINECALLSTATE_CONNECTED

Call Info :

Caller = 1001, Called = 1000, Connected = 4001, dwReason =
Direct, dwOrigin = Internal

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
DirectCallPickup option with pickup groupDN (1000) on
P1:10001

CallPickup (Negative Use Case)

Configuration

Service parameter Auto Call Pickup Enabled is enabled.

P1:2000 is already opened by the application.

Pickup groups P1:1111, P1:2222, P1:3333 is configured and opened.

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
551

Message Sequence Charts
CallPickup (Negative Use Case)

Expected eventsAction

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Line_Reply with Error LINEERR_OPERATIONUNAVAILApplication sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
CallPickup option on P1:2000

GroupCallPickup with SuperSet Call PickupDN

Configuration

Service parameter Auto Call Pickup Enabled is enabled.

Pickup groups P1:1111, P1:2222, P1:3333 is configured and opened.

P1:1000, P1:1001, P1:1002 are all in pickup group P1:1111.

P1:2000, P1:2001, P1:2002 are all in pickup group P1:2222.

P1:3000, P1:3001, P1:3002 are all in pickup group P1:3333.

P1:1111, and P1:2222 are sub-groups, in order of priority, of pickup group P1:3333.

P1:4000 and P1:4001 are configured.

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
552

Message Sequence Charts
GroupCallPickup with SuperSet Call PickupDN

Expected eventsAction

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

Call 2:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:2000

P1:4001 calls P1:1000

Line_Reply with Error LINEERR_CALLUNAVAILApplication sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupPickup option with pickup group(3333) on P1:3000

Group or Direct CallPickup with Invalid DN

Expected eventsAction

Line Open SuccessfulLineIntialize

OpenLines – 1000:P1

CallPickUp Group DN and Partition Information will be sent to
application.(P1:2222)

LineGetDevCapswith ExtensionVersion – 000A0000 on P1:2000

Line_Reply with success.

LINE_CREATE event will sent to Application for P1:1111

Application sends
CciscoLineDevSpecificRegisterCallPickupGroupForNotification
with DN and Partition info of PickUpGroup P1:1111

LineOpen SuccessfulLineOpen with new DeviceID

Call1:

LINE_APPNEWCALL

LINE_CALLSTATE with State =
LINECALLSTATE_UNKNOWN toApplication on Line P1:1111

P1:4000 calls P1:1002

Line_Reply with Error LINEERR_OPERATIONFAILED
Line_Reply with Error LINEERR_INVALLINESTATE

Application sends
CciscoLineDevSpecificPickUpCallFromPickupGroup with
GroupPickup option with pickup group(9999) on P1:3000

Variant -Direct Call Pickup with InValid DN

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
553

Message Sequence Charts
Group or Direct CallPickup with Invalid DN

Call Recording for SIP or TLS Authenticated calls
Scenario One

Recording behavior for an authenticated Phone when Service Parameter Authenticated Phone Recording
set to Do not Allow Recording.

A is an Authenticated Phone having selective recording configured and Recording Profile assigned to it. Caller
A calls B. B answers the call.

EventsAction

Recording fails with error Response=
CTIERR_SECURITY_CAPABLITY_MISMATCH as
LINEERR_SECURITY_CAPABILITIES_MISMATCH

A issues startrecording request by lineDevSpecific

Scenario Two

Recording behavior for an authenticated Phone when Service Parameter Authenticated Phone Recording
set to Allow Recording.

A is an Authenticated Phone having selective recording configured and Recording Profile assigned to it. Caller
A calls B. B answers the call.

EventsAction

Along with the regular events for call answer, the following events
will also be delivered to the call observer:

LINE_CALLDEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1= SLDSMT_RECORDING_ STARTED

dwParam2=0

dwParam3=0

A issues startrecording request by lineDevSpecific

Recording session gets established between the agent phone and
the recorder

A is an Authenticated Phone having auto recording configured and Recording Profile assigned to it. Caller A
calls B. B answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
554

Message Sequence Charts
Call Recording for SIP or TLS Authenticated calls

EventsAction

Along with the regular events for call answer, the
following events will also be delivered to the call
observer:

LINE_CALLDEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1= SLDSMT_RECORDING_ STARTED

dwParam2=0

dwParam3=0

When B answers

CCMEncryption Enhancements
Precondition: CTI service Parameter - "Require Public Key encryption" = true/false

Table 66: CiscoTSP Connecting to 10.x CUCM

TAPI StructuresTAPI MessagesAction

Devices are
Enumerated/ Lines are
Enumerated

PhoneInitializeEx/LineInitializeEx

Applications would be able to control /monitor devices/Lines as before no change.

Variant: Test the same with Secure CUCM and Secure Connection between CiscoTSP and CTI.

Note

Precondition: CTI service Parameter - "Require Public Key encryption" = False

Table 67: 9.x CiscoTSP Connecting to 10.x CUCM

TAPI StructuresTAPI MessagesAction

Devices are
Enumerated/
Lines are
Enumerated

PhoneInitializeEx/LineInitializeEx

Applications would be able to control /monitor devices/Lines as before no changeNote

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
555

Message Sequence Charts
CCMEncryption Enhancements

Precondition: CTI service Parameter - "Require Public Key encryption" = False

Table 68: 9.x CiscoTSP Connecting to 10.x CUCM

TAPI StructuresTAPI MessagesAction

Notifier will pop-up error
message indicating that Provider
Init failed.

Error - Provider Init failed -
Incompatible protocol version

Initialization fails
and CiscoTSP
devices won't be
Enumerated.

PhoneInitializeEx/LineInitializeEx

CIUS Session Persistency

Notify the Line Application and Expose the Changed IP Address
TAPI structuresTAPI messagesAction

lineDevices are EnumeratedlineInitializeEx

lineOpen() returns successlineOpen for a lineDevice on the wireless
device TAPI100

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.250"
(FA1F4D0A -Little endian Hex format)

lineGetDevCaps() returns successlineGetDevCaps() with DeviceID =
DeviceId of TAPI100

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_DEVICE_IPADDRESS

Variation result:

1) Same as above

2) Same as above

The device TAPI100 moves across WiFi
networks resulting in change in the IPv4
address from 10.77.31.250 to 10.77.31.176

Variation 1: The device TAPI100 moves
from a IPv4 n/w to a Ipv6 n/w with new ip
as 2001:db8::1:0:0:1

Variation 2: The device TAPI100 is
docked/undocked and hence changes from
WAN/LAN to wireless network

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
556

Message Sequence Charts
CIUS Session Persistency

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"
(B01F4D0A -Little endian Hex format)

Variation 1:

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv6_only

RegisteredIPv6Address =
"2001:db8::1:0:0:1"

(Application should use the Offset and size
fields of IPv6 address from
LINEDEVCAPS to retrieve the value of
IPv6 address)

Variation 2:

LINEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"

lineGetDevCaps() returns successlineGetDevCaps() with DeviceID =
DeviceId of TAPI100

Notify the Phone Application and Expose the Changed IP Address

TAPI structuresTAPI MessageAction

phoneDevices are EnumeratedphoneInitializeEx

phoneOpen() returns successphoneOpen for a phoneDevice of wireless
device TAPI100

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.250"
(FA1F4D0A -Little endian Hex format)

phoneGetDevCaps() returns successphoneGetDevCaps() with DeviceID =
DeviceId of TAPI100

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
557

Message Sequence Charts
Notify the Phone Application and Expose the Changed IP Address

TAPI structuresTAPI MessageAction

EVENT = PHONE_DEVSPECIFIC

dwParam1 =
CPDSMT_PHONE_PROPERTY_
CHANGED_EVENT

dwParam2 =
PPCT_DEVICE_IPADDRESS

Variation result:

1) Same as above

2) Same as above

The device TAPI100 moves across WiFi
networks resulting in change in the IPv4
address from 10.77.31.250 to 10.77.31.176

Variation 1: The deivce TAPI100 moves
from a IPv4 n/w to a Ipv6 n/w with new ip
as 2001:db8::1:0:0:1

Variation 2: The deivce TAPI100 is
docked/undocked and hence changes from
WAN/LAN to wireless network

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"
(B01F4D0A -Little endian Hex format)

Phone Type = Cisco Cius.

Phone Name = Cisco Phone
[SEP123456789000]

Variation 1:

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv6_only

RegisteredIPv6Address =
"2001:db8::1:0:0:1"

(Application should use the Offset and size
fields of IPv6 address from
PHONEDEVCAPS to retrieve the value of
IPv6 address)

Variation 2:

PHONEDEVCAPS::DevSpecific

RegisteredIPAddressMode =
IPAddress_IPv4_only

RegisteredIPv4Address = "10.77.31.176"
(B01F4D0A -Little endian Hex format)

phoneGetDevCaps() returns successphoneGetDevCaps() with DeviceID =
DeviceId of TAPI100

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
558

Message Sequence Charts
Message Sequence Charts

Click to Conference
Third-party conference gets created by using click-2-conference feature:

EventsAction

For A:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = B

For B:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = A

Use Click-to-Call to create call from A to B, and B answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
559

Message Sequence Charts
Click to Conference

EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Use Click-2-Conference feature to add C into conference, and C
answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
560

Message Sequence Charts
Message Sequence Charts

Creating Four-Party Conference by Using Click-2-Conference Feature

EventsAction

For A:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = B

For B:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = A

Use Click-to-Call to create call from A to B

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = C, Called = C, Connected = C

For C

CONNECTED

Reason = DIRECT

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Use Click-2-Conference feature to add C into conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
561

Message Sequence Charts
Message Sequence Charts

EventsAction

Use Click-2-Conference feature to add party D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
562

Message Sequence Charts
Message Sequence Charts

EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

CONFERENCED

Calling = A, Called = D, Connected = D

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

CONFERENCED

Calling = B, Called = D, Connected = D

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

CONFERENCED

Calling = C, Called = D, Connected = D

For D

CONNECTED

Reason = UNKNOWN

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
563

Message Sequence Charts
Message Sequence Charts

EventsAction

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = D, Called = A, Connected = A

CONFERENCED

Calling = D, Called = B, Connected = B

CONFERENCED

Calling = D, Called = C, Connected = C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
564

Message Sequence Charts
Message Sequence Charts

Drop Party by Using Click-2-Conference
EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Conference gets created by using Click-2-Conference feature to
add C into conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
565

Message Sequence Charts
Drop Party by Using Click-2-Conference

EventsAction

For A

CONNECTED

Reason = DIRECT

ExtendedCallReason = DIRECT

Calling = A, Called = B, Connected = B

For B

CONNECTED

Reason = DIRECT

ExtendedCallReason = DIRECT

Calling = A, Called = B, Connected = A

For C

IDLE

Drop C from Click-2-Conference feature

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
566

Message Sequence Charts
Message Sequence Charts

Drop Entire Conference by Using Click-2-Conference Feature

EventsAction

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Conference gets created by using Click-2-Conference feature to
add C into conference

For A

IDLE

For B

IDLE

For C

IDLE

Drop entire conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
567

Message Sequence Charts
Drop Entire Conference by Using Click-2-Conference Feature

Conference Enhancements

Noncontroller Adding Parties to Conferences
A,B, and C exist in a conference that A created.

EventsAction

At A:

Conference – Caller = A, Called = B, Connected = B

Connected

Conference – Caller = A, Called = C, Connected = C

At B:

Conference – Caller = A, Called = B, Connected = A

Connected

Conference – Caller = B, Called = C, Connected = C

At C:

Conference – Caller = B, Called = C, Connected = B

Connected

Conference – Caller = C, Called = A, Connected = A

A,B, and C exist in a conference

At A:

Conference – Caller = A, Called = B, Connected = B

Connected

Conference – Caller = A, Called = C, Connected = C

At B:

Conference – Caller = A, Called = B, Connected = A

Connected

Conference – Caller = B, Called = C, Connected = C

At C:

Conference – Caller = B, Called = C, Connected = B

OnHoldPendConf

Conference – Caller = C, Called = A, Connected = A

Connected -Caller = C, Called = D, Connected = D

At D:

Connected -Caller = C, Called = D, Connected = C

C issues a linePrepareAddToConference to D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
568

Message Sequence Charts
Conference Enhancements

EventsAction

At A:

Conference – Caller = A, Called = B, Connected = B

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = D, Connected = D

At B:

Conference – Caller = A, Called = B, Connected = A

Connected

Conference – Caller = B, Called = C, Connected = C

Conference – Caller = B, Called = D, Connected = D

At C:

Conference – Caller = B, Called = C, Connected = B

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = D, Connected = D

At D:

Conference – Caller = C, Called = D, Connected = C

Connected

Conference – Caller = D, Called = A, Connected = A

Conference – Caller = D, Called = B, Connected = B

C issues a lineAddToConference to D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
569

Message Sequence Charts
Message Sequence Charts

Chaining Two Ad Hoc Conferences Using Join

TSP CallInfoActions

At A:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = A

Called = C

At B:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = B

Called = C

At C:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = B

Called = C

CONFERENCED : Caller = C

Called = A

A calls B, B answers, then B initiates conference to C, C answers,
and B completes the conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
570

Message Sequence Charts
Chaining Two Ad Hoc Conferences Using Join

TSP CallInfoActions

C initiates or completes conference to D and E

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
571

Message Sequence Charts
Message Sequence Charts

TSP CallInfoActions

No Change for A and B

At C:

-First conference

GCID-1

ONHOLD : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = A

Called = C

-Second conference

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = C

Called = D

CONFERENCED : Caller = C

Called = E

At D:

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = C

Called = D

CONFERENCED : Caller = D

Called = E

At E:

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = C

Called = E

CONFERENCED : Caller = E

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
572

Message Sequence Charts
Message Sequence Charts

TSP CallInfoActions

Called = D

At A:

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = A

Called = C

CONFERENCED : Caller = A

Called = Conference-2

At B :

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = A

Called = B

CONFERENCED : Caller = B

Called = C

CONFERENCED : Caller = B

Called = Conference-2

At C:

-First conference

GCID-1

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = B

Called = C

CONFERENCED : Caller = C

Called = A

CONFERENCED : Caller = C

Called = Conference-2

C initiates JOIN request to join to conference call together, with
GCID as the primary call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
573

Message Sequence Charts
Message Sequence Charts

TSP CallInfoActions

At D:

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = D

Called = E

CONFERENCED : Caller = D

Called = Conference-1

At E :

GCID-2

CONNECTED : Caller = Unknown

Caller = Unknown

CONFERENCED : Caller = E

Called = D

CONFERENCED : Caller = E

Called = Conference-1

CTI Remote Device
Expose Remote Destination Info for CTI Remote Device in ProviderDeviceLineInfoEvent

PreCondition: User has a CTI remote device "CTIRD1" under it control list. CTIRD1 device has 3 remote
destinations configured.

CTI messages/EventsAction

CTI acquires the devices which are under control list of the userApplication opens the provider.

CTI sends ProviderDeviceLineInfoEvent to application and
exposes 3 RDs configured on the device as part of "Remote
Destination Info" structure.

Application sends GetSignleDeviceAndLineInfoRequest to CTI
to fetch info for CTIRD1 device.

Expose Remote Destination Info for CTI Remote Device in ProviderDeviceRegisteredWithLineInfoNotify

PreCondition: User has a CTI remote device "CTIRD1" under it control list. CTIRD1 device has 3 remote
destinations configured.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
574

Message Sequence Charts
CTI Remote Device

CTI messages/EventsAction

CTI acquires the devices which are under control list of the userApplication opens the provider.

CTI sends ProviderDeviceLineInfoEvent to application and
exposes 3 RDs configured on the device as part of "Remote
Destination Info" structure.

Application sends GetSignleDeviceAndLineInfoRequest to
application to fetch info for CTIRD1 device.

CTI sends ProviderDeviceRegisteredWithLineInfoNotify to
application and exposes 3 RDs configured on the device as part
of "Remote Destination Info" structure.

Application resets the device CTIRD1 from the admin page.

Expose New Device Type for CTI Remote Device

Precondition:

CTIRD (CTI Remote Device -Name: CTIRDdrajesh)

Remote Destinations configured/will be configured on CTI Remote Device:

RD1-CTIRD -(Name: Mobile, Number: 914086271309)

RD2-CTIRD -(Name: Office, Number: 914089022131)

Line-A (DN -1000) -Line-A configured on CTI Remote Device (shared line of Enterprise DN -1000 configured
on Device EP)

EP (Enter Prise Phone -SCCP -IP Phone)

Line-A' -DN -1000 configured on Device EP

CSF (CSF Device -Name: CSFdrajesh)

Line-A'' -DN -1000 configured on Device CSF

Remote Destination configured on CSF device:

RD1-CSF -(Name: CSF-Mobile, Number: 914086271310)

RD2-CSF -(Name: CSF-Office, Number: 914089022132)

TAPI structuresTAPI messagesAction

Devices are EnumeratedPhoneInitializeEx

PHONECAPS::PhoneInfo = "CTI Remote
Device"

PHONECAPS:: PhoneName = "Cisco
Phone: [CTIRDdrajesh]"

PhoneGetDevCaps() returns successPhoneGetDevCaps() with DeviceID =
DeviceId of CTIRD.

PHONECAPS::PhoneInfo = "CiscoUnified
Client Services Framework"

PHONECAPS:: PhoneName = "Cisco
Phone: [CSF-drajesh]"

PhoneGetDevCaps() returns successPhoneGetDevCaps() with DeviceID =
DeviceId of CSF.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
575

Message Sequence Charts
Message Sequence Charts

Enumerating CTI Remote Devices and Exposing Remote Destination Information to Application

Precondition: same as above usecase; RD1-CTIRD and RD1-CSF are configured on respective devices

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "91486271310"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A'' on CSF.

Add Remote Destination From Admin and Expose Multiple Remote Destination Information to Application

Precondition: In addition to above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
576

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A on
CTIRD

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Add other RemoteDestinationRD2-CTIRD
on CTI Remote Device from Admin Pages

RD2-CTIRD Info -(Name:Office, Number:
4089022131)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
577

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "91486271310"

isActiveRD = 0x00000000

unicodeRDName = "CSF-Office"

RDNumber = "4089022132"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD Info (RDName/Number/Both) From Admin -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
578

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A on
CTIRD

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD2-CTIRD
Name on CTI Remote Device "CTIRD"
from Admin Pages

RD2-CTIRD Info -(Name:Home, Number:
4089022132)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
579

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Home"

RDNumber = "4089022132"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD2-CTIRD
Number on CTI Remote Device CTIRD
from Admin Pages

RD2Info -(Name: Home, Number:
4089021234)

LINEDEVCAPS::DevSpecificLineGetDevCaps() returnsLineGetDevCaps() with dwDeviceID =

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Home"

RDNumber = "4089021234"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

successLineDeviceId of Line-A on CTIRD.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
580

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD2-CTIRD
Name and Number on CTI Remote Device
CTIRD from Admin Pages

RD2Info -(Name: Office, Number:
4089022131)

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Same as for CTI Remote Device other than
dwLineTypes andDeviceProtocolType Info
with respective RD Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Remove RD From Admin -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
581

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Remove Remote Destination RD2-CTIRD
on CTI Remote Device CTIRD from
Admin Pages

RD2Info -(Name: Office, Number:
4089022131)

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
582

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Remote Destination Information on CTI RemoteDevice/CSF Device Which Does Not Have Remote Destination's
Configured

Precondition: In addition to above usecase

CTIRD2 (CTI remote device -doesn't have any RemoteDestination's configured)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info is empty

RemoteDestinationOffset = 0

RemoteDestinationSize = 0

RemoteDestinationCount = 0

RemoteDestinationElementFixedSize = 0

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-C on CTIRD2.

Remote Destination Information on Non CTI RemoteDevice / CSF Device

Precondition: In addition to above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
583

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

DeviceProtocolType =

DeviceProtocolType_SCCP (0x01)

Remote Destination Info is empty

RemoteDestinationOffset = 0

RemoteDestinationSize = 0

RemoteDestinationCount = 0

RemoteDestinationElementFixedSize = 0

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A' on EP.

Add RD From Application -RD Info Change Notification to Application

Precondition: Remove All RD's from Admin Page

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

RemoteDestinationOffset = 0

RemoteDestinationSize = 0

RemoteDestinationCount = 0

RemoteDestinationElementFixedSize = 0

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
584

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Add Remote Destination RD2-CTIRD to
CTI Remote Device CTIRD:

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD Info (RDNumber/RDName/Both) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
585

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination name of
RD2-CTIRD on CTI Remote Device
"CTIRD":

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office-Change"

m_NewRDNumber = "4089022131"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office-Change"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
586

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination Number of
RD2-CTIRD on CTI Remote Device
"CTIRD":

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office-Change"

m_NewRDNumber = "4089020000"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office-Change"

RDNumber = "4089020000"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LINE_REPLY with success

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination Name and
Number of RD2-CTIRD on CTI Remote
Device "CTIRD":

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "408902000"

m_UnicodeRDName = "Office"

m_NewRDNumber = "4089022131"

m_activeRD = 0x00000000

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
587

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD Info (SetActive RD) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_REMOTE_
DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
588

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Set RD2-CTIRD as ActiveRD:

Req

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office"

m_RDNumber = "4089022131"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineShutdown successLineShutdown()

Active RD will be RESET to False when the Application which has set RD as ACTIVE is shutdown or closed

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
589

Message Sequence Charts
Message Sequence Charts

Add Other RD (RD2-CTIRD with IsActive Set) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A on
CTIRD

Set RD2-CTIRD -"Office" as ACTIVE

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Add Remote Destination RD1-CTIRD on
CTI Remote Device CTIRD with
"IsActive" set to true

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
590

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Variation :

AddRD1-CTIRDwith IsActive RD=False

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Update RD (RD1-CTIRD -Name, Number and Set IsActive) From Application -RD Info Change Notification to
Application

Precondition: continuation from previous UseCase Variation (RD2 is added with IsActive = false)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Set RD2-CTIRD-"Office" as ACTIVE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
591

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

*** 2 Change Nofitications

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1-CTIRD
on CTI Remote Device "CTIRD" with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile-t"

m_NewRDNumber = "91408627130900"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile-t"

RDNumber = "9148627130900"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
592

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Remove RD (RD1-CTIRD Which Is Active RD) From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Set RD1-CTIRD-"Mobile-t" as ACTIVE

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile-t"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Remove Remote Destination RD1-CTIRD
on CTI Remote Device "CTIRD"

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "9148627130900"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
593

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Negative -Add RD From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A of CTIRD.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
594

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Add Remote Destination on CTI Remote
Device CTIRD

Variation 1:

Empty RD Number :

m_RDNumber = ""

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = ""

m_UnicodeRDName = ""

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_DUPLICATE_INFORMATION
(0xC0000013)

Variation 2:

RDNumber : same RD Number as any of
the existing RD's Name

"12345" -RD already configured on
CUCM.

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "Office"

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_REMOTE_DESTINATION_LIMIT_EXCEEDED
(0xC0000015)

Variation 3:

Add RD when the user Limit for UserID
used for CTI RD is reached.

For example : if User has limit set to 4 and
then if RemoteDevice is already configured
with 4 Remote Destination and User tries
to Add 5th one from Application.

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "temp"

m_activeRD = 0x00000000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
595

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Variation 4:

RDNumber : Invalid Remote Destination
Name [name has unsupported characters,
eg-name&] or invalid number [cant
configure any of the local device DN as
number which is not supported]

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "1000"

m_UnicodeRDName = "Office&"

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE
(0xC000001B)

Variation 5:

Add RD to a CSF device which doesn't
have Owner/END User ID configured

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "Office"

m_activeRD = 0x00000000

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Negative -Update RD From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
596

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Update RemoteDestination on CTI Remote
Device:

Variation 1:

Empty RD Number :

m_RDNumber = ""

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = ""

m_UnicodeRDName = ""

m_NewRDNumber = ""

m_activeRD = 0x00000000

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_REMOTE_DESTINATION_UNAVAIL
(0xC0000014)

Variation 2:

RDNNumber : RD Number in Request
doesn't match with any of the existing RD
in the RD List on Device

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "12345"

m_UnicodeRDName = "Temp"

m_RDNumber = "12345"

m_activeRD = 0x00000000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
597

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR
_DUPLICATE_INFORMATION
(0xC0000013)

Variation 3:

RDNaumber : same RD Number as any of
the existing RD's Name

*** RDNumber "4086271309" is already
configured on other RemoteDestination

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "4089022131"

m_UnicodeRDName = "Office"

m_RDNumber = "4086271309"

m_activeRD = 0x00000000

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Negative -Remove RD From Application -RD Info Change Notification to Application

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A on CTIRD.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
598

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult = LINEERR_INVALPARAM

Remove Remote Destination on CTI
Remote Device:

Empty RDNumber :

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = ""

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_REMOTE_DESTINATION_UNAVAIL
(0xC0000014)

Variation 1:

RDNumber : RD Number in Request
doesn't match with any of the existing RD
in the List

CiscoLineDevSpecific
AddRemoteDestination Req

m_RDNumber = "1234567"

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Test the same on CSF device [CSF
-Line-A'']

Negative -Add/remove/update RD From Application -on Non-CTI RD /CSF Device Line or Line Is Not Opened
with Required Extension

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
599

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_OPERATIONUNAVAIL

Add/Remove/Update Remote Destination
on CTI Remote Device CTIRD

Variation 1:

Previous step Line is not opened with
required ext Version -(0x000C0000 or
greater)

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_OPERATIONUNAVAIL

Variation 2:

Req on Line which is not on CTI Remote
Device / CSF device

LineDevSpecific() returns dwRequestID

LINE_REPLY

lResult =
LINEERR_OPERATIONFAILED

Variation 3:

Failure of Add/Remove/update Req for any
other reasons not captured in above
useCases

Multiple Apps Setting Active RD

Precondition: same as UseCase 1

TAPI structuresTAPI messagesAction

Lines are EnumeratedApp1 and App2:

LineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
600

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp1 and App2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

App1 and App2:

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Change Notification to App1 and App2:

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

App1:

Update Remote Destination RD2 on CTI
Remote Device "CTIRD"with IsActive set
to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
601

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successApp1:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
602

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Change Notification to App1 and App2:

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

App2:

Update Remote Destination RD2 on CTI
Remote Device "CTIRD"with IsActive set
to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914089022131"

m_UnicodeRDName = "Office"

m_NewRDNumber = "914089022131"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp1:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
603

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successApp2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineShutdown() returns success

Change Notification to App1:

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000

Variant 1:

App2:

LineShutdown()

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
604

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successApp1:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineShutdown() returns success

No Change Notification to App2

Variant 2:

App1:

LineShutdown()

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000001

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successApp2:

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
605

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

CTI/CCM Manager FailOver Scenario - Active RD

Precondition: same as UseCase 1

TSP is configured with Primary and Secondary CTI Manager

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
606

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1 on CTI
Remote Device "CTIRD"with IsActive set
to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Stop Primary CTI Manager

TSP connects to Secondary CTIManager

and

Active RD configuration is RE-SET by
CiscoTSP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
607

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Set RD -Mobile to ACTIVE RD and then
Stop Call Manager on the node of
Secondary CTI Manager

ActiveRD configuration is not changed/ not
RESET

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

CTI/CCM Manager FailOver Scenario - Active RD Set by Other Application

Precondition: same as UseCase 1

TSP is configured with Primary and Secondary CTI Manager

Other Application has set the ACTIVE RD on the Device and Application is connected to Secondary CTI
Manager

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
608

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns Success

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Stop Primary CTI Manager

Active RD configuration is not RESET as
the this Application has not set the ACTIVE
RD

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
609

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes =
LINEDEVCAPSDEVSPECIFIC_
REMOTEDEVICE (0x00000008)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE(0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "91486271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

Event on Line A :

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

Stop Call Manager on the node of
Secondary CTI Manager

ActiveRD configuration is not changed/ not
RESET

Same as for CTI Remote Device other than
dwLineTypes and DeviceProtocolType
Info.

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Variation :

Test the same on CSF device [CSF
-Line-A'']

Monitoring CSF Device in Soft Phone/Desk Phone Mode

Precondition: continuation from previous UseCase

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
610

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A'' on CSF Device.

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A"

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineSetStatusMessages()on Line-A" with
dwLineStates = INSERVICE and
OUTOFSERVICE

Call Events are reported to ApplicationLineMake Call() or any Incoming Call

LineClose and LineShutdown SuccessLineclose and ShutDown

Monitoring CSF Device Switching Mode From Soft/Desk Phone Mode to Extend Mode

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
611

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A" on CSF device.

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A"

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineSetStatusMessages() on Line-A" with
dwLineStates = INSERVICE and
OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_DEVICE_PROTOCOL_TYPE
(0x00008000)

From Jabber Client Switch the mode to
Extend Mode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
612

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A".

LineClose and LineShutdown SuccessLineclose and ShutDown

Monitoring CSF Device in Extend Mode, Switches Back to Soft / Desk Phone Mode

Precondition: continuation from previous UseCase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A" on CSF device.

LineOpen() returns SuccessLineOpen() with ExtVer-0x000C0000
dwDeviceID = LineDeviceID of Line-A"

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

LineSetStatusMessages()on Line-A" with
dwLineStates = INSERVICE and
OUTOFSERVICE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
613

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_OUTOFSERVICE

Line INSERVICE EVENT

Event = LINE_LINEDEVSTATE

dwParam1 =
LINEDEVSTATE_INSERVICE

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_DEVICE_PROTOCOL_TYPE
(0x00008000)

From Jabber Client Switch themode to Soft
Mode

Or

From Jabber Client Switch the mode to
Deskphone Mode

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_SIP (0x02)

Remote Destination Info:

unicodeRDName = "CSF-Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A".

LineClose and LineShutdown SuccessLineclose and ShutDown

Basic Incoming Call to CTI Remote Device

CTI remote device:

A (CTI Remote Device -Name: CTIRD1)

Remote Destination:

RD1 -Remote Destination configured on CTI Remote Device A

(Name: Mobile, Number: 914086271309)

RD2 -Remote Destination configured on CTI Remote Device A

(Name: Office, Number: 914089022131)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
614

Message Sequence Charts
Message Sequence Charts

Line:

Line-A1 (DN -2000) (Alerting Name:2000name, Display Name: CTIRD-2000name) configured on CTI
Remote Device A (shared line of Enterprise DN -2000 configured on Device B)

Line-A2 (DN -2001) (Alerting Name:2001name, Display Name: CTIRD-2001name) configured on CTI
Remote Device A (shared line of Enterprise DN -2001 configured on Device B)

Enterprise Phones:

B (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-A1' -DN -2000(Alerting Name: 2000name, Display Name: EP-2000name) configured on Device B

Line-A2' -DN -2001(Alerting Name: 2001name, Display Name: EP-2001name) configured on Device B

C (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-C -DN -1000(Alerting Name: 1000name, Display Name: 1000Name) configured on Device C

D (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-D -DN -1001(Alerting Name: 1001name, Display Name: 1001Name) configured on Device D

CSF Device:

D (CSF Device -Name: CSF-drajesh)

Remote Destination:

RD-01 -Remote Destination configured on CSF device D

(Name: CSF-Mobile, Number: 914086271309)

RD-02 -Remote Destination configured on CSF device D

(Name: CSF-Office, Number: 914089022131)

Line:

Line-A'' (DN -2000) -Line-A (Alerting Name: 2000name, Display Name: CSF-2000) configured on CSF
device D (shared line of Enterprise DN -2000 configured on Device B)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
615

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

LineMakeCall() success

Call on C :

LINE_CALLSTATE -Param1=DIALING

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

Call on CTI Remote Device :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-C with DN (A -DN
2000)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
616

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

After "Delay Before Ringing Timer" expires the call is offered on Remote Destinations and all Remote Destinations Ring

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device C

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
617

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer on any of the Remote Destination

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
618

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

*** Call on Remote Destination is dropped

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
619

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Variation :

Answer the call on Enterprise Phone (B)

LineAnswer() on the call on Device B

*** Call on Remote Device/Remote
Destination drops

Expected Result :

All calls go to Disconnected/IDLE State

Variation :

One of the Remote Destination answers the
call before the "Answer Too Soon Timer"

Expected result:

only Remote Destination which is set
ACTIVE rings

Call rings immediately and "Delay before
Ringing Timer" wouldn't be effective when
ACTIVE RD is set.

Remote Destination can answer the call
Immediately and "Answer Too Soon
Timer" wouldn't be effective when
ACTIVE RD is set.

Variation :

Active RD set on CTI Remote Device

There won't be second call on Remote
Destination, only at Remote Device second
call will present and reported to
Application.

Continuation to above variation

On second Incoming Call...

Expected result:

would be same as observed on CTI Remote
Device

Variation :

Test with CSF Device in Extend Mode

DVO Call (Outgoing Call Initiation From CTI Remote Device)

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
620

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

LineMakeCall() returns RequestID

LINE_REPLY

Param1 = RequestID

Param2 =
LINEERR_OPERATION_FAIL_NO_ACTIVE_RD_SET
(0xC0000016)

LineMakeCall on Line-A with DN (C -DN
1000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
621

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineMakeCall() success

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
OFFERING

LineMakeCall on Line-A with DN (C -DN
1000)

*** Only Remote Destination "Mobile"
rings and it rings immediately as the RD is
set Active

*** No Call presented on EP

LineAnswer() fail with Error
LINEEE_OPERATIONUNAVAIL

Answer the first Call on CTI Remote
Device:

Answer() on the call on CTIRemote
Device(A)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
622

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = voiceConnect

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName =

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device
A(CTIRD)

Call on C :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED

LINE_CALLSTATE -Param1 =
RINGBACK

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
ACCEPTED

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Once Remote Destination answers the call,
call will be offered on initial dialed number
C

Call will be present on Enterprise Phone
and call will be Remote In Use Call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
623

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineAnswer() success

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

C answers the call

LineAnswer() on call on Device-C

LineCallInfo ::

CallReason = UNKNOWN (0x400)

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 1000

dwCalledIDName = 1000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

ExtendedCallReason =
CtiReasonMobility(0x021 = 33)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 1000name

UnicodeConnectedPartyName= 2000name

ModifiedCallingParty = 2000

ModifiedCalledParty = 1000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
624

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 1000

dwConnectedIDName = 1000name

DevSpecific ::

CallAttributeType =
TSPCallAttribute_DVOCall (0x00002000)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName= 1000name

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID = 1000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
625

Message Sequence Charts
Message Sequence Charts

Multiple Calls -Answer/Hold/Resume

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000000

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000000

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Make Call between C and A[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same as above test cases

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
626

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineMakeCall() success

Call on Device-D :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on CTI Remote Device[A] [D
' A] :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on Enterprise Phone[B] [D '
A]:

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-D with DN (A -DN
2000)

There won't be second call offered to Remote Destination

LineAnswer() returns success

Calls on CTI Remote Device :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A]:

LINE_CALLSTATE -Param1 =
CONNECTED

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer() on the second call on CTIRemote
Device(A)

Remote Destination and D will be talking/
will have Media connection

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
627

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineUnHold() returns success

Calls on CTI Remote Device :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =
CONNECTED

Call1 [D ' A]:

LINE_CALLSTATE -Param1 =ONHOLD

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [D ' A]:

LINE_CALLSTATE -

Param1 = ONHOLD

Resume the first call on CTIRemote Device
[A]

LineUnhold() on the call [c ' A] on Device
A

Remote Destination and C will be talking/
will have Media connection

LineUnHold() returns success

Calls on CTI Remote Device :

Call1 [C ' A]:

LINE_CALLSTATE -Param1 =
CONNECTED

Call1 [D ' A]:

LINE_CALLSTATE -Param1 = IDLE

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [D ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x01(active)

Resume the ONHOLD call [D ' A]from
Enterprise Phone

LineUnHold() on the call [D ' A] on Device
B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
628

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Call on RemoteDestinationwill be dropped

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Multiple Calls -Multiple Lines -Answer/Hold/Resume

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
629

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Make Call between C and A[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

LineMakeCall() success

Call on Device-D :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on CTI Remote Device[A] [D
' A2]:

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Second Call on Enterprise Phone[B] [D '
A2]:

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-DwithDN (A2 -DN
2001)

There won't be second call offered to Remote Destination

LineAnswer() returns success

Calls on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A2]:

LINE_CALLSTATE -Param1 =
CONNECTED

Calls on Enterprise Phone[B] :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [D ' A2]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer() on the second call on CTIRemote
Device(A)

Remote Destination and D will be talking/
will have Media connection

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
630

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineUnHold() returns success

Calls on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
CONNECTED

Call1 [D ' A2]:

LINE_CALLSTATE -Param1 =ONHOLD

Calls on Enterprise Phone[B] :

Call1 [C ' A1]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [D ' A2]:

LINE_CALLSTATE -

Param1 = ONHOLD

Resume the first call on CTIRemote Device
[A]

LineUnhold() on the call [c ' A1] on Device
A

Remote Destination and C will be talking/
will have Media connection

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Calls on CTI Remote Device :

[C ' A1] :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

Call [C ' A1]

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

Drop the Connected Active Call on CTI
Remote Device.

LineDrop() for the call[C ' A1] on Device
A (CTI-RD)

Call on Remote Destination will not be
dropped as there is other Active/OnHold
call on CTI Remote Device

As second Call is on OnHold state, Remote
Destination will listen Dead Air

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
631

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Drop the onHold call on CTI Remote
Device

LineDrop() for the call on Device A
(CTI-RD)

Call on Remote Destination is dropped

C and EP call will not be disconnected.

On C call will be in Connected state and
on EP call will be in OnHold state.

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Transfer

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same as above test cases

LineSetupTransfer returns success

Primary Call on CTI Remote Device[A] [C
' A1] :

LINE_CALLSTATE -Param1 =
OnholdPendingTransfer

Consult Call on CTI Remote Device[A]
[A1 ' D]:

Setup Transfer and Dial D

LineSetupTransfer() on the call [C ' A1] on
Device A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
632

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINE_CALLSTATE -Param1 =
DIALTONE

LINE_CALLSTATE -Param1=DIALING

Calls on Enterprise Phone[B] :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =ONHOLD

Call1 [A1 ' D]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Consult Call on CTI Remote Device[A]
[A1 ' D]:

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

LineDial() on Consult call with DN -D

Secondary Call on CTI Remote Device:

Call1 [A1 ' D]:

LINE_CALLSTATE -Param1 =
CONNECTED

Param2 = 0x01(active)

Answer the Call on Device D

Remote Destination and D will be talking/
will have Media connection

Both the Calls on CTI Remote Device Drop

Primary Call on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Secondary Call on CTI Remote Device:

Call1 [A ' D]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Complete Transfer on the Primary Call[C
' A]with [A ' D] call as consult call

LineCompleteTranfer() on the call [c ' A1]
on Device A

D and C will be talking/ will have Media
connection

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
633

Message Sequence Charts
Message Sequence Charts

Direct Transfer on Same Line

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Make Call between D and A1

Call Info is same above Multiple Call across lines test case

Both the Calls on CTI Remote Device Drop

Primary Call on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Secondary Call on CTI Remote Device:

Call1 [A1 ' D]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

DirectTrnasfer on the calls on CTI Remote
Device

Both Calls on Remote Device and call on
Remote Destination drop

Both the Calls on CTI Remote Device Drop

Primary Call on CTI Remote Device :

Call1 [C ' A1]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Secondary Call on CTI Remote Device:

Call1 [A1 ' D]:

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

DirectTrnasfer on the calls on CTI Remote
Device

Both Calls on Remote Device and call on
Remote Destination drop

CciscoLineDevSpecificDirectTransfer on
the call [c ' A1] on Device A with
ConsultCallID = CallID of [D ' A1]

D and C will be talking/ will have Media
connection

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
634

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Conference -Setupconference/AddtoConference

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
635

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineSetupConference returns success

Original Call on CTI Remote Device[A] :

LINE_CALSTATE = CONFERENCE

Conference Parent Call on CTI Remote
Device[A] :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OnholdPendingConference

Consult Call on CTI Remote Device[A] :

LINE_CALLSTATE -Param1 =
DIALTONE

LINE_CALLSTATE -Param1=DIALING

Calls on Enterprise Phone[B] :

Call1 [C ' A]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Call1 [A ' D]:

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Consult Call on CTI Remote Device[A] :

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

Setup Conference and Dial D

LineSetupConference() on the call [C ' A1]
on Device A

LineDial() on Consult call with DN -D

Secondary Call on CTI Remote Device:

Call1 [A ' D]:

LINE_CALLSTATE -Param1 =
CONNECTED

LINE_CALLSTATE -Param1 = IDLE

Answer the Call on Device D

Remote Destination and D will be talking/
will have Media connection

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
636

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call model on CTI Remote Device :

[C ' A1]-[Original Call1]-[state =
Conference]

[A1 ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1 ' D]-[Consult Call]-[state
-CONFERENCE]

Call Model on Enterprise Phone:

Same as CTI Remote Device, all calls are
RIU Calls

Complete Conference on the Primary
Call[C ' A]with [A ' D] call as consult call

LineAddtoConference() on the call [c ' A1]
on Device A

All 3 parties C, D and CTI Remote
Device[Remote Destination] will be in
Conference

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Join on Same Line

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Make Call between D and A1

Call Info is same above Multiple Call across lines test case

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
637

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Original Call on CTI Remote Device[A]
[C ' A1]:

LINE_CALSTATE = CONFERENCE

Conference Parent Call on CTI Remote
Device[A] :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
CONNECTED

Consult Call on CTI Remote Device[A] [D
' A1]:

LINE_CALLSTATE -Param1 =
CONFERENCE

Conference Model will be created on CTI
RemoteDevice andRIUConferenceModel
on EP

Join on the Primary Call[C ' A1]with [A1
' D] call as consult call

CCiscoLineDevSpecificJoin() on the call
[c ' A1] on Device A with CallIDstoJoin =
CallID of Call [D ' A1]

CTIRemoteDevice [A -Remote
Destination], D and C will be in
Conference.

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Direct Transfer/Join Across Line on CTI Remote Device

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Make Call between D and A2

Call Info is same above Multiple Call across lines test case

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
638

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Line_Reply with error =
LINEERR_OPERATIONUNAVAIL

Join on the Primary Call[C ' A1]with [A2
' D] call as consult call

CCiscoLineDevSpecificJoin() on the call
[c ' A1] on Device A with CallIDstoJoin =
CallID of Call [D ' A2]

Or

CciscoLineDevSpecificDirectTransfer on
the call [c ' A1] on Device A with
ConsultCallID = CallID of [D ' A2]

Direct Transfer / Join Across Line is not
supported on CTI Remote Device

LINEERR_OPERATIONUNAVAIL

Or PHONEERR_OPERATIONUNAVAIL

Depending on the Line/Phone API request.

Variation:

On any unsupported Feature Request

For Example:

CallAcceptRequest

CallAnswerRequest

CallParkRequest

LineCallUnParkRequest

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

Cbarge

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A', A'' and C)

LineOpen() with ExtVer-0x000C0000

Make Call between C and A1[Remote Destinaton], either normal incoming or DVO call on CTI Remote Device

Call Info is same above test cases

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
639

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Conference Call model on CTI Remote
Device :

[C ' A1]-[Original Call1]-[state =
Conference]

[A1 ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1 ' A1(EP)]-[Consult Call]-[state
-CONFERENCE]

Call Model on Enterprise Phone:

Active Conference Calls:

[C ' A1(CTIRD)]-[Original Call1]-[state
= Conference]

[A1(EP) ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1(EP) ' A1(CTIRD)]-[Consult
Call]-[state -CONFERENCE]

RIU Conference Calls:

[C ' A1]-[Original Call1]-[state =
Conference]

[A1 ' Conference]-[Conference Parent
Call]-[State = CONNECTED]

[A1 ' A1(EP)]-[Consult Call]-[state
-CONFERENCE]

cBarge from CTI Remote Device is not
supported as CTI Remote Device is a Static
virtual Device.

cBarge from EP [Enterprise phone]

*** cBarge will be successful and
CTIRemote Device, EP and Caller will be
in Conference.

*** as CTI Remote Device doesn't report
RIU calls, there won't be RIU Conference
created on CTI Remote Device reflecting
Active Conference Call on EP

Barge Operation will fail as CTI Remote
Devices doesn't have BIB.

Variation:

Barge Operation on Enterprise Phone

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

URI Dialing -Basic Incoming Call to CTI Remote Device

Precondition: InAddition to configuration from previous usecases

CTI Remote Device:

Line:

Line-A (DN -2000) (URI Configured -drajesh@cisco.com)

C (IP Phone -Name: SEPxxxxxxxx)

Line:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
640

Message Sequence Charts
Message Sequence Charts

Line-C -DN -1000(URI configured -1000@cisco.com)

D (IP Phone -Name: SEPxxxxxxxx)

Line:

Line-D -DN -1001(URI configured -1001@cisco.com)

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

LineMakeCall() success

Call on C :

LINE_CALLSTATE -Param1=DIALING

LINE_CALLSTATE -Param1 =
PROCEEDING

LINE_CALLSTATE -Param1 =
RINGBACK

Call on CTI Remote Device :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

LineMakeCall on Line-C with URI of CTI
Remote Device (DestinationAddress
-drajesh@cisco.com)

After "Delay Before Ringing Timer" expires the call is offered on Remote Destinations and all Remote Destinations Ring

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
641

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected : Empty

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
642

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected : Empty

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Answer on any of the Remote Destination

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
643

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
644

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 1000

dwCallerIDName = 1000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

UnicodeCallerPartyName = 1000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =
CTIRD-2000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

ModifiedCallingParty = 1000

ModifiedCalledParty = 2000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
645

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Call on Remote Destination is dropped

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Variation :

Answer the call on Enterprise Phone (B)

LineAnswer() on the call on Device B

Call on RemoteDevice/RemoteDestination
drops

URI Dialing -DVO Call (Outgoing Call Initiation From CTI Remote Device)

Precondition: same as above usecase

TAPI structuresTAPI messagesAction

Lines are EnumeratedLineInitializeEx

LineOpen() returns SuccessOpen all Lines (A, A' and C)

LineOpen() with ExtVer-0x000C0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
646

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineMakeCall() returns RequestID

LINE_REPLY

Param1 = RequestID

Param2 =
LINEERR_OPERATION_FAIL_NO_ACTIVE_RD_SET
(0xC0000016)

LineMakeCall on Line-A with DN (C -DN
1000)

EVENT = LINE_DEVSPECIFIC

dwParam1 =
SLDSMT_LINE_PROPERTY_CHANGED

dwParam2 =
LPCT_REMOTE_DESTINATION_INFO
(0x00004000)

Update Remote Destination RD1
"Mobile"on CTI Remote Device A with
IsActive set to true

CiscoLineDevSpecific
UpdateRemoteDestination Req

m_RDNumber = "914086271309"

m_UnicodeRDName = "Mobile"

m_NewRDNumber = "914086271309"

m_activeRD = 0x00000001

LINEDEVCAPS::DevSpecific

dwLineTypes = (0x00000000)

DeviceProtocolType =

DeviceProtocolType_CTI_
REMOTE_DEVICE (0x03)

Remote Destination Info:

unicodeRDName = "Mobile"

RDNumber = "4086271309"

isActiveRD = 0x00000001

unicodeRDName = "Office"

RDNumber = "4089022131"

isActiveRD = 0x00000000

IsMyAppLastToSetActiveRD =
0x00000001

LineGetDevCaps() returns successLineGetDevCaps() with dwDeviceID =
LineDeviceId of Line-A.

LineMakeCall() success

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
OFFERING

LineMakeCall on Line-A with URI of C
(DestinationAddress -1000@cisco.com)

*** Only Remote Destination "Mobile"
rings and it rings immediately as the RD is
set Active

*** No Call presented on EP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
647

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineAnswer() fail with Error
LINEEE_OPERATIONUNAVAIL

Answer the first Call on CTI Remote
Device:

Answer() on the call on CTIRemote
Device(A)

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = voiceConnect

dwCalledID = 2000

dwCalledIDName = 2000name

DevSpecific ::

UnicodeCallerPartyName =

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName =

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = empty

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = empty

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID =

LineGetCallInfo() successLineGetCallInfo() on call on Device
A(CTIRD)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
648

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

Call on C :

LINE_CALLSTATE -Param1 =
OFFERING

LINE_CALLSTATE -Param1 =
ACCEPTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED

LINE_CALLSTATE -Param1 =
RINGBACK

Call on Enterprise Phone :

LINE_APPNEWCALL

LINE_CALLSTATE -Param1 =
ACCEPTED

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

Once Remote Destination answers the call,
call will be offered on initial dialed number
C

Call will be present on Enterprise Phone
and call will be Remote In Use Call

LineAnswer() success

Call on C :

LINE_CALLSTATE -Param1 =
CONNECTED

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
CONNECTED (active)

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

C answers the call

LineAnswer() on call on Device-C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
649

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

CallReason = UNKNOWN (0x400)

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 1000

dwCalledIDName = 1000name

dwConnectedID = 2000

dwConnectedIDName=CTIRD-2000name

DevSpecific ::

ExtendedCallReason =
CtiReasonMobility(0x021 = 33)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 1000name

UnicodeConnectedPartyName= 2000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [100 | Cisco.com | 0x0 | 0x0 | 0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

ModifiedCallingParty = 2000

ModifiedCalledParty = 1000

ModifiedConnectedID = 2000

LineGetCallInfo() successLineGetCallInfo() on call on Device C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
650

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineCallInfo ::

dwCallerID = 2000

dwCallerIDName = 2000name

dwCalledID = 2000

dwCalledIDName = 2000name

dwConnectedID = 1000

dwConnectedIDName = 1000name

DevSpecific ::

CallAttributeType =
TSPCallAttribute_DVOCall (0x00002000)

UnicodeCallerPartyName = 2000name

UnicodeCalledPartyName = 2000name

UnicodeConnectedPartyName= 1000name

SIP URI Info:

Caller :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Called :

[User | Host | Port | TransportType | URI
Type] = [drajesh | Cisco.com | 0x0 | 0x0 |
0x1]

Connected :

[User | Host | Port | TransportType | URI
Type] = [1000 | Cisco.com | 0x0 | 0x0 | 0x1]

ModifiedCallingParty = 2000

ModifiedCalledParty = 2000

ModifiedConnectedID = 1000

LineGetCallInfo() successLineGetCallInfo() on call on Device A/B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
651

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LineDrop() success

Call on C :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on CTI Remote Device :

LINE_CALLSTATE -Param1 =
DISCONNECTED

LINE_CALLSTATE -Param1 = IDLE

Call on Enterprise Phone :

LINE_CALLSTATE -

Param1 = CONNECTED

Param2 = 0x02 (Inactive)

LINE_CALLSTATE -Param1 = IDLE

LineDrop() for the call on Device A
(CTI-RD)

Expected result would be same as observed
on CTI Remote Device

Variation :

Test the same with CSF Device in Extend
Mode

CTI RD Call Forwarding
Table 69: Use Case 1: Device A Calls CTIRD When Active RD Is Not Set and "Route calls to all remote destinations when client is not connected" Is Enabled.

Expected ResultScenario

Incoming calls are Forwarded to all remote
destinations.

1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to CTIRD

Table 70: Use Case 2: Device A Calls CTIRD When Active RD Is Not Set and "Route calls to all remote destinations when client is not connected" Is Disabled. There
Is No Call Forward Number Set on the Shared Enterprise Phone

Expected ResultScenario

Call is disconnectedwith reason code -USER_BUSY.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to CTIRD

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
652

Message Sequence Charts
CTI RD Call Forwarding

Table 71: Use Case 3: Device A Calls CTIRD When CTI Remote Device Is Observed , Remote Destination Is Not Configured and "Route calls to all remote destinations
when client is not connected" Is Enabled (CFNA Is Configured On Enterprise Number to Voice Mail Box)

Expected ResultScenario

Call will route to voice mail number.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote destinations

3. Phone A makes a call to CTIRD

Table 72: Use Case 4: Device A Calls CTIRD When CTI Remote Device Is Observed , Remote Destination Is Not Configured and "Route calls to all remote destinations
when client is not connected" Is Disabled (CFNA Is Configured On Enterprise Number to Voice Mail Box)

Expected ResultScenario

Call will route to voice mail number.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote destinations

3. Phone A makes a call to CTIRD

Table 73: Use Case 5: DeviceA Calls CTIRD When Active RD Is Set and "Route calls to all remote destinations when client is not connected" Is Enabled. Setup: A IP
Phone, B CTI-RD, C RDD1, D RDD2. Active RD Is Set to C

Expected ResultScenario

Incoming calls is routed to active remote destination,
such as C.

1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to B

4. C answers the call

Table 74: Use Case 6: Device A Calls CTIRD When Active RD Is Set and "Route calls to all remote destinations when client is not connected" Is Enabled. Setup: A IP
Phone, B CTI-RD, C RDD1, D RDD2. Active RD Is Set to C

Expected ResultScenario

Incoming calls is routed to active remote destination.1. Provider Open request

2. Issue Line Open on remote device and devices which have the remote
destinations

3. Phone A makes a call to B

Video Capabilities and Multimedia Information
Use cases related to Video Capabilities and Multi-Media Information feature are mentioned below:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
653

Message Sequence Charts
Video Capabilities and Multimedia Information

Media Capability on Device A (SIP Phone with Camera) Which Is Video-Enabled, Supports Telepresence,
and Has 2 Screens

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposes Video Capability
=

0x00000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 1

ScreenCount = 2

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Media Capability on Device A (SIP Phone) Which Is Not Video-Enabled, Supports Telepresence, and Has 2
Screens

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
=

0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 1

ScreenCount = 2

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
654

Message Sequence Charts
Message Sequence Charts

Media Capability on Device A (CTI Port/Remote Point)

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0

Screen Count = 0

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Media Capability on an Acquired Device B Which Is Media-Enabled (super Provider Scenario), Supports
Telepresence, and Has 3 Screens

Expected eventsAction

LineOpen successful.

Device Acquired Successfully. LINE_CREATE message fired.

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000001 [CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 1

Screen Count = 3

LineInitializeEx

LineOpen with Ext version 0x000D0000 with deviceId for
linedevice A

Issue CCiscoLineDevSpecificAcquire to Acquire Device B.

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice B

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
655

Message Sequence Charts
Message Sequence Charts

Media Capability on Device A (ParkDN/Pickupdevice)

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0

Screen Count = 0

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Media Capability on Device A (SIP Phone Which Is Unregistered and Is Video-Enabled)

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposesMedia Capability
= 0x00000000 [CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0

Screen Count = 0

LineInitializeEx

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
656

Message Sequence Charts
Message Sequence Charts

Video Capability on Device B (A Is a SIP Phone with Video-Enabled and B Is SIP Phone with Video-Enabled)
, Both Devices Support Telepresence, and Have 3 Screens

Expected eventsAction

B :

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

LineInitializeEx

A does a LineMakeCall to B, B answers.

Issue LineGetcallInfo() with Ext version for linedevice B

LineShutdown

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyVideoCapabilities :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 1

Variation 1:

A has video enabled and B has video disabled. A has Telepresence
enabled and has 3 screens, B has Telepresence disabled and has
1 screens.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
657

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapabilities :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 1

CalledPartyVideoCapabilities :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 0

Variation 2:

A has video enabled,1 scren and B is a CTI Port or Route Point.

Video Capability on Device C After Redirect (A Is a SIP Phone Which Is Video-Disabled, B and C Are
Video-Enabled)

Expected eventsAction

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled

LineInitializeEx

A does a LineMakeCall to B.

B redirects to C, C answers

Issue LineGetcallInfo() with Ext version for linedevice C

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
658

Message Sequence Charts
Message Sequence Charts

Video Capability on Device C After Blindtransfer (A Is a SIP Phone Which Is Video-Disabled, B and C Are
Video-Enabled)

Expected eventsAction

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled

LineInitializeEx

A does a LineMakeCall to B.

B does a blindtransfers to C, C answers

Issue LineGetcallInfo() with Ext version for linedevice C

LineShutdown

Video Capability on Device C After Consult Transfer (A Is a SIP Phone Which Is Video-Disabled, B and C Are
Video-Enabled)

Expected eventsAction

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled

LineInitializeEx

A does a LineMakeCall to B.

B does a LineSetupTransfer to C,

C answers

B does a LineCompleteTransfer

Issue LineGetcallInfo() with Ext version for linedevice C

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
659

Message Sequence Charts
Message Sequence Charts

Video Capability on Device B on an Existing Call (Both A and B Are SIP Phones Which Are Video-Enabled)

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

A does a Call to B, B answers.

LineInitializeEx

Issue LineGetcallInfo() with Ext version for linedevice B

LineShutdown

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None

Variation 1:

A has video enabled and B has video disabled.

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None

Variation 2:

A has video enabled and B is a CTI Port or Route Point.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
660

Message Sequence Charts
Message Sequence Charts

Dynamic Media Capability Change on Device A (SIP Phone with Camera) Which Is Video-Enabled

Expected eventsAction

LINEGETDEVCAPS::DEVSPECIFIC exposes Video Capability
=

0x00000001[CiscoDeviceVideoCapability_Enabled]

TSP will fire SLDSMT_LINE_PROPERTY_CHANGED event
to application with dwParam2 =
LPCT_DEVICE_VIDEO_INFO(0x00010000).

LineInitializeEx

LineOpen on A

Issue LineGetDevCaps() with Ext version 0x000D0000 with
deviceId for linedevice A

Change Video Capability of device to Disabled from CUCM
Admin page

LineShutdown

TSP will fire SLDSMT_LINE_PROPERTY_CHANGED event
to application with dwParam2 =
LPCT_DEVICE_VIDEO_INFO(0x00010000).

Variation 1:

Intially Device A has Video disabled and then change Video
Capability of device to enabled from CUCM Admin page.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
661

Message Sequence Charts
Message Sequence Charts

Video Capability on Device A and B; Both Are Video-Enabled SIP Phones And, Both Devices Support
Telepresence and Has 3 Screens

Expected eventsAction

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapBitMask = 0x00000007

CalledPartyMultiMediaCapBitMask = 0x00000007

CallingPartyMultiMediaCapInfo :

VideoCapability =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyMultiMediaCapInfo :

VideoCapability =
0x00000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x00000001(Telepresence Enabled

Screen Count = 3

LineInitializeEx

LineOpen on A and B

A does a LineMakeCall to B, B answers.

Issue LineGetcallInfo() with Ext version for linedevice A

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
662

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapBitMask = 0x00000007

CalledPartyMultiMediaCapBitMask = 0x00000007

CallingPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000001(Telepresence Enabled)

Screen Count = 3

CalledPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 1

Variation 1:

A has video enabled and B has video disabled. A has Telepresence
enabled and has 3 screens, B has Telepresence disabled and has
1 screens.

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapBitMask = 0x00000007

CalledPartyMultiMediaCapBitMask = 0x00000000

CallingPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 0x00000001

CalledPartyMultiMediaCapInfo :

VideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_None]

TelepresenceInfo = 0x000000000(Telepresence Disabled)

Screen Count = 0x00000000

Variation 2:

A has video enabled,1 screen and B is a CTI Port or Route Point.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
663

Message Sequence Charts
Message Sequence Charts

Check If the Multimedia Streams Info Has Not Returned on the Call From Both Calling Party and Called Party,
If Lines Are Opened with Ext 0x000B0000 (TLS Connections Must Be Disabled, Phone A and B Are
Video-Disabled)

Expected eventsAction

No CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

LineInitializeEx

LineOpen at A and B with extension version 0x000B0000

A does a LineMakeCall to B / B answers the call

Check there is no CallDevSpecific event returned.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
664

Message Sequence Charts
Message Sequence Charts

Check If the Multimedia Streams Info Has Returned on the Call From Both Calling Party and Called Party, If
Lines Are Opened with Ext 0x000D0000 (TLS Connections Must Be Disabled, Phone A and B Are Video-Enabled)

Expected eventsAction

LineInitializeEx

LineOpen at A and B with extension version 0x000B0000

A does a LineMakeCall to B / B answers the call

Check there is CallDevSpecific event returned.

LineGetCallInfo on A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
665

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

DevSpecificPart of LINECALLINFO For Party A: Video Stream
Information returned for the following:

CompressionType = The actual compression type

BitRate = The actual bit rate

MediaMode = 0x00000000

PacketSize = The actual packet size

bSilenceSupressionFlag = 0x00000000

bKeyInfoPresen = 0x00000000

RxRTPDestinationV6Offset = The actual IPV6 address offset

RxRTPDestinationV6Size = The actual IPV6 address size

RxRTPIPV4Address = The actual IPV4 address

RxRTPIPV4Por t = The actual IPV4 port

RxIpAddrMode = The actual IPV4 mode

TxRTPDestinationV6Offset = The actual IPV6 address offset

TxRTPDestinationV6Size = The actual IPV6 address size

TxRTPIPV4Address = The actual IPV4 address

TxRTPIPV4Port = The actual IPV4 port

TxIpAddrMode = The actual IPV4 mode

MultiMediaEncryptionKey Information returned is the following

AlgorithmID = 0x00000000

TxKeyOffset = 0x00000000

TxKeySize = The actual size

RxKeyOffset = The actual offset

RxKeySize = The actual size

TxSaltOffset = The actual offset

TxSaltSize = The actual size

RxSaltOffset = The actual offset

RxSaltSize = The actual size

TxIsMKIPresent = 0x00000000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
666

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

RxIsMKIPresent = 0x00000000

SecurityIndicator = 0x00000001

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

The value of MediaMode should be changed 0x000000003

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

The value of MediaMode should be changed 0x000000000

CallDevSpecific event returned
-SLDSMT_MULTIMEDIA_STREAMSDATA

The value of MediaMode should be changed 0x000000003

Variation 1:

A does a LineMakeCall to B / B answers the call

Application does LineHold on B

LineGetCallInfo on A and B

Application does LineUnHold on B

LineGetCallInfo on A and B

Application does a LineDrop on B.

LineGetCallInfo on A and B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
667

Message Sequence Charts
Message Sequence Charts

Negotiated Video Capability Will Be Reported to the Called Party Accross a Inter Cluster Call (over SIP – ICT
Trunk) Using Early Offer (Phone A Is Video-Disabled SIP Phone and Phone B Is Video-Enabled, A Is in Cluster
1 and B Is in Cluster 2)

Expected eventsAction

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineInitializeEx

A does a LineMakeCall to B. B answers.

LineGetCallInfo on A

LineGetCallInfo on B

LineShutdown

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

Variation 1:

A and B are SIP Phone and have video enabled.

LineGetCallInfo on A

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
668

Message Sequence Charts
Message Sequence Charts

Multiple Redirect Over SIP Trunk (Phone A, B, and C Are Video-Enabled SIP Phones, Phone D Is Video-Disabled.
Phone A Is in Cluster 1 and Phone B, C, and D Are in Cluster 2)

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

D:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
669

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B.

LineGetCallInfo on B

B redirects the call to C,

LineGetCallInfo on C

C redirects the call to D,

LineGetCallInfo on D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
670

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
671

Message Sequence Charts
Message Sequence Charts

Redirect Over SIP Trunk (Phone A Is Video-Enabled SIP Phone and Phone B and C Is Video-Disabled, Phone
A Is in Cluster 1 and Phone B and C Are in Cluster 2)

Expected eventsAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
672

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B. B answers.

B redirects to C, C answers.

LineGetCallInfo on A

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on C

LineShutdown

A and B have video enabled, C has video disabled

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
673

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A:

A does a LineMakeCall to B. B answers. LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]B redirects to C, C answers.
CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on A

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =

0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
674

Message Sequence Charts
Message Sequence Charts

Shared Line – Hold and Resume Scenario Over SIP Trunk (Phone A and C Are Video-Enabled SIP Phones and
Phone B Is Video-Disabled, Phone A Is in Cluster 1 and Phone B and C Are in Cluster 2. Phone B and C Are
Shared Lines)

Expected eventsAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
675

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B. B answers.

B Holds the call.

C Unholds the call.

LineGetCallInfo on A

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]LineGetCallInfo on C

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineShutdown

A and B are have video enabled and C has video disabled.

A does a LineMakeCall to B. B answers.
A:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
676

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B Holds the call. LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]C Unholds the call.
CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineGetCallInfo on A

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineGetCallInfo on C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
677

Message Sequence Charts
Message Sequence Charts

Multiple Redirect Over H323 ICT Trunk (Phone A, B, C and D Are Video-Enabled SIP Phones, Phone A Is in
Cluster 1 and Phone B, C, and D Are in Cluster 2)

Expected eventsAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
678

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapabilityBitMask = 0x000000001

CalledPartyMultiMediaCapabilityBitMask = 0x000000001

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapabilityBitMask = 0x000000001

CalledPartyMultiMediaCapabilityBitMask = 0x000000001

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

D:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyMultiMediaCapabilityBitMask = 0x000000001

CalledPartyMultiMediaCapabilityBitMask = 0x000000001

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
679

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B.

LineGetCallInfo on B

B redirects the call to C.

LineGetCallInfo on C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
680

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

C redirects the call to D.

LineGetCallInfo on D

LineShutdown

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
681

Message Sequence Charts
Message Sequence Charts

Redirect Over H323 Trunk (Phone A Is Video-Enabled SIP Phone and Phone B and C Are Video-Disabled,
Phone A Is in Cluster 1 and Phone B and C Are in Cluster 2)

Expected eventsAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
682

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineInitializeEx

A does a LineMakeCall to B. B answers.

B redirects to C, C answers.

LineGetCallInfo on A

A:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]LineGetCallInfo on C

CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

LineShutdown

A and B have video enabled, C has video disabled
A:

LINEGETCALLINFO::DEVSPECIFIC exposesA does a LineMakeCall to B. B answers.
CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

B redirects to C, C answers. CalledPartyVideoCapStatus =
0x000000000[CiscoDeviceVideoCapability_Disabled]

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
683

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LineGetCallInfo on A

C:

LINEGETCALLINFO::DEVSPECIFIC exposes

CallingPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

CalledPartyVideoCapStatus =
0x000000001[CiscoDeviceVideoCapability_Enabled]

LineGetCallInfo on C

Direct Transfer Across Lines
Use cases related to Direct Transfer Across Lines feature are mentioned below:

The device mentioned in the use cases also apply to SCCP device and SIP TNP phones when Direct Transfer
is issued from application.

Note

Direct Transfer Across Lines on RoundTable Phones via Application

Device A, B, and C where B is roundtable phone and has line B1 and B2 configured.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
684

Message Sequence Charts
Direct Transfer Across Lines

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = C, Called = B2 , Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = B2

A ‡B1 is connected,

C ‡B2 is on hold

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected C

For B1:

Call goes IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = A

Application sends CciscoLineDevSpecificDirectTransfer on B1
with B2 as consult call

Direct Transfer on Same Line on RoundTable Phones Via Application

Device A, B, C where B is roundtable phone.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
685

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

For B:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

Call-2

LINE_CALLSTATE

param1 = x100, HOLD

Caller = C, Called = B, Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B, Connected = B

A ‡ B (c1) is connected,

C ‡ B (c2) is on hold

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For B:

Call-1 and Call-2 will go IDLE

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B, Connected = A

Application sends CciscoLineDevSpecificDirectTransfer on B
(c1) with c2 as consult call

Direct Transfer Across Lines on RoundTable Phones via Application with Call in Offering State

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
686

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, RINGBACK

Caller = B2, Called = C

For C:

LINE_CALLSTATE

param1 = x100, OFFERING

Caller = B2, Called = C

A (c1) ‡ B1(c2) is on hold,

B2 (c3) ‡ C (c4) is ringing

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For B1:

Call goES IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

param1 = x100, OFFERING

Caller = C, Called = B,

Application sends CciscoLineDevSpecificDirectTransfer on B1
(c2) with B2 (c3) as consult call

Failure of Direct Transfer Calls Across Lines

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
687

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, DIALTONE

A (c1) ‡ B1(c2) is on hold,

Initiate new call (c3) on B2

CciscoLineDevSpecificDirectTransfer gets error as
LINEERR_INVALCALLSTATE.

Application sends CciscoLineDevSpecificDirectTransfer on B1
(c2) with B2 (c3) as consult call

Direct Transfer Calls Across Lines in Conference Scenario

Device A, B, C, D and E where C is roundtable phone and has line C1 and C2 configured.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
688

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C1, connected = C1

A/B/C1 in conference, B is controller, call on C1 is in hold state.

C2 /D/E in conference, D is controller, call on C2 is in connect
state.

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C1, connected = C1

For C1:

ONHOLD

CONFERENCED

Caller = B, called = C1, connected = B

CONFERENCED

Caller = C1, called = A, connected = A

For C2:

CONNECTED

CONFERENCED

Caller = C2, called = D, connected = D

CONFERENCED

Caller = C2, called = E, connected = E

For D:

CONNECTED

CONFERENCED

Caller = D, called = C1, connected = C1

CONFERENCED

Caller = D, called = E, connected = E

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
689

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For E:

CONNECTED

CONFERENCED

Caller = D, called = E, connected = D

CONFERENCED

Caller = E, called = C2, connected = C2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
690

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CciscoLineDevSpecificDirectTransfer will succeed.

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = CB-2, connected = CB-2

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = CB-2, connected = CB-2

For C1:

IDLE

For C2:

IDLE

For D:

CONNECTED

CONFERENCED

Caller = D, called = CB-1, connected = CB-1

CONFERENCED

Caller = D, called = E, connected = E

For E:

CONNECTED

CONFERENCED

Caller = D, called = E, connected = D

CONFERENCED

Caller = E, called = CB-1, connected = CB-1

Application sends CciscoLineDevSpecificDirectTransfer on C1
with C2-call as consult call

Connect Transfer Across Lines on RoundTable Phones

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
691

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, HOLD

Caller = C, Called = B2, Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = B2

A ‡ B1 is connected,

C ‡ B2 is on hold

For A:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B1 Connected C

For B1:

Call goes IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = C, Called = B2, Connected = A

User performs connect transfer on B.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
692

Message Sequence Charts
Message Sequence Charts

Do Not Disturb-Reject

Application Enables DND-R on a Phone
TAPI structuresTAPI messagesAction

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_DND_OPTION_STATUS

dwParam3 = 2

Phone A enables DND-Reject in the admin
pages

Normal Feature Priority

TAPI structuresTAPI messagesAction

Party AWith Phone B DND-R enabled, Phone A
calls Phone B with feature priority as
Normal

LINE_CALLSTATE = IDLE

Party B

No TAPI messages

Feature Priority - Emergency

TAPI structuresTAPI messagesAction

Party AWith Phone B DND-R enabled, Phone A
calls Phone B with feature priority as
Emergency

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
693

Message Sequence Charts
Do Not Disturb-Reject

TAPI structuresTAPI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Party B

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Shared Line Scenario for DND-R

TAPI structuresTAPI messagesAction

Party APhones B and B’ represents shared lines.
Phone B’ is DND-R enabled but not B.
Phone A calls Phone Bwith feature priority
normal

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Party B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
694

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000001

Party B’

LINE_CALLSTATE = CONNECTED

dwParam1 = 0x00000100

dwParam2 = 0x00000002

Application Disables DND-R or Changes the Option for DND

TAPI structuresTAPI messagesAction

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_DND_OPTION_STATUS

dwParam3 = 1

Phone A changes from DND-Reject to
DND-RingerOff.

Drop Any Party
Use cases related to Drop Any Party feature are mentioned below:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
695

Message Sequence Charts
Drop Any Party

Conference: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = False

Expected eventsAction

Conference Model:

Each line in conference will be having 4 callLegs, 3 conferenced
and 1 connected

A,B,C and D are in conference; B is conference Controller.

CallLegs on A:

Connected -to Conference Bridge

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Application does a LineOpen (B) with new Ext ver.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
696

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A is dropped out of conference.

CallLegs after the Party is dropped from Conference:

Each line in conference will be having 4 callLegs, 2 Conferenced,1
IDLE and 1 connected

1. Application does LineRemoveFromConference on the
‘Conferenced’ callLeg on B which is connected to A.

CallLegs on A:

All 4 CallLegs will be in IDLE state

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

IDLE -(on the conferenced callLeg which was connected to A)

CallLegs on C:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

All IDLECallLegs will have CallStateChange Reason
as CtiDropConferee.

Note

Application does a LineOpen (A) with new Ext ver.

Error Message LINEERR_OPERATIONUNAVAIL will be sent
to application

1. Application does LineRemoveFromConference on the
‘Conferenced’ callLeg on A which is connected to B.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
697

Message Sequence Charts
Message Sequence Charts

Conference: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = True

Expected eventsAction

Conference Model:

Each line in conference will be having 4 callLegs, 3 conferenced
and 1 connected

A,B,C and D are in conference; B is conference Controller.

CallLegs on A:

Connected -to Conference Bridge

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -B)

Conferenced -(Connected Id -C)

Application does a LineOpen (A) with new Ext ver.

Application does LineRemoveFromConference on the
‘Conferenced’ callLeg on A which is connected to B.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
698

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B is dropped out of conference.

CallLegs after the Party is dropped from Conference:

Each line in conference will be having 4 callLegs, 2 Conferenced,1
IDLE and 1 connected

1. Drop Ad Hoc Conference = Never

CallLegs on B:

All 4 CallLegs will be in IDLE state

CallLegs on A:

Connected -to Conference Bridge

Conferenced -(Connected Id -C)

Conferenced -(Connected Id -D)

IDLE -(on the conferenced callLeg which was connected to B)

CallLegs on C:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to B)

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -D)

CallLegs on D:

Connected -to Conference Bridge

IDLE -(on the conferenced callLeg which was connected to B)

Conferenced -(Connected Id -A)

Conferenced -(Connected Id -C)

All IDLECallLegs will have CallStateChange Reason
as CtiDropConferee.

Note

B is dropped out of conference and Conference will be ended.

CallLegs after the Party is dropped from Conference:

Each line in conference will be having 4 callLegs, all in IDLE
state

CallLegs on A,B,C and D:

All 4 CallLegs will be in IDLE state

1. Drop Ad Hoc Conference = ‘When Conference Controller
Leaves’

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
699

Message Sequence Charts
Message Sequence Charts

Shared Line-Scenario

Expected eventsAction

Conference Model:

Lines B and C in conference will be having 4 callLegs, 3
conferenced and 1 connected

Lines A and A' will be having 8 CallLegs

A,B,C and A' are in conference; A is conference Controller

Unified CM Parameter "Drop Ad Hoc Conference = Never"

CallLegs on A:

Connected -to Conference Bridge (Active)

Conferenced -(caller Id -A ;Called Id -B; Connected Id -B)
(Active)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A ;Called Id -A' ; Connected Id -A')
(Active)

Connected -to Conference Bridge (Remote in Use)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Remote in Use)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
700

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs on A':

Connected -to Conference Bridge (Active)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Active)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Active)

Connected -to Conference Bridge (Remote in Use)

Conferenced -(caller Id -A ;Called Id -B; Connected Id -B)
(Remote in Use)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A ;Called Id -A'; Connected Id -A')
(Remote in Use)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(caller Id -B ;Called Id -A; Connected Id -A)

Conferenced -(caller Id -B ;Called Id -C; Connected Id -C)

Conferenced -(caller Id -B ;Called Id -A'; Connected Id -A')

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(caller Id -C ;Called Id -A; Connected Id -A)

Conferenced -(caller Id -C ;Called Id -B; Connected Id -B)

Conferenced -(caller Id -C ;Called Id -A' ; Connected Id -A')

Application does a LineOpen (A) with new Ext ver.

Unified CMParameter ‘AdvancedAdHocConference Enabled
= False’

Error LINEERR_INVALCALLSTATE is sent to application.1. Application does LineRemoveFromConference on the
‘Conferenced’ CallLeg on A which is connected to B and
mode is "Inactive or Remote In use".

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
701

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B will be dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

1. Application does LineRemoveFromConference on the
‘Conferenced’ CallLeg on A which is connected to B and
mode is ‘Active’.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
702

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs after the Party is dropped from Conference:

CallLegs on A:

Connected -to Conference Bridge (Active)

IDLE -(on the conferenced callLeg which was connected to A
-B)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A ;Called Id -A'; Connected Id -A')
(Active)

Connected -to Conference Bridge (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Remote in Use)

CallLegs on A':

Connected -to Conference Bridge (Active)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A' ;Called Id -A; Connected Id -A)
(Active)

Connected -to Conference Bridge (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-B)

Conferenced -(caller Id -A ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A ;Called Id -A'; Connected Id -A')
(Remote in Use)

CallLegs on B:

All 4 CallLegs are in IDLE state

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(caller Id -C ;Called Id -A; Connected Id -A)

IDLE -(on the conferenced callLeg which was connected to C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
703

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

-B)

Conferenced -(caller Id -C ;Called Id -A'; Connected Id -A')

Application does a LineOpen (B)with new Ext ver. Unified CM
Parameter Advanced Ad Hoc Conference Enabled = True

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
704

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

A will be dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

1. Application does LineRemoveFromConference on the
‘Conferenced’ CallLeg on B which is connected to A and
mode is "Active".

CallLegs after the Party is dropped from Conference:

CallLegs on A:

IDLE -(on the Connected callLeg which was connected to
Conference Bridge,A-CFB)

IDLE -(on the conferenced callLeg which is connected to A -B)

IDLE -(on the conferenced callLeg which is connected to A -C)

IDLE -(on the conferenced callLeg which is connected to A -A')

Connected -to Conference Bridge (Remote in Use)

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Remote in Use)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Remote in Use)

CallLegs on A':

IDLE -(on the Connected callLeg which was connected to
Conference Bridge,A -CFB)

IDLE -(on the conferenced callLeg which is connected to A -B)

IDLE -(on the conferenced callLeg which is connected to A -C)

IDLE -(on the conferenced callLeg which is connected to A -A')

Connected -to Conference Bridge

Conferenced -(caller Id -A' ;Called Id -C; Connected Id -C)
(Active)

Conferenced -(caller Id -A' ;Called Id -B; Connected Id -B)
(Active)

CallLegs on B:

Connected -to Conference Bridge

Conferenced -(caller Id -B ;Called Id -A; Connected Id -A')

IDLE -(on the conferenced callLeg which was connected to B
-A)

Conferenced -(caller Id -B ;Called Id -C; Connected Id -C)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
705

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs on C:

Connected -to Conference Bridge

Conferenced -(caller Id -C ;Called Id -A'; Connected Id -A')

IDLE -(on the conferenced callLeg which was connected to C
-A)

Conferenced -(caller Id -C ;Called Id -B; Connected Id -B)

Chained Conference

Expected eventsAction

B is disconnected and dropped out of Conference.

A is now in conference with CB2.

LINECALLSTATE Event is sent to Application for Line B with
state = Idle.

A,B and CB2 are in conference(CB1); B is conference Controller

C,D and E are in Conference (CB2); D is conference Controller

Unified CM Parameter Advanced Ad Hoc Conference Enabled
= True

Application does a LineOpen (A) with new Ext ver.

1. Application does LineRemoveFromConference on the
Conferenced" CallLeg on A which is connected to B.

C-Barge: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = True.

Expected eventsAction

B call A and A';

A answers the call and on A' do c-Barge;

A,B and A' will be in conference; A is conference Controller

Unified CM Parameter "Drop Ad Hoc Conference = Never"

Application does a LineOpen (A) with new Ext ver.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
706

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B is dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

CallLegs after the Party is dropped from Conference:

CallLegs on A:

Connected -(on the conferenced callLeg which was connected to
A -A') (Active)

Connected -on the conferenced callLeg which was connected to
A' -A) (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

CallLegs on A':

Connected -(on the conferenced callLeg which was connected to
A' -A) (Active)

Connected -on the conferenced callLeg which was connected to
A -A') (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

CallLegs on B:

All 4 CallLegs are in IDLE state

A' is dropped out of conference.

LINECALLSTATE Event will be sent to Application with state
= Idle.

Application does a LineOpen (A) with new Ext ver.

1. Application does LineRemoveFromConference on the
"Conferenced" CallLeg on A which is connected to B and
mode is Active

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
707

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CallLegs on A':

Connected -(on the conferenced callLeg which was connected to
A -B) (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the conferenced callLeg which was connected to A
-A') (active)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-A) (Remote in Use)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

CallLegs on B:

Connected -(on the conferenced callLeg which was connected to
B -A)

IDLE -(on the conferenced callLeg which was connected to A'
-B)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; B -CFB)

CallLegs after the Party is dropped from Conference:

CallLegs on A:

Connected -(on the conferenced callLeg which was connected to
A -B) (Active)

IDLE -(on the conferenced callLeg which was connected to A'
-B) (Remote in Use)

IDLE -(on the conferenced callLeg which was connected to A
-A') (active)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A -CFB)

IDLE -(on the conferenced callLeg which was connected to A'
-A) (Remote in Use)

IDLE -(on the connected callLegwhich is connected to conference
Bridge; A' -CFB)

1. Application does LineRemoveFromConference on the
Conferenced CallLeg onAwhich is connected to A' andmode
is Active.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
708

Message Sequence Charts
Message Sequence Charts

Early Offer
The following section describes how the application dynamically registers for various port with Early Offer
Support.

Application Dynamically Registers CTI Port with Early Offer Support

Configuration
A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

dwParam1 = x040, InService

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
709

Message Sequence Charts
Early Offer

TSP message to application dataAction

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressing Mode

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is being routed through the SIP trunk with Early Offer
Enabled

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressing Mode

Other Party answers the Call

A:

LINE_CALLSTATE
(LINECALLSTATE_HOLD/LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressing Mode

*** Applications have to set the RTP info as the SetRTP flag is
set.

Hold and unHold the Call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
710

Message Sequence Charts
Message Sequence Charts

TSP message to application dataAction

Line_Reply with Success

Media will be set and Media events will be reported

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

Line_Reply with Error LINEERR_OPERATIONUNAVAIL

But the Media is setup with the RTP information provided at the
SLDSMT_RTP_GET_IP_PORT information request

*** Application should not set the RTP Info Again

Variant 1:

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

New Notification not reported to Application

Call goes to Disconnect State with cause as
LINEDISCONNECTMODE_UNKNOWN

Variant 2:

Application does not set the Filter to receive new Notification
using lineDevSpecific (CCiscoLineDevSpecificSetStatusMsgs)
and Application does not Set RTP at Proceeding State as there is
no Notification

Or

Application does not set RTP info on New Notification

Behavior should be sameVariant 3: A – CTI Port is Registered Secure

Line_Devspecific fails with Error

LINEERR_OPERATIONUNAVAIL

Variant 4: Application tried to disable the Early Offer support on
the CTI Port that is Dynamically Registered with the Early Offer
support

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability
-0x00000000

Application Dynamically Registers CTI Port Without Early Offer Support

Configuration

A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Delayed Offer

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
711

Message Sequence Charts
Application Dynamically Registers CTI Port Without Early Offer Support

TSP message to application dataAction

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

Dwparam1 = x040, InService

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

Application calls LineMakeCall() on A dialing a Party in Cluster2

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) -IPAddressingMode

Other Party answers the Call

Line_Reply with Success

Media will be Setup

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Inf0

Behavior is same and new SLDSMT_RTP_GET_IP_PORT
Notification will not be fired to application.

Variant 1: A – SCCP/SIP Phone

Application Dynamically Registers IPV6 CTI Port with Early Offer Support

Configuration

A – CTI Port; CDC – IPV6 Only

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
712

Message Sequence Charts
Application Dynamically Registers IPV6 CTI Port with Early Offer Support

TSP message to application dataAction

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

Line_Reply with Success

LineInserviceEvent will be repored to Application

Line_LineDevState

Dwparam1 = x040, InService

Application sends
lineDevSpecific(CciscoLineDevSpecificSetIPv6AddressAndMode)
with MediaCaps Info

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

SLDSMT_RTP_GET_IP_PORTNotification for IPV6
CTI Port is not supported.

Note

Application has to set the RTP info after OpenLogicalChannel
Notification.

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is routed through SIP trunk with Early Offer Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits)-IPAddressingMode

Other Party answers the Call

Line_Reply with Success

Media will be Setup

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCallIPv6)
with IPAddress and Port Info

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
713

Message Sequence Charts
Message Sequence Charts

Mutiple Applications Dynamically Register CTI Port/RP

Configuration

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

Applications:

• App1 – Dynamically Registers CTI Port/RP with Early Offer Support

• App2 – Dynamically Registers CTI Port/RP without Early Offer Support

*** App1 and App2 are running on Different Client Machines.

TSP message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

App1 and App2:

lineInitialize

Line_Open successfulApp1 and App2:

lineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessApp1 and App2:

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to the application.

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Line_Devspecific fails with Error

LINEERR_REGISTER_GETPORT_SUPPORT_MISMATCH

App2:

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

Multiple Applications Dynamically Register CTI Port/RP with Early Offer Support

Configuration

A – CTI Port in Cluster1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
714

Message Sequence Charts
Mutiple Applications Dynamically Register CTI Port/RP

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

Applications:

• App1 – Dynamically Registers CTI Port/RP with Early Offer Support

• App2 – Dynamically Registers CTI Port/RP with Early Offer Support

*** App1 and App2 are running on Different Client Machines.

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

App1 and App2:

lineInitialize

Line_Open successful

App1 and App2:

lineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns Success

App1 and App2:

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

App1 and App2:

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to Application.

App1 and App2:

Application sends
lineDevSpecific(CciscoLineDevSpecificPortRegistrationPerCall)
with MediaCaps Info

*** Both Applications set with same Capabilities

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

App1 and App2:

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 1 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

uy (8 bits) – IPAddressing Mode

App1:

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is being routed through the SIP trunk with Early Offer
Enabled

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
715

Message Sequence Charts
Message Sequence Charts

TSP Message to application dataAction

Line_Reply with Success

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificSetRTPParamsForCall)
with IPAddress and Port Info

Line_Reply with error LINEERR_OPERATIONUNAVAIL

App2:

Application sends LineDevSpecific
(CciscoLineDevSpecificSetRTPParamsForCall) with IPAddress
and Port Info different from the Info App1 has set.

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

LINE_DEVSPECIFIC

dwParam1 = compressionType &
SLDSMT_OPEN_LOGICAL_CHANNEL

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy (8 bits) – IPAddressingMode

Other Party answers the Call

Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early Offer
Support

Configuration

A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
716

Message Sequence Charts
Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early Offer Support

TSP Message to application dataAction

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

dwParam1 = x040, InService

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy – IPAddressing Mode

Application calls LineMakeCall() on A dialing a Party in Cluster
2

Call is being routed through the SIP trunk with Early Offer
Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Other Party answers the Call

Line_Reply with Success

*** Disconnect the Existing Call

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability
-0x00000000 – to disable the Early Offer support

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING/
LINECALLSTATE_RINGBACK)

Application calls LineMakeCall() on A dialing a Party in Cluster
2

Call is being routed through the SIP trunk with Early Offer
Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Other Party answers the Call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
717

Message Sequence Charts
Message Sequence Charts

Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early Offer
Support

Configuration

A – CTI Port in Cluster1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns SuccessLineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

LineInserviceEvent reports to Application

Line_LineDevState

Dwparam1 = x040, InService

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001 – to enable the Early Offer support

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy – IPAddressing Mode

Application calls LineMakeCall() on A dialing a Party in Cluster2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
718

Message Sequence Charts
Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early Offer Support

TSP Message to application dataAction

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Media will be set and Media Events will be Reported to
Application

Other Party answers the Call

Behavior is same and new SLDSMT_RTP_GET_IP_PORT
Notification will not be fired to application.

Variant 1: A – SCCP/SIP Phone

Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support

Configuration

A – CTI Port;

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x000B0000 for Line A

LineSetStatusMessages returns Success

LineInserviceEvent reports to Application Line_LineDevState

Dwparam1 = x040, InService

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Devspecific fails with error
LINEERR_OPERATIONUNAVAIL

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is routed through SIP trunk with Early Offer Enabled

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Media will be set andMedia Events will be reported to Application

Other Party answers the Call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
719

Message Sequence Charts
Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support

Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support

Configuration

A – CTI Port;

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

During Installation of CiscoTSP User has to select New Wave
Driver.

lineInitialize

Line_Open successfullineOpen() with Extversion – 0x000B0000 for Line A

LineSetStatusMessages returns Success

LineInserviceEvent reports to Application Line_LineDevState

Dwparam1 = x040, InService

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with SuccessApplication sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with SuccessApplication sends
lineDevSpecific(CCiscoLineDevSpecificSetStatusMsgs) with
m_DevSpecificStatusMsgsFlag=DEVSPECIFIC_GET_IP_PORT
-0x00000400

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)

LINE_DEVSPECIFIC

dwParam1 = SLDSMT_RTP_GET_IP_PORT

dwParam2 = 0x00000xyy

x (ninth Bit from LSB) – 0 – SetRTP

(1-App has to set RTP / 0 – App need not set RTP)

yy – IPAddressing Mode

On this new Notification, applications has to Open the
Port.

Note

Application calls LineMakeCall() on A dialing a Party in Cluster2

Call is routed through SIP trunk with Early Offer Enabled

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
720

Message Sequence Charts
Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support

TSP Message to application dataAction

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

Media will be set andMedia Events will be reported to Application

Other Party answers the Call

Mutiple Applications Statically Register CTI Port

Configuration

A – CTI Port in Cluster 1

Cluster1 and Cluster2 connected via SIP trunk

SIP trunk Supports Early Offer

Applications:

• App1 – Statically Registers CTI Port/RP with Early Offer Support

• App2 – Statically Registers CTI Port/RP without Early Offer Support

*** App1 and App2 are running on Different Client Machines.

TSP Message to application dataAction

Line_reply with Success

Lines will be Enumerated to Application.

App1 and App2: Both Connecting to same CTI Manager

lineInitialize

Line_Open successful

App1 and App2:

lineOpen() with Extversion – 0x800B0000 for Line A

LineSetStatusMessages returns Success

App1 and App2:

LineSetStatusMessages() – with dwLinestates – 0xcc

Line_Reply with Success

App1:

Application sends
lineDevSpecific(CciscoLineDevSpecificEnableFeatureSupport)
with m_Feature – 0x00000001, m_Feature_Capability -
0x00000001

Line_Reply with Success

LineInserviceEvent reports to Application.

App1:

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info to Register A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
721

Message Sequence Charts
Mutiple Applications Statically Register CTI Port

TSP Message to application dataAction

Line_Devspecific fails with Error

LINEERR_REGISTER_GETPORT_SUPPORT_MISMATCH

App2:

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info to Register A

LineReply – success

LINE_CLOSE for the CTI Port

Variant: App1 and App2 connecting to different Cti Managers

App2: (After App1 has already registered CtiPort -A)

Application sends
lineDevSpecific(CCiscoLineDevSpecificUserControlRTPStream)
with MediaCaps Info to register CtiPort A

End-To-End Call Trace

Direct Call Scenario: Variation 1
Application does a LineInitializ. Application opens all lines with new ExtVersion 0x000A0000. A calls B
and B answers the call.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B with new
ExtVesrion 0x000A0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
722

Message Sequence Charts
End-To-End Call Trace

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Direct Call Scenario: Variation 2
A calls B and B answers the call. Application does a LineInitialize. Application opens all lines with new
ExtVersion 0x000A0000.

Expected resultsCTI eventsAction

A calls B. B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
723

Message Sequence Charts
Direct Call Scenario: Variation 2

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

ExistingCallEvent received for A

ExistingCallEvent received for A

LineInitialize

LineOpen on A, LineOpen on B with new
ExtVesrion 0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Consult Transfer Scenario: Variation 1
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. B sets up transfer to C, C answers the call, and B completes the transfer. A is connected to
C.

Expected resultsCTI eventAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
724

Message Sequence Charts
Consult Transfer Scenario: Variation 1

Expected resultsCTI eventAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
725

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B SetupTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

CallGlobalCallHandleChangedEvent
received for C

C answers the call. B completes transfer.

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

(Call between A and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C2

(Consultation call between B and C)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
726

Message Sequence Charts
Message Sequence Charts

Consult Transfer Scenario: Variation 2
A calls B and B answers the call. B sets up transfer to C. Application does a LineInitialize and opens all lines
with new ExtVersion 0x000A0000. Application completes the transfer. A is connected to C.

Expected ResultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

A calls B and B answers the call. B setups
transfer to C and C answers the call

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

ExistingCallEvent received for A (Primary
Call between A and B)

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

ExistingCallEvent received for B (Primary
Call between A and B)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
727

Message Sequence Charts
Consult Transfer Scenario: Variation 2

Expected ResultsCTI eventsAction

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

ExistingCallEvent received for B
(Consultation Call between B and C)

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

ExistingCallEvent received for C
(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

(Primary Call between A and B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

(Primary Call between A and B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChangedEvent
received for C

Applications completes Transfer

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
728

Message Sequence Charts
Message Sequence Charts

Expected ResultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Blind Transfer Scenario
Application does a LineInitialize.Application opens all lines with new ExtVersion 0x000A0000. A calls B
and B answers the call. B does lineBlindTransfer to C. A is connected to C.

Expected resultsCTI eventAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
729

Message Sequence Charts
Blind Transfer Scenario

Expected resultsCTI eventAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for CB lineBlindTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Redirect Scenario
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. Application redirects B to C; A is connected to C.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B with new
ExtVesrion 0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
730

Message Sequence Charts
Redirect Scenario

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for CB redirects call to C.C answers the call

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Shared Line Scenario
Application does a LineInitialize. Application opens all lines with new ExtVersion 0x000A0000. A calls B,
B’. B answers the call.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on B’ with new ExtVesrion
0x000A0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
731

Message Sequence Charts
Shared Line Scenario

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

NewCallEvent received for B’

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B’

Shared Line Scenario with Barge
Application does a LineInitialize.Application opens all lines with new ExtVersion 0x000A0000. A calls B,
B’. B answers the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
732

Message Sequence Charts
Shared Line Scenario with Barge

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on B’ with new ExtVesrion
0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

NewCallEvent received for B’

A calls B, B’answers the call

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B’

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
733

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

B’ barges in

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
734

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

NewCallEvent received for B

NewCallEvent received for B’

CallGlobalCallHandleChangedEvent
received for B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
735

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B’

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

CallGlobalCallHandleChangedEvent
received for B’

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B3

LineGetCallInfo on B’

Call Park Scenario: Variation 1
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. Application initiates a CallPark on B. A is parked on parkedDn. C calls parkDn and C is
connected to A

Service Parameter Preserve globalcallid For Parked Calls set to False

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
736

Message Sequence Charts
Call Park Scenario: Variation 1

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Application initiates linepark on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
737

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A2

NewCallEvent received for C

CallGlobalCallHandleChangedEvent
received for A

C dials parkDn

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A2

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Call Park Scenario: Variation 2
Application does a LineInitialize.Application opens all lines with new ExtVersion 0x000A0000. A calls B
and B answers the call. Application initiates a CallPark on B. A is parked on parkedDn. C calls parkDn and
C is connected to A

Service Parameter Preserve globalcallid For Parked Calls set to True

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
738

Message Sequence Charts
Call Park Scenario: Variation 2

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Application initiates linepark on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
739

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

NewCallEvent received for C

CallGlobalCallHandleChangedEvent
received for C

C dials parkDn

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

3-Party Conference Call Scenario
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. B sets up conference to C, C answers the call, and B completes conference. A, B and C are
in conference.

For all conference scenarios, conference call leg’s Unique Call Reference ID is 0.Note

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
740

Message Sequence Charts
3-Party Conference Call Scenario

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

NewCallEvent received for A

NewCallEvent received for B

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
741

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

NewCallEvent received for B

NewCallEvent received for C

B setupConference to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallnfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChangedEvent
received for C

C answers the call. B completes conference

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
742

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Three-Party Conference Drop Down to Two-Party Call Scenario
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A calls B and B
answers the call. B sets up conference with C, C answers the call, and B completes conference. A,B and C in
conference. C drops from the conference.A connected to B.

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

LineInitialize

Call lineNegotiateVersion with

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
743

Message Sequence Charts
Three-Party Conference Drop Down to Two-Party Call Scenario

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B setupConference to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallnfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChangedEvent
received for C

C answers the call. B completes conference

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

C drops from conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
744

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Conference Chaining Scenario Using Join
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A, B and C are in
Conference1. C, D and E are in another Conference2. Application sends CallJoinRequest to join both the
conference calls.

E drops from the conference.

Expected resultsCTI eventsAction

For A

Unique Call Reference ID = ID1

For B

Unique Call Reference ID = ID2

For C

Unique Call Reference ID = ID3

A, B and C are in conference

For C

Unique Call Reference ID = ID4

For D

Unique Call Reference ID = ID5

For E

Unique Call Reference ID = ID6

C, D and E are in conference

No change in Unique Call Reference ID
after join

Application Joins two confeences

For D

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

CallGlobalCallHandleChanged received
for D

E drops from Conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
745

Message Sequence Charts
Conference Chaining Scenario Using Join

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID

LineGetCallnfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID3

LineGetCallnfo on C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference ID7

LineGetCallInfo on D

Transfer Call Scenario via QSIP Without Path Replacement
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A in Cluster 1 calls
B in Cluster 2, B answers the call, and B sets up transfer to C in Cluster 1. C answers the call and B completes
the transfer. A connected to C.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
746

Message Sequence Charts
Transfer Call Scenario via QSIP Without Path Replacement

Expected resultsCTI eventsAction

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
747

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B SetupTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation Call between B and C)

C answers the call.B completes transfer.

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Transfer Call Scenario via QSIP with Path Replacement
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000. A in Cluster 1 calls
B in Cluster 2, B answers the call and sets up transfer with C in Cluster 1. C answers the call amd B completes
the transfer. A connected to C.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
748

Message Sequence Charts
Transfer Call Scenario via QSIP with Path Replacement

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C with new ExtVesrion
0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
749

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

B SetupTransfer to C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B2

LineGetCallInfo on B

(Consultation Call between B and C)

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

(Consultation Call between B and C)

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

CallGlobalCallHandleChangedEvent
received for C

C answers the call.B completes transfer

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
750

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Hunt List Scenario
LineGroup LG1,LG2 and LG3 configured with A,B and C. HuntList “Hunt_List” configured with Line Groups
LG1,LG2 and LG3. Hunt Pilot “99999” configured with this HuntList.

Application does a LineInitialize. Application opens all lines with new ExtVersion 0x000A0000. D calls
“99999”. Call is routed through A, B and C.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A , LineOpen on B,

LineOpen on C,

LineOpen on D

with new ExtVesrion 0x000A0000

For D

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for D

NewCallEvent received for A

D calls Hunt Pilot DN.Call is first offered
to Phone A, followed by B and then C.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
751

Message Sequence Charts
Hunt List Scenario

Expected resultsCTI eventsAction

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for B

NewCallEvent received for C

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference D1

LineGetCallInfo on D

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference B1

LineGetCallInfo on B

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C1

LineGetCallInfo on C

Call Pickup Scenario: Variation 1
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000.

B and C in same Call Pickup Group. Service Parameter, Auto Call Pickup Enabled, is set to False. A calls B
and C presses the NewCall softkey followed by Call Pickup softkey. Call is redirected to C.

Same Behaviour for Group Pickup.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
752

Message Sequence Charts
Call Pickup Scenario: Variation 1

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C

with new ExtVesrion 0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for C

NewCallEvent received for C

C presses NewCall softkey followed by
Call Pickup softkey

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
753

Message Sequence Charts
Message Sequence Charts

Expected resultsCTI eventsAction

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

Call Pickup Scenario: Variation 2
Application does a LineInitialize and opens all lines with new ExtVersion 0x000A0000.

B and C are in the same Call Pickup Group. Service Parameter Auto Call Pickup Enabled is set to True. A
calls B, C presses NewCall softkey followed by Call Pickup softkey, and call is redirected to C.

Same Behaviour for Group Pickup.

Expected resultsCTI eventsAction

LineInitialize

LineOpen on A, LineOpen on B,

LineOpen on C

with new ExtVesrion 0x000A0000

For A

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For B

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for A

NewCallEvent received for B

A calls B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
754

Message Sequence Charts
Call Pickup Scenario: Variation 2

Expected resultsCTI eventsAction

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

For C

LINE_CALLDEVSPECIFIC event is
received

dwParam1=SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_UNIQUE_CALL_REF_ID_INFO

dwParam3 = 0

NewCallEvent received for C

CallGlobalCallHandleChanged received
for C

C presses NewCall softkey followed by
Call Pickup softkey

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference A1

LineGetCallInfo on A

LINECALLINFO::DEVSPECIFIC would
contain Unique Call Reference C2

LineGetCallInfo on C

EnergyWise Deep Sleep Mode Use Cases
Configuration

Line A on Cisco Unified IP Phones Series 9900, 7900, and 6900 phones connect to an EnergyWise Switch,
LineNegotiate with supported extension 0x000B0000 or higher, in order to receive the reason code in dwparam2
of LINE_LINEDEVSTATE /PHONE_STATE EVENT. From the Device Administration page, Enable Power
save and configure Power On and Power Off timers.

Verify EnergyWisePowerSavePlus Reason Code in LINEDEVSTATE Message
Verify EnergyWisePowerSavePlus Reason code in LINEDEVSTATEmessage, whenDevice unregisters when
going into Deep sleep.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
755

Message Sequence Charts
EnergyWise Deep Sleep Mode Use Cases

Expected resultAction

CiscoTSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 = CiscoLineDevStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

When Phone A goes to Deep Sleep mode and unregisters

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0

When PowerOntime is reached, Cisco Unified IP Phones Series
7900 device registers back to CUCM.

Variance

For Cisco Unified IP Phones Series 9900 and 6900, press the Select Key to power up.

Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend
Verify EnergyWisePowerSavePlus Reason code in PhoneState suspend, whenDevice unregisters when in
Deep Sleep Mode.

Expected resultAction

PhoneInitialize

PhoneOpen on A with ExtVersion xB0000 or higher

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
756

Message Sequence Charts
Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend

Expected resultAction

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 = CiscoPhoneStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

Phone A goes to Deep Sleep Mode and unregisters.

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0

When PowerOntime is reached, Cisco Unified IP Phones Series
7900 device registers back to CUCM.

Variance

For Cisco Unified IP Phones Series 9900 and 6900, press the Select Key to power up.

Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message
Verify EnergyWisePowerSavePlus Reason code in LineDevstate/Phone State message, when unregisters after
Power save idle time-out. Configure power save idle time-out = 20 mins(default = 1 hour).

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
757

Message Sequence Charts
Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 = CiscoPhoneStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 = CiscoLineDevStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

Phone goes to Deep Sleep Mode and unregisters

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
758

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0,

For Cisco Unified IP Phones Series 9900 and 6900, press the
Select Key to power up.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
759

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 = CiscoPhoneStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 = CiscoLineDevStateOutOfServiceReason_
EnergyWisePowerSavePlus

param3 = x0

Power Save idle timer expires and device goes to Deep Sleep and
unregisters

Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message
Verify CallManagerFailure Reason code in LineDevstate/Phone State message, when Device unregisters when
Call Manager service is Restarted from serviceability page.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
760

Message Sequence Charts
Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message

Expected resultAction

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 =
CiscoPhoneStateOutOfServiceReason_CallManagerFailure

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 =
CiscoLineDevStateOutOfServiceReason_CallManagerFailure

param3 = x0

Restart Call Manager services from serviceability page.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
761

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0

Call Manager Restart successful and device registers back

Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event
Verify DeviceUnregister Reason code in LineDevstate/Phone State Event, whenDevice unregisters bymanually
unplugging the Ethernet cable from device.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
762

Message Sequence Charts
Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event

Expected resultAction

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 =
CiscoPhoneStateOutOfServiceReason_DeviceUnregistered

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 =
CiscoLineDevStateOutOfServiceReason_DeviceUnregistered

param3 = x0

Manually unplug the Ethernet cable from device.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
763

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0

Device registers back after plugging back to the switch

Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message
Verify CTILinkFailure Reason code in LineDevstate/Phone State message, when CTIManager services are
stopped.

Expected resultAction

LineInitialize

LineOpen on A with ExtVersion xB0000 or higher

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0

param3 = x0

Set Event filters for Inservice and Outofservice events.

LinesetstatusMessage with dwlineStates flags

LINEDEVSTATE_INSERVICE |
LINEDEVSTATE_OUTOFSERVICE

PhoneInitialize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
764

Message Sequence Charts
Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message

Expected resultAction

PhoneOpen on A with ExtVersion xB0000 or higher

Set Event filters for Resume and Suspend events.

For Example:

PhonesetstatusMessage with dwPhoneStates flags
PHONESTATE_SUSPEND | PHONESTATE_RESUME

Cisco TSP Notifies DeviceOutOfServiceEvent to application
through Phone state event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_SUSPEND

param2 =CiscoPhoneStateOutOfServiceReason_CTILinkFailure

param3 = x0,

Cisco TSP Notifies LineOutOfServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_OUTOFSERVICE

param2 =
CiscoLineDevStateOutOfServiceReason_CTILinkFailure

param3 = x0

Stop CTI Manager services from serviceability page.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
765

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Cisco TSP Notifies LineInServiceEvent to application:

received LINE_LINEDEVSTATE

device = xxx

cbInst = x0

param1 = LINEDEVSTATE_INSERVICE

param2 = x0,

param3 = x0,

Cisco TSP Notifies DeviceInServiceEvent to application through
Phone state Event.

received PHONE_STATE

device = xxx

cbInst = x0

param1 = PHONESTATE_RESUME

param2 = x0,

param3 = x0

Restart CTI Manager services

Extension Mobility Cross Cluster
Common Configuration

• User A has a device profile EM_Profile1 configured with Line1 in Cluster1 (home cluster)

• CiscoTSP uses CTIManager on Cluster1 (home cluster) in order to open provider

TAPI Application Does LineInitializeEx and EMCC User Logs Into a Device
EMCC user logs in to a deviceTitle

Testing the scenariowhere TAPIApplication does LineInitializeEx and EMCCUserLogin
to a Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Step 2:

Application receives LINE_CREATE for Line1

Expected Results

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
766

Message Sequence Charts
Extension Mobility Cross Cluster

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to DeviceH on Cluster1.

TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device

EMCC user logs out of a deviceTitle

Testing the scenario where TAPI Application does LineInitializeEx and EMCCUserLogs
out of a Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Step 2:

Application receives LINE_REMOVE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM logout of a device DeviceH on Cluster1.

Application Does PhoneInitializeEx and EMCC User Logs In to a Device

EMCC user logs in to a deviceTitle

Testing the scenario where TAPI Application does PhoneInitializeEx and EMCCUserLogin to a
Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Step 2:

Application receives PHONE_CREATE for Line1

Expected Results

1. Step1: Open the TAPI Application with User A and do PhoneInitializeEx.

2. Step2: User A EM login to DeviceH on Cluster1.

TAPI Application Does PhoneInitializeEx and EMCC User Logs Out of a Device

EMCC user logs out of a deviceTitle

Testing the scenario where TAPI Application does
PhoneInitializeEx and EMCCUserLogs out of a Device

Description

EM_Profile1 is included in application control list

DeviceH is not in application control list

Test Setup

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
767

Message Sequence Charts
TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device

Step 2:

Application receives PHONE _REMOVE for Line1

Expected Results

1. Step1: Open the TAPI Application with User A and do PhoneInitializeEx.

2. Step2: User A EM logout of a device DeviceH on Cluster1.

EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster)

EMCC user logs in to a device from cluster 2 (visiting cluster)Title

Testing the scenario where EMCCUser Login to a Device from cluster 2 (visiting cluster)Description

EM_Profile1 is included in application control list.Test Setup

Step 2:

Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A goes to the Cluster 2(visiting Cluster) and EM login to a device DeviceV.

EMCC User Logs Out of a Device From Cluster 2 (Visiting Cluster)

EMCC user logs out of a device from cluster 2 (visiting cluster)Title

Testing the scenario where EMCCUser LogOut of a Device from
cluster 2 (visiting cluster)

Description

EM_Profile1 is included in application control list.Test Setup

Step 2:

Application receives LINE_REMOVE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. After the Execution of the above usecase User A EM logout of a device DeviceV.

EMCC User Logs In to a Device with LineH Configured

EMCC user logs in to a device with LineH configuredTitle

Testing the scenario where EMCCUserLogin to a Device with LineH configuredDescription

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
768

Message Sequence Charts
EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster)

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

EMCC User Logs Out of a Device with LineH Configured

EMCC user logs out of a deviceTitle

Testing the scenario where EMCCUserLogs out of a DeviceDescription

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for Line1
• Application receives LINE_CREATE for LineH

Expected Results

1. After the Execution of the above usecase User A EM logout of a device DeviceH on Cluster1.

EMCC User Logs In to a DeviceH Configured for Multiple Lines (LineH)

EMCC user logs in to a DeviceHTitle

Testing the scenario where EMCCUser Login to a DeviceH which is configured for multiple linesDescription

EM_Profile1 is included in application control listTest Setup

Step 2:

• Application receives 2 LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A goes to the Cluster 2(visiting Cluster) and EM login to a device DeviceH(A device with multiple
lines (LineH)).

EMCC User Logs In to a Device with LineH Configured and Administrator Removes the Device
From Application Control List

EMCC user logs in to a device with LineH configured and the administrator removes the device
from the Application Control list

Title

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
769

Message Sequence Charts
EMCC User Logs Out of a Device with LineH Configured

Testing the scenario where EMCCUserLogin to a device with LineH configured and administrator
removes the device from the Application Control list

Description

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Step3:

• Application will not receive any events.

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

3. Administrator removes the DeviceH from application control list.

EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the
Device From Application Control List

EMCC user logs in and logs out of a device with LineH configured and Administrator removes
the device from the Application Control List

Title

Testing the scenario where EMCCUserLogin to a Device with LineH configured and Administrator
removes the device from the Application Control List

Description

EM_Profile1 is included in application control list

DeviceH is included in application control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Step3:

• Application receives LINE_REMOVE for Line1
• Application receives LINE_CREATE for LineH

Step4:

• Application receives LINE_REMOVE for LineH

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

3. User A EM logout of the device DeviceH on Cluster1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
770

Message Sequence Charts
EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the Device From Application Control List

4. Administrator removes the DeviceH from application control list.

EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in Application
Control List

EMCC user logs in to a device with LineH configured and administrator removes the device from
the Application Control list

Title

Testing the scenario where EMCCUserLogin to a device with LineH configured and administrator
removes the device from the Application Control list

Description

EM_Profile1 is not included in Application Control list

DeviceH is included in Application Control list with LineH configured

Test Setup

Step 2:

• Application receives LINE_REMOVE for LineH
• Application receives LINE_CREATE for Line1

Step3:

• Application receives no events since EM_Profile1 is not in control list.

Step4:

• Application receives LINE_REMOVE for LineH

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a device DeviceH on Cluster1.

3. Administrator removes the DeviceH from application control list.

4. User A EM logout of the device DeviceH on Cluster1.

EMCC User Logs In to a DeviceV and EM_Profile Is Removed by Administrator From Application
Control List

EMCC user logs in to a DeviceV and administrator removes the EM_Profile from the Application
Control list

Title

Testing the scenario where EMCCUserLogin to a DeviceV and administrator removes the
EM_Profile from Application Control list

Description

EM_Profile1 is included in Application Control list.Test Setup

Step 2:

• Application receives LINE_CREATE for Line1

Step3:

• Application receives LINE_REMOVE for Line1

Expected Results

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
771

Message Sequence Charts
EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in Application Control List

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User A EM login to a DeviceV (Visiting Device).

3. Administrator removes the EM_Profile1 from application control list.

EMCC User Logs In to a Device Then Application Does Provider Open

EMCC user logs in to a DeviceVTitle

Testing the scenario where EMCCUserLogin to a DeviceV(cluster2). Then the application does
Provider Open

Description

EM_Profile1 is included in Application Control list

DeviceH is not in Application Control list

Test Setup

Step2:

• DeviceV/Line1 will be included in TAPI device/line enumeration

Expected Results

1. User A EM login to DeviceV on Cluster2.

2. Open the TAPI Application with User A and do LineInitializeEx.

EMCC User Logs In to a DeviceV in Visiting Cluster and Administrator Adds the EM_Profile to
Application Control List

EMCC user logs in to a DeviceV in Visiting cluster and administrator adds the EM_Profile to the
Application Control List

Title

Testing the scenario where EMCCUserLogin to a DeviceV in Visiting cluster and Administrator
adds the EM_Profile to the Application Control list

Description

EM_Profile1 is not included in Application Control listTest Setup

Step 2:

• Application will not receive any events as EM_Profile1 not in the Application Control list.

Step3:

• Application receives LINE_CREATE for Line1

Expected Results

1. Open the TAPI Application with User A and do LineInitializeEx.

2. User B EM login to a DeviceV on Cluster2.

3. Administrator Adds the EM_Profile1 to the application control list.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
772

Message Sequence Charts
EMCC User Logs In to a Device Then Application Does Provider Open

Extension Mobility Memory Optimization Option
The following section describes common configuration and use cases for Early Offer Support.

Common Configuration
The message flow in the following figure is described below:

• IP Phone_A is configured in DB with lines Line_A1 and LineA2

• User1 has a device profile EM_Profile1 configured with Line_P11

• User2 has a device profile EM_Profile2 configured with lines Line_P21 and Line_P22

Figure 34: EM Memory Optimization Scenario 1

The message flow in the following figure is described below:

• Application uses Line_N to receive other-device state notifications

Figure 35: EM Memory Optimization Scenario 2

Use Cases
Use cases related to the EM Memory Optimization Option feature are mentioned below:

• Use Case 1

1. Line_A1 and Line_A2 are not opened

2. EM user with Profile_P1 logs in

3. EM user with Profile_P1 logs out

4. EM user with Profile_P1 logs in

The message flow in the following figure is described in steps 1 to 4.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
773

Message Sequence Charts
Extension Mobility Memory Optimization Option

Figure 36: EM Memory Optimization Option Feature Use Case 1

• Use Case 2

1. Line_A1 and Line_A2 has been opened

2. EM user with Profile_P1 logs in

3. Application opens Line_P11

4. EM user with Profile_P1 logs out

5. Application opens Line_A1

The message flow in the following figure is described in steps 1 to 5.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
774

Message Sequence Charts
Message Sequence Charts

Figure 37: EM Memory Optimization Option Feature Use Case 2

• Use Case 3

1. Line_A1 and Line_A2 are not opened

2. EM user with Profile_P1 logs in

3. EM user with Profile_P1 logs out

4. EM user with Profile_P2 logs in

5. EM user with Profile_P2 logs out

The message flow in the following figure is described in steps 1 to 5.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
775

Message Sequence Charts
Message Sequence Charts

Figure 38: EM Memory Optimization Option Feature Use Case 3

• Use Case 4

1. EM user with Profile_P1 logs in

2. Operation request failed on inactive Line_A1

3. EM user with Profile_P1 logs out

4. Operation request failed on inactive Line_P11 with … error code …

The message flow in the following figure is described in steps 1 to 4.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
776

Message Sequence Charts
Message Sequence Charts

Figure 39: EM Memory Optimization Option Feature Use Case 4

External Call Control

Basic Call Initiated From TAPI with External Call Control on Translation Pattern
and CEPM Returns Reject

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B. CEPM returns Reject.

TSP Message to App dataParty

A

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates Call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
777

Message Sequence Charts
External Call Control

TSP Message to App dataParty

A:

LINE_CALLSTATE (LINECALLSTATE_DISCONNECTED,
LINEDISCONNECTMODE_REJECT)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A receives CallStateChangeEvent (Disconnect)

Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns
Divert with Modified Calling and Called Parties

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns divertTo = C, with ModifiedCalling = MA and ModifiedCalled = MB

Call will be extended to C (modified calling and modified called in divert to routing directive, overrides the
calling and called number transformation configured for translation pattern and the call is diverted to C)

TSP Message to App dataParty

A:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallerID = A / CalledID = B1

mod Calling = A1 / mod Called = B1

A receives CallStateChangeEvent (Proceeding)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
778

Message Sequence Charts
Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Divert with Modified Calling and Called Parties

TSP Message to App dataParty

A:

LINE_CALLSTATE (LINECALLSTATE_RINGBACK)/
LINE_CALLINFO

CallerID = A / CalledID = B1 / RedirectingID = MB /

RedirectionID = C

mod Calling = MA / mod Called = B1 /

mod Redirecting = MB / mod Redirection = C

C:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

dwReason = LINECALLREASON_UNKNOWN

extendCallReason = CtiReasonCallIntercept

CallerID = A / CalledID = MB / RedirectingID = MB /

RedirectionID = C

mod Calling = MA / mod Called = MB /

mod Redirecting = MB / mod Redirection = C

A receives CallStateChangeEvent (RingBack)

C receives NewCallEvent

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B1 / ConnectedID = C /

RedirectingID = MB / RedirectionID = C

mod Calling = MA / mod Called = B1 /

mod Connected = C / mod Redirecting = MB /

mod Redirection = C

C:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

CallerID = A / CalledID = MB / ConnectedID = A /

RedirectingID = MB / RedirectionID = C

mod Calling = MA / mod Called = MB /

mod Connected = MA / mod Redirecting = MB /

mod Redirection = C

C answers

A and C receives Connected Call state

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
779

Message Sequence Charts
Message Sequence Charts

Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns
Continue with Modified Calling and Called Parties

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns continue with ModifiedCalling = MA and ModifiedCalled = MB

Call will be extended to MB (modified calling and modified called in continue routing directive, overrides
the calling & called number transformation configured for translation pattern)

TSP Message to App DataParty

A:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates Call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallerID = A / CalledID = B1

mod Calling = A1 / mod Called = B1

A receives CallStateChangeEvent (Proceeding)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
780

Message Sequence Charts
Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties

TSP Message to App DataParty

A:

LINE_CALLSTATE (LINECALLSTATE_RINGBACK)/
LINE_CALLINFO

CallerID = A / CalledID = B1

mod Calling = MA / mod Called = B1

MB:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

CallerID = A / CalledID = MB

mod Calling = MA / mod Called = MB

A receives CallStateChangeEvent (RingBack)

MB receives NewCallEvent

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B1 / ConnectedID = MB

mod Calling = MA / mod Called = B1 /

mod Connected = MB

MB:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = MB / ConnectedID = A

mod Calling = MA / mod Called = MB /

mod Connected = MA

MB answers

A and MB receives Connected Call state

Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM
Returns Continue with Modified Calling and Called Parties in the Consult Call

Configuration

Phone A, B, C are in cluster devices.

Cmatches the translation pattern CXXXwhich has calling and called party transformation defined to transform
B to A1 and C to C1 and External Call Control is also enabled.

Procedure

Application sends a lineMakeCall at A to call B. Application sends a lineSetupConference/lineAddToconference
to B to consult conference the call to C.

Result

Dialed number C matches the translation pattern CXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
781

Message Sequence Charts
Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties

in the Consult Call

CEPM returns continue with ModifiedCalling = MB and ModifiedCalled = MC

Call will be extended to “MC” (modified calling and modified called in continue routing directive, overrides
the calling & called number transformation configured for translation pattern)

After conference is complete, the correct number of CONFERENCE calls are see at all the participants.

TSP Message to App DataParty

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = B

mod Calling = A / mod Called = B /

mod Connected = B

B:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = A

mod Calling = A / mod Called = B /

mod Connected = A

A and B receives Connected Call state

B:

Call-1

LINE_CALLSTATE
(LINECALLSTATE_ONHOLDPENDCONF)

CallerID = A / CalledID = B / ConnectedID = A

mod Calling = A / mod Called = B /

mod Connected = A

Call-2

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/ LINE_CALLINFO

CallerID = B / CalledID = C1

mod Calling = MB / mod Called = C1

MC:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED)

CallerID = B / CalledID = MC

mod Calling = MB / mod Called = MC

B does a lineSetupConference / lineDial to call C.

MC receives NewCallEvent

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
782

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

B:

Call-2

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = B / CalledID = C1 / ConnectedID = MC

mod Calling = MB / mod Called = C1 /

mod Connected = MC

MC:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = B / CalledID = MC / ConnectedID = B

mod Calling = MB / mod Called = MC /

mod Connected = MB

MC answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
783

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

A:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = B

mod Calling = A / mod Called = B /

mod Connected = B

CONNECTED

CONFERENCE

CallerID = A / CalledID = MC / ConnectedID = MC

mod Calling = A / mod Called = MC /

mod Connected = MC

B:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = A

mod Calling = A / mod Called = B /

mod Connected = A

CONNECTED

CONFERENCE

CallerID = B / CalledID = C1 / ConnectedID = MC

mod Calling = B/ mod Called = C1 /

mod Connected = MC

MC:

CONFERENCE

CallerID = B / CalledID = MC / ConnectedID = B

mod Calling = B / mod Called = MC /

mod Connected = B

CONNECTED

CONFERENCE

CallerID = MC / CalledID = A / ConnectedID = A

mod Calling = MC / mod Called = A /

mod Connected = A

B1 does a lineAddToConference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
784

Message Sequence Charts
Message Sequence Charts

Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and
Conferences in the Called Party

Configuration

Phone A, C1, D are in cluster devices. B matches the translation pattern BXXX where External Call Control
is enabled. Application sends a lineMakeCall at A to call B.

CEPM determines this calls need to have a chaperone’s supervise. CEPM returns the permit decision with
the obligation <divert>, destination HuntPilot C, which is a hunt pilot of chaperones, and a reason string
“chaperone”.

CUCM redirects the call to the hunt pilot C, and the chaperone member C1 answers the call.

After talking to A briefly and discovered that A intended to talk to D, the chaperone C1 starts to establish a
conference to D. C1 presses the conference softkey and dials D.

CUCM queries CEPM for the call, with calling user C1 with DN C1, and called user D with DN D.

CEPM returns the response with permit decision with <continue> call routing directive, since the policy server
detects that the caller is the chaperone.

CUCM rings D’s phone and D answers the call.

C1 presses the conference softkey again, and the conference is established.

The chaperone C1 presses the “record” softkey. This triggers the call recording being setup from C1’s IP
phone to the recorder.

When the call recording is eablished successfully, the recording warning tone is playing to the C1’s phone.
The recording warning tone is enabled by setting service parameter Play Recording Notification Tone To
Observed Target to True.

A and D starts to talk under the supervision of the chaperone.

TSP Message to App DataParty

A:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_DIALTONE/
LINECALLSTATE_DIALING)

CallerID = A / CalledID = “”

mod Calling = A / mod Called = “”

A initiates Call to B

A receives NewCallEvent and CallStateChangeEvent
(Dialtone/Dialing)

A:

LINE_CALLSTATE (LINECALLSTATE_PROCEEDING)/
LINE_CALLINFO

CallerID = A / CalledID = B

mod Calling = A / mod Called = B

A receives CallStateChangeEvent (Proceeding) webmail

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
785

Message Sequence Charts
Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and Conferences in the Called Party

TSP Message to App DataParty

A:

LINE_CALLSTATE (LINECALLSTATE_RINGBACK)/
LINE_CALLINFO

CallerID = A / CalledID = B / RedirectingID = B /

RedirectionID = C

mod Calling = A / mod Called = B /

mod Redirecting = B / mod Redirection = C

C1:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED

CallerID = A / CalledID = B / RedirectingID = B /

RedirectionID = C

mod Calling = A / mod Called = B /

mod Redirecting = B / mod Redirection = C

LINECALLINFO::DEVSPECIFIC would contain
IsChaperoneCall = 0x1

A receives CallStateChangeEvent (RingBack)

C1 receives NewCallEvent

A:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = C / RedirectingID
= B / RedirectionID = C

mod Calling = A / mod Called = B / mod Redirecting = B / mod
Connected = B / mod Redirection = C

C1:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = A / CalledID = B / ConnectedID = C / RedirectingID
= B / RedirectionID = C

mod Calling = A / mod Called = B / mod Redirecting = B / mod
Connected = B / mod Redirection = C

C1 answers

A and C1 receives Connected Call state

Line_Reply is returned with an error code of
LINEERR_OPERATION_FAIL_CHAPERONE_DEVICE

Application issues a lineRedirect on call at C1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
786

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

C1:

Call-1

LINE_CALLSTATE
(LINECALLSTATE_ONHOLDPENDCONF)

CallerID = A / CalledID = B / ConnectedID = A / RedirectingID
= B / RedirectionID = C

mod Calling = A / mod Called = B / mod Connected = A / mod
Redirecting = B / mod Redirection = C

CONNECTED

LINECALLINFO::DEVSPECIFIC would contain
IsChaperoneCall = 0x1

Call-2

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_PROCEEDING)/ LINE_CALLINFO

CallerID = C1 / CalledID = D

mod Calling = C1 / mod Called = D

D:

LINE_APPNEWCALL, LINE_CALLSTATE
(LINECALLSTATE_OFFERING/
LINECALLSTATE_ACCEPTED)

CallerID = C1 / CalledID = D

mod Calling = C1 / mod Called = D

C1 does a lineSetupConference / lineDial to call D.

D receives NewCallEvent

C1:

Call-2

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = C1 / CalledID = D / ConnectedID = D

mod Calling = C1 / mod Called = D /

mod Connected = D

D:

LINE_CALLSTATE (LINECALLSTATE_CONNECTED)

CallerID = C1 / CalledID = D / ConnectedID = C1

mod Calling = C1 / mod Called = D / mod Connected = C1

D answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
787

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

C1 does a lineAddToConference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
788

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

A:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = C

/ RedirectingID = B / RedirectionID = C

mod Calling = A / mod Called = B /

mod Redirecting = B / mod Connected = C /

mod Redirection = C

CONNECTED

CONFERENCE

CallerID = A / CalledID = D / ConnectedID = D

mod Calling = A / mod Called = D /

mod Connected = D

C1:

CONFERENCE

CallerID = A / CalledID = B / ConnectedID = A

/ RedirectingID = B / RedirectionID = C

mod Calling = A / mod Called = B /

mod Connected = A / mod Redirecting = B /

mod Redirection = C

CONNECTED

LINECALLINFO::DEVSPECIFIC would contain
IsChaperoneCall = 0x1

CONFERENCE

CallerID = C / CalledID = D / ConnectedID = D

mod Calling = C / mod Called = D /

mod Connected = D

D:

CONFERENCE

CallerID = C / CalledID = D / ConnectedID = C

mod Calling = C / mod Called = D /

mod Connected = C

CONNECTED

CONFERENCE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
789

Message Sequence Charts
Message Sequence Charts

TSP Message to App DataParty

CallerID = D / CalledID = A / ConnectedID = A

mod Calling = D / mod Called = A /

mod Connected = A

C1:

LINE_DEVSPECIFIC(SLDSMT_RECORDING_STARTED, 0,
0)

LINE_DEVSPECIFIC(SLDSMT_LINECALLINFO_
DEVSPECIFICDATA, SLDST_CALL_ATTRIBUTE_INFO, 0)

CallAttributeTye = ‘Recording’

C1’s CCMCallId

Address = R’s DN, Partition = R’s Partition, DeviceName = R’s
DeviceName

Chaperone C1 starts recording to recording device R

Forced Authorization and Client Matter Code Scenarios

Manual Call to a Destination That Requires an FAC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of Manual Call to a Destination that requires an FAC.

Preconditions

Party A is Idle. Party B requires an FAC.

The scenario remains similar if Party B requires a CMC instead of an FAC.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
790

Message Sequence Charts
Forced Authorization and Client Matter Code Scenarios

Table 75: Message Sequences for Manual Call to a Destination That Requires an FAC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A goes off-hook

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
791

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing, Cause =
CauseNoError, Reason =Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Party A dials Party B

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip, Feature =
FACCMC, FACRequired =
True, CMCRequired = False

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
792

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Party A dials the FAC, and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Manual Call to a Destination That Requires Both FAC and CMC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of a manual call to a destination that requires both FAC and CMC.

Preconditions

Party A is Idle. Party B requires an FAC and a CMC.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
793

Message Sequence Charts
Manual Call to a Destination That Requires Both FAC and CMC

Table 76: Message Sequences for Manual Call to a Destination That Requires Both FAC and CMC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A goes off-hook

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
794

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

Party A dials Party B

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED,

CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = True,

CMCRequired = True

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =
CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = False,

CMCRequired = True

Party A dials the FAC

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
795

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Party A dials the CMC, and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

lineMakeCall to a Destination That Requires an FAC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of lineMakeCall to a destination that requires an FAC.

Preconditions

Party A is Idle. Party B requires an FAC. Note that the scenario is similar if Party requires a CMC instead of
an FAC.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
796

Message Sequence Charts
lineMakeCall to a Destination That Requires an FAC

Table 77: Message Sequences for lineMakeCall to a Destination That Requires an FAC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

REASON, CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineMakeCall()
to Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED

CallToneChangedEvent, CH =
C1, Tone = ZipZip, Feature =
FACCMC, FACRequired =
True, CMCRequired = False

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
797

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineDial() with
the FAC in the dial string and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

lineMakeCall to a Destination That Requires Both FAC and CMC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of lineMakeCall to a destination that requires both FAC and CMC. In this scenario, Party A is Idle
and Party B requires both an FAC and a CMC.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
798

Message Sequence Charts
lineMakeCall to a Destination That Requires Both FAC and CMC

Table 78: Message Sequences for lineMakeCall to a Destination That Requires Both FAC and CMC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

REASON, CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineMakeCall()
to Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED,

CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = True,

CMCRequired = True

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
799

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =
CZIPZIP_CMCREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = False,

CMCRequired = True

Party A does a lineDial() with
the FAC in the dial string

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Party A does a lineDial() with
the CMC in the dial string and
Party B accepts the call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

Timeout Waiting for FAC or Invalid FAC
The following table describes the message sequences for the Forced Authorization and Client Matter Code
scenario of timeout waiting for FAC or invalid FAC entered. Here, Party A is Idle and Party B requires an
FAC.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
800

Message Sequence Charts
Timeout Waiting for FAC or Invalid FAC

The scenario remains similar if Party B required a CMC instead of a FAC.

Table 79: Message Sequences for Timeout Waiting for FAC or Invalid FAC

TAPI structuresTAPI messagesCTI MessageActions

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

REASON, CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

Party A does a lineMakeCall()
to Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_CALL_TONE_CHANGED

dwParam2 = CTONE_ZIPZIP

dwParam3 =

CZIPZIP_FACREQUIRED

CallToneChangedEvent, CH =
C1,

Tone = ZipZip,

Feature = FACCMC,

FACRequired = True,

CMCRequired = False

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
801

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI MessageActions

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1=DISCONNECTED

dwParam2 = DISCONNECT

MODE_FACCMC1

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Disconnected,

Cause =

CtiNoRouteToDDestination,

Reason = FACCMC,

Calling = A, Called = NP,

OrigCalled = NP, LR = NP

T302 timer times out waiting for
digits, or Party A does a
lineDial() with an invalid FAC

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = IDLE

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Idle, Cause =
CtiCauseNoError, Reason =
Direct, Calling = A, Called =
NP, OrigCalled = NP, LR = NP

1 dwParam2 get set to DISCONNECTMODE_FACCMC if the extension version on the line is set to at least 0x00050000.
Otherwise, dwParam2 get set to DISCONNECTMODE_UNAVAIL.

Gateway Recording
Table 80: ClusterID and RecordType in LineGetDevCaps

TSP Messages/EventsAction

Application opens the provider.

LINEGETDEVCAPS::DEVSPECIFIC contains

Cisco_LineDevCaps_Ext00080000::recordType = configured recording type

Cisco_LineDevCaps_Ext000D0000::clusteID = cluster ID of the line

Application sends lineGetDevCaps on a line on the
CTI Remote Device

Setup:

A is external caller.

CTI RD has remote destination routed externally through a gateway that does not support recording

Table 81: External Call to a CTI Remote Device Using Ingress Gateway for Forking with Selective Recording

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
802

Message Sequence Charts
Gateway Recording

TSP Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

Setup:

A is external caller.

CTI RD has remote destination routed externally through a gateway that supports recording

Table 82: External Call to a CTI Remote Device Using Egress Gateway for Forking with Automatic Recording

TSP Messages/EventsAction

Application opens the provider.

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_Automatic (6)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A calls the CTI RD, remote destination answers

Setup:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
803

Message Sequence Charts
Message Sequence Charts

A is external caller.

CTI RD has remote destination routed externally through a gateway that supports recording

Table 83: Initiate a Recording at CTIRD Follow by Hold and Resume the Call at the CTIRD

TSP Messages/EventsAction

Application opens the provider.

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_Automatic (6)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A calls the CTI RD, remote destination answers

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) eventCTI RD puts the call on hold

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_Automatic (6)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

CTI RD resumes the call

Setup:

A is external caller.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
804

Message Sequence Charts
Message Sequence Charts

CTI RD has remote destination routed externally through a gateway that supports recording

Table 84: Initiate a Recording at CTIRD Follow by Hold and Resume the Call at the Internal Other Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

No events pass by TSP, recording continueA puts the call on hold

No events pass by TSP, recording continueA resumes the call

Setup:

A, B are internal callers to the CTI RD

CTI RD has remote destination routed externally through a gateway that supports recording

Table 85: Initiate a Recording at CTIRD Follow by Internal Other Party Redirects the Call to an Internal 3rd Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
805

Message Sequence Charts
Message Sequence Charts

TSP Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) eventA redirects the call to B

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

B answers the call

Setup:

A, B are external callers to the CTI RD through a SIP trunk

CTI RD has remote destination routed externally through a gateway that supports recording

Table 86: Initiate a Recording at CTIRD Follow by External Other Party Redirects the Call to an External 3rd Party

TSP Messages/EventsAction

Application opens the provider.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
806

Message Sequence Charts
Message Sequence Charts

TSP Messages/EventsAction

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A redirects the call to B

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

B answers the call

Setup:

A, B are internal callers to the CTI RD

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
807

Message Sequence Charts
Message Sequence Charts

CTI RD has remote destination routed externally through a gateway that supports recording

Table 87: Initiate a Recording at CTIRD Follow by Internal Other Party Transfers the Call to an Internal 3rd Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup transfer to B

B answers the call

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A completes the transfer to B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
808

Message Sequence Charts
Message Sequence Charts

Setup:

A, B are external callers to the CTI RD through a SIP trunk

CTI RD has remote destination routed externally through a gateway that supports recording

Table 88: Initiate a Recording at CTIRD Follow by External Other Party Transfers the Call to an External 3rd Party

TSP Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup transfer to B

B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
809

Message Sequence Charts
Message Sequence Charts

TSP Messages/EventsAction

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A completes the transfer to B

Setup:

A, B are internal callers to the CTI RD

CTI RD has remote destination routed externally through a gateway that supports recording

Table 89: Initiate a Recording at CTIRD Follow by Internal Other Party Conferences an Internal 3rd Party

CTI Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
810

Message Sequence Charts
Message Sequence Charts

CTI Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup conference to B

B answers the call

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

A completes the conference to B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
811

Message Sequence Charts
Message Sequence Charts

CTI Messages/EventsAction

TSP sends a LineDevSpecific(SLDSMT_RECORDING_ENDED) event

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forked

B drops from the conference

Setup:

A, B are internal callers to the CTI RD

CTI RD has remote destination routed externally through a gateway that supports recording

Table 90: Initiate a Recording at CTIRD Follow by Restart Recording That Fails

CTI Messages/EventsAction

Application opens the provider.

A calls the CTI RD, remote destination answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
812

Message Sequence Charts
Message Sequence Charts

CTI Messages/EventsAction

TSP sends a LINE_REPLY

TSP sends a LineDevSpecific(SLDSMT_RECORDING_STARTED) event

LINEGETCALLINFO::DEVSPECIFIC

CallAttributeInfo::

PartyDN = Recorder's DN

PartyPartition = Recorder's Partition

DeviceName = Recorder's Device Name

CallAttributeType = CallAttribute_Recorded_UserInitiatedFromApp (8)

RecordingAttributeInfo_ExtD0::

ForkingDeviceType = MediaForkingType_GW (2)

ForkingDeviceName = trunk name to gateway

GatewayCallProtocolReference = Cisco GUID

ForkingClusterName = clusterID where media is forkedforkingClusterID =
clusterID where media is forked

Application issues a
CCiscoLineDevSpecificStartCallRecordingwith
m_InvocationType =
RecordingInvocationType_UserControlledRecording
(2)

A setup transfer to B

B answers the call

There are no recording resource available so TSP sends a
LineDevSpecific(SLDSMT_RECORDING_FAILED) event

Application needs to restart the recording

A completes the transfer to B

B setup transfer to C

C answers the call

No restart of recording by CTI Remote Device.B completes the transfer to C

Hunt List
Phones -A, B, C and X

Hunt Pilots: HP1

Member LG1, LG2, LG3

HP2.

Member LG11, LG12, LG13 are CTI port

Pickup Group1 : has LG1, lG2, LG3, X

Pickup Group2: has HP1, X

TSP app opens all lines, otherwise will be stated in use case.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
813

Message Sequence Charts
Hunt List

Basic Hunt List Call
Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG1 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
814

Message Sequence Charts
Basic Hunt List Call

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG2 answers the call

Variance : perform the test with all HuntList algorithm

Top-Down algorithm

Circular algorithm

Longest Idle Time algorithm

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
815

Message Sequence Charts
Message Sequence Charts

Hunt List Call Moved to Next Member

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

Called Name = HP1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
816

Message Sequence Charts
Hunt List Call Moved to Next Member

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG2 answers the call

Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
817

Message Sequence Charts
Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot

Events, requests and responsesAction

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Call at LG2 goes IDLE

At LG3:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG2 to LG3

At A: call will go IDLE

LINEDISCONNECTMODE_NOANSWER?

At LG3: call will go IDLE

LINEDISCONNECTMODE_NOANSWER ?

Call is aborted since LG3 does not answer the call.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
818

Message Sequence Charts
Message Sequence Charts

Hunt List Call FWNA with FWNA to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Call at LG2 goes IDLE

At LG3:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG2 to LG3

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
819

Message Sequence Charts
Hunt List Call FWNA with FWNA to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connectedid = B

At LG3: call will go IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

Redirecting = HP1

Redirection = B

Call is FWNA to B, and B answer

Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured

Events, requests and responsesAction

At A:

Call disconnected after it is initiated.

LINEDISCONNECTMODE_BUSY

Make LG1, LG2, LG3 busy

App initiates call from A to HP1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
820

Message Sequence Charts
Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured

Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

Called Name = HP1

HuntPilot = HP1

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

Redirecting = HP1

Redirection = B

Make LG1, LG2, LG3 busy

App initiates call from A to HP1 and the call is forwarded to B

HuntList Call Redirected When in ACCEPT State

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
821

Message Sequence Charts
Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1: Call goes IDLE

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

RedirectingID = HP1

RedirectionID = B

LG1 redirects call to B

Hunt List Call Redirected When in Connected State

Table 91: Message Sequence for Hunt List Call Redirected When in Connected State

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
822

Message Sequence Charts
Hunt List Call Redirected When in Connected State

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LG1 answers the call

At A :

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

RedirectingID = LG1

RedirectionID = B

At LG1: Call goes IDLE

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

RedirectingID = LG1

RedirectionID = B

LG1 redirects call to B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
823

Message Sequence Charts
Message Sequence Charts

Hunt List Call Member Is CTI or RP Port

Events, requests and responsesAction

Similar expectationSame as 8.1, but with CTI port

Hunt List Call Moved to Different Line Group Members and Answered by CTI Port

Table 92: Message Sequence for Hunt List Call Moved to Different Line Group Members and Answered by CTI Port

Events, requests and responsesAction

Similar expectationSame as 8.2, but with CTI port

Hunt List Call Is Redirected to Another Hunt List

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
824

Message Sequence Charts
Hunt List Call Member Is CTI or RP Port

Events, requests and responsesAction

At A: Call goes IDLE

At LG1:

LINE_CALLSTATE -RINGBACK

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

At LG11:

LINE_CALLSTATE -ACCEPTED

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

RedirectionID = HP2

RedirectingID = A

A redirects the call to HP2 and call offered to LG11

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
825

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

Connected = LG11

HuntPilot = HP2

RedirectingID = A

RedirectionID = HP2

At LG11:

LINE_CALLSTATE -OFFERING

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

LG11 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
826

Message Sequence Charts
Message Sequence Charts

Hunt List Call Is Consult Transferred to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = LG1

LG1 setup transfer to B, B answer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
827

Message Sequence Charts
Hunt List Call Is Consult Transferred to Another Line

Events, requests and responsesAction

At A :

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

RedirectionID = B

RedirectingID = LG1

At LG1: both call goes IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = B

Connected = A

RedirectionID = B

RedirectingID = LG1

LG1 completes transfer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
828

Message Sequence Charts
Message Sequence Charts

Hunt List Call Direct Transferred to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 calls to B, B answer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
829

Message Sequence Charts
Hunt List Call Direct Transferred to Another Line

Events, requests and responsesAction

At A :

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

RedirectionID = B

RedirectingID = LG1

At LG1: both call goes IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = B

Connected = A

RedirectionID = B

RedirectingID = LG1

LG1 performs Direct Transfer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
830

Message Sequence Charts
Message Sequence Charts

Hunt List Call Is Conferenced to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
831

Message Sequence Charts
Hunt List Call Is Conferenced to Another Line

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 setup conference to B, B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
832

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
833

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
834

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Called = A

Connected = A

Hunt List Call Is Joined to Another Line

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
835

Message Sequence Charts
Hunt List Call Is Joined to Another Line

Events, requests and responsesAction

At LG1

Call-1: ONHOLD

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

Call-2: CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 calls B, B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
836

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 performs Join

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
837

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
838

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Called = A

Connected = A

Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
839

Message Sequence Charts
Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HG1

LG1 setup conference to HG2, where alerting on LG11, LG11
answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
840

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HP2 ->LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
841

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG11:

CONNECTED

CONFERECED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HG1

HP name = -empty

CONFERECED

Caller = LG11

Called = A

Connected = A

Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List Agent
Answers

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
842

Message Sequence Charts
Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List Agent Answers

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

RINGBACK

Caller = LG1

Called = HP1

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = LG1

Called = HP2

HuntPilot = HP2

LG1 setup conference to HG1, where alerting on LG2,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
843

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = HP1

HuntPilot = HP1

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = HP1

HuntPilot = HP1

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
844

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG2:

ACCEPTED

CONFERECED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HG1

CONFERECED

Caller = LG2

Called = A

Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
845

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

Called Name = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

ConnectedName = LG2

HuntPilot = HP1

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

Called = A

Connected = A

LG2 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
846

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG2:

CONNECTED

CONFERECED

Caller = LG1

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HG1

CONFERECED

Caller = LG11

Hunt List Basic Call with SharedLine
LG1’ is sharedline with LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
847

Message Sequence Charts
Hunt List Basic Call with SharedLine

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

At LG1’:

LINE_CALLSTATE -CONNECTED INACTIVE

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
848

Message Sequence Charts
Message Sequence Charts

Hunt List Basic Call with DND-R Configured on LG1

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG2
since LG1 has DND enabled.. Then LG2 answers

Hunt List Call Put in Conference via Join Operation

Events, requests and responsesAction

At A:

Call-1

LINE_CALLSTATE -CONNECTED

Caller = B

Called = A

Connected = B

At G:

LINE_CALLSTATE -CONNECTED

Caller = B

Called = A

Connected = A

B calls A, A answer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
849

Message Sequence Charts
Hunt List Basic Call with DND-R Configured on LG1

Events, requests and responsesAction

At A:

Call-1 is on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
850

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Application initiates JOIN calls on A with final call as call-1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
851

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = B

Called = A

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = B

Called = A

Connected = A

CONFERECED

Caller = B

Called = LG1

HuntPilot = HP1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
852

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Connected = LG1

HuntPilot = HP1

Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Got call pickup notification of call offering at LG1Line X got notification of the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
853

Message Sequence Charts
Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = X

Called = HP1,

HuntPilot = HP1

ConnectedID = X

At X:

LINE_CALLSTATE -PROCEEDING

Caller = X

Called = PickGroup#

LINE_CALLSTATE -CONNECTED

Caller = X

Called = PickGroup#,

ConnectedID = A

Line X does group pick from LG1

Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup Disabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Got call pickup notification of call offering at LG1Line X got notification of the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
854

Message Sequence Charts
Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup Disabled

Events, requests and responsesAction

Original pickup call goes IDLELine X does group pick from LG1

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1,

HuntPilot = HP1

ConnectedID = X

At X: new call offered at X from server, and answer

LINE_CALLSTATE -CONNECTED

Caller = A

Called = X

ConnectedID = A

X got server call about the pickup call

Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up
Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP2,

HuntPilot = HP2

At LG11:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP2,

HuntPilot = HP2

App initiates call from A to HP2 and the call is offered at LG11

Got call pickup notification of call offering at HP2Line X got notification of the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
855

Message Sequence Charts
Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up Enabled

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP2,

HuntPilot = HP2

ConnectedID = X

At X:

LINE_CALLSTATE -CONNECTED

Caller = X

Called = PickGroup#,

ConnectedID = A

Line X does group pick from HP2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
856

Message Sequence Charts
Message Sequence Charts

Conferenced Hunt List Call Becomes Two-Party Call

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
857

Message Sequence Charts
Conferenced Hunt List Call Becomes Two-Party Call

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

LG1 setup conference to HG2, where alerting on LG11, LG11
answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
858

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

Called Name = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
859

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG11:

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

CONFERECED

Caller = LG11

Called = A

Connected = A

At A:

Conf Parent call goes IDLE

CONFERENCED call to LG11 goes IDLE

CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

Conf Parent call goes IDLE

CONFERENCED call to LG11 goes IDLE

CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

At LG11:

Calls go IDLE

LG11 drops call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
860

Message Sequence Charts
Message Sequence Charts

Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1)

Events, requests and responsesAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

At LG3:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1, and call is offered at LG1, LG2
and LG3

HP Broadcast is not supported when interacting with Call PickUp feature.Note

Hunt List Call Is Involved in c-Barge Conference
LG1’ is sharedline with LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
861

Message Sequence Charts
Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1)

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

At LG1’:

LINE_CALLSTATE -CONNECTED INACTIVE

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
862

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = B

Connected = B

At LG1’:

LINE_CALLSTATE -CONNECTED INACTIVE

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

LINE_CALLSTATE -CONNECTED INACTIVE

CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 setup conference to B, B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
863

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Called Name = B

Connected = B

Called Name = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
864

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1’:

CONNECTED INACTIVE

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Called = A

Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
865

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

CONFERENCED

Caller = A

Called = LG1’

Connected = LG1’

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = LG1

Called = B

Connected = B

CONFERENCED

Caller = LG1

Called = LG1’

Connected = LG1’

LG1’ cBarges in

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
866

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
867

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

CONNECTED INACTIVE

CONFERECED

Caller = LG1’

Called = LG1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = LG1’

Called = B

Connected = B

CONFERENCED

Caller = LG1’

Called = A

Connected = A

At LG1’:

CONNECTED

CONFERECED

Caller = LG1’

Called = LG1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = LG1’

Called = B

Connected = B

CONFERENCED

Caller = LG1’

Called = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
868

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Connected = A

CONNECTED INACTIVE

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

CONFERENCED

Caller = LG1

Called = LG1’

Connected = LG1’

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Called = A

Connected = A

CONFERENCED

Caller = B

Called = LG1’

Connected = LG1’

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
869

Message Sequence Charts
Message Sequence Charts

Hunt List Feature Interact with Four-Party Conference

Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
870

Message Sequence Charts
Hunt List Feature Interact with Four-Party Conference

Events, requests and responsesAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HG2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HG1

LG1 setup conference to HG2, where alerting on LG11, LG11
answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
871

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
872

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = HG2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERECED

Caller = LG1

Called = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

CONNECTED

CONFERECED

Caller = LG1

Called = HP2

HuntPilot = HP2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
873

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Connected = LG11

HuntPilot = HG2

CONFERECED

Caller = LG11

Called = A

Connected = A

At LG1:

ONHOLDPENDINGCONFERENCE

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERECED

Caller = LG1

Called = HP2

Connected = LG11

HuntPilot = HP2

CONNECTED

Caller = LG1

Called = X

Connected = X

At X:

CONNECTED

Caller = LG1

Called = X

Connected = LG1

LG1 setup conference to X, X answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
874

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
875

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

CONFERENCED

Caller = A

Called = X

Connected = X

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERECED

Caller = LG1

Called = HP2

Connected = LG11

HuntPilot = HP2

CONFERENCED

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
876

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

Caller = LG1

Called = X

Connected = X

At LG11:

CONNECTED

CONFERECED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HG1

CONFERECED

Caller = LG11

Called = A

Connected = A

CONFERENCED

Caller = LG11

Called = X

Connected = X

Hunt Pilot Connected Number Feature
HP1 and HP2 are 2 Huntpilots with configuration "Display Line Group Member DN as Connected Party" set.

HP1: LG1, LG2, LG3(LineGroup/MemberDNs

HP2: LG4, LG5, LG6(LineGroups/MemberDNs

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
877

Message Sequence Charts
Hunt Pilot Connected Number Feature

Table 93: Basic Hunt List Call

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
878

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = A

ModifiedRedirectingID =

ModifiedRedirectionID =

LG1 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
879

Message Sequence Charts
Message Sequence Charts

Table 94: Hunt List Call Moved to Next Member

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and call is offered to LG1

Call at LG1 goes IDLE

At LG2:

LINE_CALLSTATE -ACCEPTED

Caller = A,

Called = HP1,

HuntPilot = HP1

Call moves from LG1 to LG2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
880

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG2

HuntPilot = HP1

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG2

At LG2:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = A

LG2 answers the call

Variance : perform the test with all HuntList algorithm

Top-Down algorithm

Circular algorithm

Longest Idle Time algorithm

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
881

Message Sequence Charts
Message Sequence Charts

Table 95: Hunt List Call Is Redirected When It Is in Connected State

Expected eventsAction

At A:

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1,

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

App initiates call from A to HP1 and the call is offered at LG1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
882

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CPN:ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN :ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

LG1 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
883

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CPN:ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CPN :ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = LG1

ModifiedRedirectingID =

ModifiedRedirectionID =

LG1 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
884

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A :

LINE_CALLSTATE -RINGBACK

Caller = A

Called = HP1

HuntPilot = HP1

Connected =

RedirectingID = HP1

RedirectionID = B

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected =

ModifiedRedirectingID = [LG1]

ModifiedRedirectionID = B

At LG1: Call goes IDLE

At B:

LINE_CALLSTATE -ACCEPTED

Caller = A

Called = HP1,

HuntPilot = HP1

RedirectingID = HP1

RedirectionID = B

CPN: ModifiedCalling = A

ModifiedCalled = [LG1]

Modifiedconnected =

ModifiedRedirectingID = LG1

ModifiedRedirectionID = B

LG1 redirects call to B

Table 96: Hunt List Call -member Is CTI / RP Port

Expected eventsAction

Similar expectation as of Basic Hunt Call.Same as ,Table 93: Basic Hunt List Call, on page 878 but with
CTI port

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
885

Message Sequence Charts
Message Sequence Charts

Table 97: Hunt List Call Moved to Different Line Group Members and Answered by CTI Port

Expected eventsAction

Similar expectation as of Hunt List call moved to next member.Same as ,Table 94: Hunt List Call Moved to Next Member, on
page 880 but with CTI port

Table 98: Hunt List Call Is Redirected to Another Hunt List

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
886

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A: Call goes IDLE

At LG1:

LINE_CALLSTATE -RINGBACK

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

CPN: ModifiedCalling = LG1

ModifiedCalled = HP1

Modifiedconnected =

ModifiedRedirectingID = A

ModifiedRedirectionID = HP2

At LG11:

LINE_CALLSTATE -ACCEPTED

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

RedirectionID = HP2

RedirectingID = A

CPN:ModifiedCalling = LG1

ModifiedCalled = HP2

Modifiedconnected =

ModifiedRedirectingID = A

ModifiedRedirectionID = HP2

A redirects the call to HP2 and call offered to LG11

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
887

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

Connected = LG11

HuntPilot = HP2

RedirectingID = A

RedirectionID = HP2

CPN: ModifiedCalling = LG1

ModifiedCalled = HP1

Modifiedconnected = LG11

ModifiedRedirectingID = A

ModifiedRedirectionID = LG11

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP2,

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

RedirectionID = HP2

RedirectingID = A

CPN: ModifiedCalling = LG1

ModifiedCalled = HP2

Modifiedconnected = LG1

ModifiedRedirectingID = A

ModifiedRedirectionID = LG11

LG11 answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
888

Message Sequence Charts
Message Sequence Charts

Table 99: Hunt List Call Is Consult Transferred to Another Line

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = LG1

LG1 setup transfer to B, B answer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
889

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A :

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = B

RedirectionID = B

RedirectingID = HP1

CPN: ModifiedCalling = A

ModifiedCalled = HP1

Modifiedconnected = B

ModifiedRedirectingID = LG1

ModifiedRedirectionID = B

At LG1: both call goes IDLE

At B:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = B

Connected = A

RedirectionID = B

RedirectingID = HP1

CPN: ModifiedCalling = A

ModifiedCalled = B

Modifiedconnected = A

ModifiedRedirectingID = LG1

ModifiedRedirectionID = B

LG1 completes transfer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
890

Message Sequence Charts
Message Sequence Charts

Table 100: Hunt List Call Is Conferenced to Another Line

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONNECTED

Caller = LG1

Called = B

Connected = B

At B:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = B

Connected = B

LG1 setup conference to B, B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
891

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = B

Connected = B

At LG1:

CONNECTED

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED

Caller = LG1

Called = B

Connected = B

At B:

CONNECTED

CONFERENCED

Caller = LG1

Called = B

Connected = LG1

CONFERECED

Caller = B

Called = A

Connected = A

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
892

Message Sequence Charts
Message Sequence Charts

Table 101: Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers

Expected eventsAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
893

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At LG1

ONHOLDPENDINGCONF

CONFERECED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

LG1 setup conference to HP2, where alerting on LG11, LG11
answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
894

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LG1 completes conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
895

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

At A:

CONNECTED

CONFERENCED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

CONFERENCED

Caller = A

Called = LG11

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG1:

CONNECTED

CONFERECED [A-LG1]

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

CONFERENCED[LG1-LG11]

Caller = LG1

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

CONNECTED

CONFERECED [LG11-LG1]

Caller = LG1

Called = HP2

HuntPilot = HP2

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
896

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected = LG1

CONFERECED [LG11-A]

Caller = LG11

Called = A

Connected = A

Caller Consult Transfer Call to Another Hunt List
Events, requests and responsesAction

At A:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = LG1

HuntPilot = HP1

At LG1:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP1

HuntPilot = HP1

Connected = A

App initiates call from A to HP1 and the call is offered at LG1 ,
and LG1 answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
897

Message Sequence Charts
Caller Consult Transfer Call to Another Hunt List

Events, requests and responsesAction

At A

Call-1 is put on HOLD

Call-2

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP2

HuntPilot = HP2

Connected = LG11

HuntPilot = HP2

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = A

Called = HP2

HuntPilot = HP2

Connected = A

A setup transfer to HP2, offered at LG11, LG11 anwser

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
898

Message Sequence Charts
Message Sequence Charts

Events, requests and responsesAction

At LG1 :

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP1

HuntPilot = HP1

Connected = LG11

HuntPilot = HP2

RedirectionID = LG11

RedirectingID = A

At A: both call goes IDLE

At LG11:

LINE_CALLSTATE -CONNECTED

Caller = LG1

HuntPilot = HP1

Called = HP2

HuntPilot = HP2

Connected = LG1

HuntPilot = HP1

RedirectionID = LG11

RedirectingID = A

A completes transfer

Hunt Group Login Status
Use cases related to HuntGroup Login Status with extension feature are mentioned below:

Device A, B.

Application opens the device and the line and set the HuntGroup log in status from Login(1) to Logout(2)

Expected EventsAction

LineInitialize successfulApplication does LineInitialize

LineOpen on A with new ExtVesrion 0x000E0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
899

Message Sequence Charts
Hunt Group Login Status

Expected EventsAction

PhoneInitialize SuccessfulApplication does PhoneInitialize and PhoneOpenwith
Extension Version as 0x00030000

Phone_State SuccessApplication does phoneSetStatusMessages

• dwPhoneStates = 0xffffff

• dwButtonModes = 0xc

• dwButtonStates = 0x1

PHONE_REPLY with SuccessThe request to set the HuntLog Status is sent using
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus

PHONE_STATE received with

• PHONESTATE_CAPSCHANGE=0x00400000

• PHONECAPS_DEVSPECIFIC_HUNTGROUP_

LOGIN_STATUS = 1

• HuntGroupLoginStatus = 2

(CCiscoPhoneDevSpecificSetHuntGroupLoginStatus)...

• PARAM: hPhone

• PARAM: m_HuntGroupLoginStatus = 2
(Logout)

• PARAM: returnCode

Application opens the device and the line and set the HuntGroup log in status from Login(1) to Login(1)

Expected EventsAction

LineInitialize successfulApplication does LineInitialize

LineOpen on A with new ExtVesrion 0x000E0000

PhoneInitialize SuccessfulApplication does PhoneInitialize and PhoneOpenwith
Extension Version as 0x00030000

PHONE_STATE SuccessApplication does phoneSetStatusMessages:

• dwPhoneStates = 0xffffff

• dwButtonModes = 0xc

• dwButtonStates = 0x1

PHONE_REPLY with SuccessThe request to set the HuntLog Status is sent using
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus

No event will be sent to the application.(CCiscoPhoneDevSpecificSetHuntGroupLoginStatus)...

• PARAM: hPhone

• PARAM: m_HuntGroupLoginStatus = 1
(Logout)

• PARAM: returnCode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
900

Message Sequence Charts
Message Sequence Charts

Application opens the device and the line and get HuntGroupLogin status of the device using LineGetDevCaps

Expected EventsAction

LineInitialize successfulApplication does LineInitialize

LineOpen on A with new ExtVesrion 0x000E0000

PhoneInitialize SuccessfulApplication does PhoneInitialize and PhoneOpenwith
Extension Version as 0x00030000

LineGetDevCaps SuccessfulApplication queries the capabilities by using
LineGetDevCapswith the extension 0x000E0000 and
gets back the HuntGroupLogin Status.

Application opens the device and the line and set the HuntGroup Login Status field as any number not falling
in the range of(0,1,2)

Expected EventsAction

LineInitialize successfulApplication does LineInitialize

LineOpen on A with new ExtVesrion 0x000E0000

PhoneInitialize SuccessfulApplication does PhoneInitialize and PhoneOpenwith
Extension Version as 0x00030000

PHONE_STATE SuccessApplication does phoneSetStatusMessages

• dwPhoneStates = 0xffffff

• dwButtonModes = 0xc

• dwButtonStates = 0x1

PHONE_REPLY with errorThe request to set the HuntLog Status is sent using
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus

LINEERR_INVALPARAM is returned to the
application.

(CCiscoPhoneDevSpecificSetHuntGroupLoginStatus)...

• PARAM: hPhone

• PARAM: m_HuntGroupLoginStatus = 5

• PARAM: returnCode

Application updates the HuntGroup Login Status on Unsupported Device.

Expected EventsAction

LineInitialize successfulApplication does LineInitialize

LineOpen on A(Cti Route point) with new ExtVersion
0x000E0000

PhoneInitialize SuccessfulApplication does PhoneInitialize and PhoneOpenwith
Extension Version as 0x00030000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
901

Message Sequence Charts
Message Sequence Charts

Expected EventsAction

PHONE_STATE SuccessApplication does phoneSetStatusMessages

• dwPhoneStates = 0xffffff

• dwButtonModes = 0xc

• dwButtonStates = 0x1

PHONE_REPLY with errorThe request to set the HuntLog Status is sent using
CCiscoPhoneDevSpecificSetHuntGroupLoginStatus

LINEERR_OPERATIONUNAVAIL is returned to
the application.

(CCiscoPhoneDevSpecificSetHuntGroupLoginStatus)...

• PARAM: hPhone

• PARAM: m_HuntGroupLoginStatus = 1

• PARAM: returnCode

Application calls to Hunt Pilot where the Hunt Member is logged into HuntGroup

Login.

Phones - A, B, C

Hunt Pilot - HP1

Member - LG1

LG1 has the members - Phone B and C.

B is Logged out of the huntGroup

Expected EventsAction

LineInitialize successfulApplication does LineInitialize

LineOpen on A with new ExtVesrion

0x000E0000

LineOpen on B with new ExtVesrion

0x000E0000

LineOpen on C with new ExtVesrion

0x000E0000

PhoneInitialize SuccessfulApplication does PhoneInitialize and PhoneOpen on
B with Extension Version as 0x00030000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
902

Message Sequence Charts
Message Sequence Charts

Expected EventsAction

At A:

• LINE_CALLSTATE (DIALING)

• Caller = A

• Called = HP1

• Hunt Pilot= HP1

• LINE_CALLSTATE (PROCEEEDING)

Application initiates call from A to HP(hunt pilot)
and call is offered to LG1

At C:

• LINE_CALLSTATE (OFFERING)

• Caller = A

• Called = HP1

B does not get the call as it is logged out of the
HuntGroup

At C:

• LINE_CALLSTATE (CONNECTED-ACTIVE)

• Caller = A

• Called = HP1

• Hunt Pilot= HP1

• Connected = A

At A:

• LINE_CALLSTATE (CONNECTED-ACTIVE)

• Caller = A

• Called = HP1

• Hunt Pilot= HP1

• Connected = LG1

C starts to ring and accepts the call.

Intercom
This configuration gets used for all the following use cases:

1. IPPhone A has two lines, line1 (1000) and line2 (5000). Line2 represents an intercom line. Speeddial to
5001 with label ìAssistant_1î gets configured.

2. IPPhone B has three lines, line1 (1001), line2 (5001), and Line3 (5002). Line2 and Line3 represent intercom
lines. Speeddial to 5000 with label ìManager_1î gets configured on line2. Line 3 does not have Speeddial
configured for it.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
903

Message Sequence Charts
Intercom

3. IPPhone C has two lines, line1 (1002) and line2 (5003). 5003 represents an intercom line that is configured
with Speeddial to 5002 with label ìAssistant_5002î.

4. IPPhone D has one line (5004). 5004 represnts an intercom line.

5. CTIPort X has two lines, line1 (2000) and line2 (5555). Line2 represents an intercom line. Speedial to
5001 gets configured with label ìAssistant_1î.

6. Intercom lines (5000 to 5003) exists in same partition = Intercom_Group_1 and they remain reachable
from each other. 5004 exists in Intercom_Group_2.

7. Application monitoring all lines on all devices.

Assumption: Application initialized and CTI provided the details on speeddial and lines with intercom line
on all the devices. Behavior should act the same for phones that are running SCCP, and those that are running
SIP.

Application Invoking Speeddial
EventsAction

For 5000

receive LINE_CALLSTATE

cbInst = x0

param1 = x03000000

param2 = x1, ACTIVE

param3 = x0,

Receive StartTransmission event

For 5001

receive LINE_CALLSTATE

cbInst = x0

param1 = x03000000

param2 = x1, ACTIVE

param3 = x0,

Receive StartReception event

Receive zipzip tone with reason as intercom

LineOpen on 5000 & 5001

Initiate InterCom Call on 5000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
904

Message Sequence Charts
Application Invoking Speeddial

Agent Invokes Talkback

EventsAction

For 5000

receive LINE_CALLSTATE

device = x10218

param1 = x100, CONNECTED

param2 = x1, ACTIVE

param3 = x0,

Receive StartReception event

For 5001

receive LINE_CALLSTATE

device = x101f6

cbInst = x0

param1 = x100, CONNECTED

param2 = x1, ACTIVE

param3 = x0,

Receive StartTransmission event

Continuing from the previous use case, 5001 initiates
LineTalkBack from application on the InterCom call

Change the SpeedDial

EventsAction

The new speed dial and label is successfully set for the intercom
line

Receive LineSpeeddialChangeEvent from CTI

Send LINE_DEVSPECIFIC to indicate that speeddial and label
changed

Open line 5000

LineChangeSpeeddial request (speeddial to 5003, label =
“Assistant_5003”)

TAPI returns configured speeddial/label that is configured on the
line.

Application issues LIneGetDevCaps to retrieve speeddial/label
that is set on the line

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
905

Message Sequence Charts
Agent Invokes Talkback

IPv6 Use Cases
The use cases related to IPv6 are provided below:

Register CTI Port with IPv4 When Unified CM Is IPv6 Disabled and Common Device Configuration Is IPv4

Expected resultSteps

Application is able to register CTI Port with IPv4 address.1. Enterprise parameter for IPv6 is disabled. IP addressing mode
for CTI Port = IPv4 only on common device config page.

2. Open provider and do a LineNegotiateExtensionVersion with
the higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext ver. The lineopen
will be delayed till user specifies the Addressing mode

4. Application uses CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv4. Application uses
CciscoLineDevSpecificSendLineOpen to trigger Lineopen.

Register CTI Port with IPv6 When Unified CM Is IPv6 Disabled and Common Device Configuration Is IPv6

Expected resultSteps

Application is not able to register CTI Port. TSP returns error
LINEERR_OPERATIONUNAVAIL

1. Enterprise parameter for IPv6 is disabled. IP addressing mode
for CTI Port = IPv6 only on common device config page.

2. Open provider and do a LineNegotiateExtensionVersion with
the higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext ver. The lineopen
will be delayed till user specifies the Addressing mode

4. Application uses CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv6. Application uses
CciscoLineDevSpecificSendLineOpen to trigger Lineopen.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
906

Message Sequence Charts
IPv6 Use Cases

Register CTI Port with IPv6 When Unified CM Is IPv6 Disabled and Common Device Configuration Is IPv4_v6

Expected resultSteps

Application is not able to register CTI Port. TSP returns error
LINEERR_OPERATIONUNAVAIL

1. Enterprise parameter for IPv6 is disabled. IP addressing mode
for CTI Port = IPv4_v6 on common device config page.

2. Open provider and do a LineNegotiateExtensionVersion with
the higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext ver. The lineopen
will be delayed till user specifies the Addressing mode

4. Application uses CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv6. Application uses
CciscoLineDevSpecificSendLineOpen to trigger Lineopen.

IPv6 Phone A Calls IPv6 Phone B

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress: Blank

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of B.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of A.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv6 calls Phone B which is IPv6

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
907

Message Sequence Charts
Message Sequence Charts

IPv4_v6 Phone Calls IPv6 Phone

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress: IPv4 address of A

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of B.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of A.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv4_v6 calls Phone B which is IPv6

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
908

Message Sequence Charts
Message Sequence Charts

IPv4 Phone Calls IPv6 Phone

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress: IPv4 address of A

FarEndIPAddressIpv6:

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv4 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv4 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv4 calls Phone B which is IPv6

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
909

Message Sequence Charts
Message Sequence Charts

IPv6 Phone Calls IPv4 Phone

Expected resultSteps

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress:

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo will contain the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv4 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv4 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv6 only calls Phone B which is IPv4

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
910

Message Sequence Charts
Message Sequence Charts

IPv6 Phone Calls IPv4_v6 Phone

Expected resultSteps

Existing Call, Do a GetlineCallInfo.

LineCallInfo contains the following in devspecific part,

FarEndIPAddress:

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of MTP
Resource.

ReceptionRTPDestinationAddress = IPv6 address of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in devspecific part,

TransmissionRTPDestinationAddress = IPv6 address of Phone
A.

ReceptionRTPDestinationAddress = IPv6 address of B.

1. Enterprise parameter for IPv6 is enabled.

2. Phone A which is IPv6 only calls Phone B which is IPv4_v6
only.

3. Open lines A and B

4. Events at Phone B

1. While Media is established:

• Events on phone A

• Event on phone B

Common Device Configuration Device Mode Changes From IPv4_v6 to IPv4

Expected resultSteps

Application receives LineDevSpecific for the openedCTI Ports/RP
in the device config indicating that Addressingmode has changed.
All lines registered as IPv6 get a LINE_CLOSE Event.
Application can then re-register these lines later.

User changes the device configuration on common device
configuration from IPv4_v6 to IPv4 only

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
911

Message Sequence Charts
Message Sequence Charts

Common Device Configuration Device Mode Changes From IPv4 to IPv6

Expected resultSteps

Application receives LineDevSpecific for the openedCTI Ports/RP
in the device config indicating that Addressingmode has changed.
All lines registered as IPv4 get a LINE_CLOSE Event.
Application can then re-register these lines later.

User changes the device configuration on common device
configuration from IPv4 only to IPv6 only

Join Across Lines
Setup

Line A on device A

Line B1 and B2 on device B

Line C on device C

Line D on device D

Line B1’ on device B1’, B1’ is a shared line with B1

Join Two Calls From Different Lines to B1

Expected eventsAction

For AA ‡ B1 is HOLD

LINE_CALLSTATE param1 = x100, CONNECTED Caller = A,
Called = B1 Connected B1

C ‡ B2 is connected

For B1: LINE_CALLSTATE param1 = x100, HOLD Caller = A,
Called = B1, Connected = A

For B2: LINE_CALLSTATE param1 = x100, CONNECTED
Caller = C, Called = B2 , Connected = C

For C: LINE_CALLSTATEparam1= x100, CONNECTEDCaller
= C, Called = B2, Connected = B2

For B1’: LINE_CALLSTATE param1 = x100, CONNECTED,
INACTIVE Caller = A, Called = B1, Connected = A

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
912

Message Sequence Charts
Join Across Lines

Expected eventsAction

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B1 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B1)

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

Join Three Calls From Different Lines to B1

Expected eventsAction

A ‡ B1 is hold,

C ‡ B2 is hold

For A:D ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE for call-1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
913

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

param1 = x100, HOLD Caller = C, Called = B2 , Connected = C

LINE_CALLSTATE for call-2

param1 = x100, CONNECTED Caller = D, Called = B2 ,
Connected = D

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For D:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = D, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

CONFERENCED Caller = A Called = D, Connected = D

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

For B2

Call-1 and call-2 will go IDLE

For C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
914

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = C Called = A, Connected = A

CONFERENCED Caller = C Called = D, Connected = D

For D

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = D Called = A, Connected = A

CONFERENCED Caller = D Called = C, Connected = C

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

Join Calls From Different Lines to B1 with Conference

Expected eventsAction

For A:A,B1,C in conference where B1 is controller

D‡ B2 Connected

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = A Called = C, Connected = C

For B1:

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For B2:

LINE_CALLSTATE for call-1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
915

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

param1 = x100, CONNECTED Caller = D, Called = B2 ,
Connected = D

For C:

CONNECTED

CONFERENCED Caller = C, Called = A, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For D:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = D, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

CONFERENCED Caller = A Called = D, Connected = D

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

For B2

Call will go IDLE

For C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
916

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = C Called = A, Connected = A

CONFERENCED Caller = C Called = D, Connected = D

For D

CONNECTED

CONFERENCED Caller = B1, Called = C, Connected = B1

CONFERENCED Caller = D Called = A, Connected = A

CONFERENCED Caller = D Called = C, Connected = C

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

CONFERENCED Caller = B1 Called = D, Connected = D

Join Two Calls From Different Lines to B1 While B1 Is Not Monitored by TAPI

Expected eventsAction

A ‡ B1 is HOLD,

For A:C ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B2:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2 ,
Connected = C

For C:

LINE_CALLSTATE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
917

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For AUser issues join request from phone with the call on B1 as survival
call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B1 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B1)

Join Two Calls From Different Lines to B2

Expected eventsAction

A ‡ B1 is HOLD,

For A:C ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B1:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2 ,
Connected = C

For C:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
918

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For AApplication issues lineDevSpecific(SLDST_JOIN) with the call
on B1 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

CONFERENCED Caller = A Called = C, Connected = C

For B1

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C ??

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B1 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B1)

For B1’

CONNECTED INACTIVE

CONFERENCED Caller = A, Called = B1, Connected = A

CONFERENCED Caller = B1 Called = C, Connected = C

Expected eventsAction

For A:A ‡ B1 is HOLD,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
919

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B1 issues setup conference

C ‡ B2 is connected

LINE_CALLSTATE

param1= x100, CONNECTEDCaller =A, Called =B1Connected
B1

For B1:

Primary call

LINE_CALLSTATE

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B1

Consult call

DIALTONE

For B2:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2 ,
Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED Caller = C, Called = B2,
Connected = B2

For B1’:

LINE_CALLSTATE

param1 = x100, HOLD Caller = A, Called = B1, Connected = A

For A:Application issues lineDevSpecific(SLDST_JOIN) with the call
on B2 as survival call

CONNECTED

CONFERENCED Caller = A, Called = B1, Connected = B2

CONFERENCED Caller = A Called = C, Connected = C

For B1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
920

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Both calls will go IDLE

For B2

CONNECTED

CONFERENCED Caller = B1, Called = A, Connected = A

CONFERENCED Caller = C Called = B1, Connected = C

For C

CONNECTED

CONFERENCED Caller = C, Called = B2, Connected = B2 (or
A)

CONFERENCED Caller = C Called = A, Connected = A (or B2)

For B1’

Calls go IDLE

B1 Performs a Join Across Line Where B1 Is Already in a Conference Created by A

Expected eventsAction

For A:A, B1, C are in a conference created by A

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For A:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
921

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

B2 calls D, D answers

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

OnHold

Conference – Caller = B1, Called = C, Connected = C

For B2:

Connected -Caller = B2, Called = D, Connected = D

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

Connected -Caller = B2, Called = D, Connected = B2

For A:B1 issues a lineDevSpecific(SLDST_JOIN) to join the calls on
B1 and B2.

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = D, Connected = D

For B1:

Conference – Caller = A, Called = B1, Connected = B1

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

Conference – Caller = B1, Called = D, Connected = D

For B2:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
922

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Call will go IDLE

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = D, Connected = D

For D:

Conference – Caller = B1, Called = D, Connected = B1

Connected

Conference – Caller = D, Called = A, Connected = A

Conference – Caller = D, Called = C, Connected = C

B2 Performs a Join Across Line Where B1 Is Already in a Conference Created by A

Expected eventsAction

For A:A,B1,C are in a conference created by A

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For A:B2 calls D, D answers

Conference – Caller = A, Called = B1, Connected = B1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
923

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected

Conference – Caller = A, Called = C, Connected = C

For B1:

Conference – Caller = A, Called = B1, Connected = A

OnHold

Conference – Caller = B1, Called = C, Connected = C

For B2:

Connected -Caller = B2, Called = D, Connected = D

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For D:

Connected -Caller = B2, Called = D, Connected = B2

For A:B2 issues a lineDevSpecific(SLDST_JOIN) to join the calls on
B1 and B2.

Conference – Caller = A, Called = B1, Connected = B2

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = D, Connected = D

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

Conference – Caller = B1, Called = D, Connected = D

For B2:

Call will go IDLE

For C:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
924

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Conference – Caller = B2, Called = C, Connected = B2

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = D, Connected = D

For D:

Conference – Caller = B2, Called = D, Connected = B2

Connected

Conference – Caller = D, Called = A, Connected = A

Conference – Caller = D, Called = C, Connected = C

B1 Performs a Join Across Line Where B1 Is in One Conference and B2 Is in a Separate Conference

Expected eventsAction

For A (GCID-1):A,B1,C are in conference1

D, B2, E are in conference2

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

For B1 (GCID-1):

Conference – Caller = A, Called = B1, Connected = A

OnHold

Conference – Caller = B1, Called = C, Connected = C

For C (GCID-1):

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

For D (GCID-2):

Conference – Caller = D, Called = B2, Connected = B2

Connected

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
925

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Conference – Caller = D, Called = E, Connected = E

For B2 (GCID-2):

Conference – Caller = D, Called = B2, Connected = D

Connected

Conference – Caller = B2, Called = E, Connected = E

For E (GCID-2):

Conference – Caller = B2, Called = E, Connected = B2

Connected

Conference – Caller = E, Called = D, Connected = D

For A:B1 issues a lineDevSpecific(SLDST_JOIN) to join the calls on
B1 and B2.

Conference – Caller = A, Called = B1, Connected = B1

Connected

Conference – Caller = A, Called = C, Connected = C

Conference – Caller = A, Called = CFB-2, Connected = CFB-2

For B1:

Conference – Caller = A, Called = B1, Connected = A

Connected

Conference – Caller = B1, Called = C, Connected = C

Conference – Caller = B1, Called = CFB-2, Connected = CFB-2

For B2:

Call will go IDLE

For C:

Conference – Caller = B1, Called = C, Connected = B1

Connected

Conference – Caller = C, Called = A, Connected = A

Conference – Caller = C, Called = CFB-2, Connected = CFB-2

For D:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
926

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Connected

Conference – Caller = D, Called = E, Connected = E

conference – Caller = D, Called = CFB-1, Connected = CFB-1

For E:

Connected

Conference – Caller = E, Called = D, Connected = D

Conference – Caller = E, Called = CFB-1, Connected = CFB-1

Logical Partitioning
Use cases related to Logical Partitioning feature are mentioned below:

Basic Call Scenario

Basic Call scenario ; Logical partitioning Enabled = true

Basic Call failure due to Logical partitioning Feature Policy.Description

A (VOIP) on one Geolocation

A calls B:

LineMakeCall on A

Dails B (DN)

Variant 1: B Geo-Location was not Configured;B(PSTN);Policy
Config : Interior to Interior

Variant 2: B (PSTN) on another GeoLocation

Test Setup

Variant 1: Call will be successful; Reason: LP_IGNORE.

Variant 2: A goes to Proceeding State and then On A there will
be a DISCONNECTED call state will be sent to application with
cause as LINEDISCONNECTMODE_UNKNOWN.

Expected Results

Redirect Scenario

Redirect scenario ; Logical partitioning Enabled = true

Redirect Call failure due to Logical partitioning Feature Policy.Description

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
927

Message Sequence Charts
Logical Partitioning

Redirect scenario ; Logical partitioning Enabled = true

Two Clusters (Cluster1 and Cluster2) configured with logical
partition policy that will restrict the VOIP calls from Cluster1 to
PSTN calls on Cluster2. (vice versa PSTN to VIOP)

A on Cluster1 (VOIP)

B on Cluster2 (VOIP)

C on Cluster2 (PSTN)

A calls B

B redirects the call to C

Test Setup

Operation fails with error code
LINEERR_OPERATION_FAIL_PARTITIONING_POLICY.

Error code is processed on Cluster2

Expected Results

For Forward Operation same behaviour will be observed.Variants

Transfer Call Scenario

Transfer Call scenario ; Logical partitioning Enabled = true

Transfer Call failure due to Logical partitioning Feature Policy.Description

A (VOIP) in one GeoLocation (GeoLoc 1)

B (VOIP) in another GeoLocation(GeoLoc 2)

C (PSTN)in same GeoLocation as B (GeoLoc 2)

A calls B

SetUpTransfer on B.

On Consult Call at B; Dials C.

Complete Transfer on B.

Test Setup

Operation fails with error code
"LINEERR_OPERATIONUNAVAIL".

Expected Results

For Operation Adhoc Conference same behaviour will be
observed.

Variants

Join Scenario

Join scenario; Logical partitioning Enabled = true

Join failure due to Logical partitioning Feature Policy.Description

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
928

Message Sequence Charts
Message Sequence Charts

Join scenario; Logical partitioning Enabled = true

A (VOIP) in one GeoLocation (GeoLoc 1)

B (VOIP) in another GeoLocation(GeoLoc 2)

C (VOIP)in same GeoLocation as B (GeoLoc 2)

D (PSTN) in same GeoLocation as B (GeoLoc 2)

B has Three Calls

1. B -> A

2. B -> C

3. B -> D

Variant 1: Join on B with B -> A as Primary Call.

Variant 2: Join on B with B -> D as Primary Call.

Variant 3: Join on B with B -> C as Primary Call.

Test Setup

Variant 1: A, B and C will be in conference.

Variant 2: B, C and D will be in conference.

Variant 3:Either A or D will be in conference with B and C.

Expected Results

Shared Line Scenario

CallPickUp scenario ; Logical partitioning Enabled = true

CallPickUp Failure due to Logical partitioning Feature Policy.Description

A (PSTN) on one Geolocation -GeoLoc1

B (VOIP) on one Geolocation -GeoLoc1

C (VOIP) on one Geolocation -GeoLoc2

A Dails B

B Parks the call

C does LineUnPark

Test Setup

Call will be successful on A and A' call will not be presentExpected Results

Shared line features like barge, cbarge, hold & remote resume
should be disabled for calls.

Variants

CallPark: Retrieve Scenario

CallPickUp scenario ; Logical partitioning Enabled = true

CallPickUp Failure due to Logical partitioning Feature Policy.Description

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
929

Message Sequence Charts
Message Sequence Charts

CallPickUp scenario ; Logical partitioning Enabled = true

A (PSTN) on one Geolocation -GeoLoc1

B (VOIP) on one Geolocation -GeoLoc1

C (VOIP) on one Geolocation -GeoLoc2

A Dails B

B Parks the call

C does LineUnPark

Test Setup

CallUpark Will fail with error code
"LINEERR_OPERATIONUNAVAIL".

Expected Results

Basic Call Scenario

Basic Call scenario ; Logical partitioning Enabled = true

Basic Call failure due to Logical partitioning Feature Policy.Description

A (VOIP) on one Geolocation

A calls B:

LineMakeCall on A

Dails B (DN)

Variant 1: B Geo-Location was not Configured;B(PSTN);Policy
Config: Interior to Interior

Variant 2: B (PSTN) on another GeoLocation

Test Setup

Variant 1: Call will be successful; Reason: LP_IGNORE.

Variant 2: A goes to Proceeding State and then On A there will
be a DISCONNECTED call state will be sent to application with
cause as LINEDISCONNECTMODE_UNKNOWN.

Expected Results

Manual Outbound Call
The following table describes the message sequences for Manual Outbound Call when party A is idle.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
930

Message Sequence Charts
Manual Outbound Call

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEven

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct

1. Party A goes off-hook

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP

2. Party A dials Party B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
931

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

3. Party B accepts call

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = B

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Connected,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP

4. Party B answers call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
932

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 = StartReception

dwParam2 = IP Address

dwParam3 = Port

CallStartReceptionEvent, DH =
A, CH = C1

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 = StartTransmission

dwParam2 = IP Address

dwParam3 = Port

CallStartTransmissionEvent,
DH = A, CH = C1

LINE_DEVSPECIFIC events are sent only if the application has requested them by using lineDevSpecific().Note

Monitoring and Recording

Monitoring a Call
A (agent) and B (customer) get connected. BIB on A gets set to on.

TAPI structuresTAPI messagesCTI messagesAction

Party C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
933

Message Sequence Charts
Monitoring and Recording

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = C

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = ORIGIN

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = REASON,
CALLERID

dwParam2 = 0

dwParam3 = 0

NewCallEvent, CH = C3, GCH
= G2, Calling = C, Called = NP,
OrigCalled = NP, LR = NP,
State = Dialtone, Origin =
OutBound, Reason = Direct

C(supervisor) issues start
monitoring req with A’s
permanentLineID as input

Party CA’s BIB automatically answers

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = C

dwCalledID = A

dwConnectedID = A

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

CallStateChangedEvent, CH =
C3, State = Connected, Cause =
CauseNoError, Reason =Direct,
Calling = C, Called = A,
OrigCalled = A, LR = NP

Party A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
934

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-2)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_MONITOR_STARTED

dwParam2 = 0

dwParam3 = 0

MonitoringStartedEvent,

CH = C1

Party C

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = C

dwCalledID = A

dwConnectedID = A

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type:
CallAttribute_SilentMonitorCall_
Target,

CI = C1,

DN = A’s DN,

Partition = A’s Partition,

DeviceName = A’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent,

CH = C3, Type = 2
(MonitorCall_Target),

CI = C1,

Address = A’s DN, Partition =
A’s Partition, DeviceName =
A’s Name

Party A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
935

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type:
CallAttribute_SilentMonitorCall,

CI = C3

DN = C’s DN,

Partition = C’s Partition,

DeviceName = C’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent,

CH = C1, Type = 1
(MonitorCall),

CI = C3

Address = C’s DN, Partition =
C’s Partition, DeviceName =
C’s Name

Party CC drops the call

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = IDLE

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C3, State = Idle, Cause =
CauseNoError, Reason =Direct,
Calling = C, Called = A,
OrigCalled = A, LR = NP

Party A

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_MONITOR_ENDED

dwParam2 =
DisconnectMode_Normal

dwParam3 = 0

MonitoringEndedEvent,

CH = C1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
936

Message Sequence Charts
Message Sequence Charts

Automatic Recording
Recording type on A (agent phone) is configured as Automatic. D is configured as a Recorder Device.

TAPI structuresTAPI messagesCTI messagesAction

Party AA recieves a call from B, and A
answers the call

Recording session gets
established between the agent
phone and the recorder

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Connected, Cause =
CauseNoError, Reason =Direct,
Calling = B, Called = A,
OrigCalled = A, LR = NP

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1 dwOrigin =
OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_RECORDING_
STARTED

dwParam2 = 0

dwParam3 = 0

RecordingStartedEvent,

CH = C1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
937

Message Sequence Charts
Automatic Recording

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type: App Controlled
Recording,

DN = D’s DN,

Partition = D’s Partition,

DeviceName = D’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent

CH = C1, Type = 3 (Automatic
Recording), Address = D’s DN,
Partition = D’s Partition,
DeviceName = D’s Name

Application-Controlled Recording
A (C1) and B (C2) connect. Recording Type on A gets configured as ‘Application Based’. D gets configured
as a Recorder Device.

TAPI structuresTAPI messagesCTI messagesAction

Party AA issues start recording request

Recording session gets
established between the agent
phone and the recorder

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
938

Message Sequence Charts
Application-Controlled Recording

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1 dwOrigin =
OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_RECORDING_
STARTED

dwParam2 = 0

dwParam3 = 0

RecordingStartedEvent,

CH = C1

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

DevSpecifc Data:

Type: App Controlled
Recording,

DN = D’s DN,

Partition = D’s Partition,

DeviceName = D’s Name

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_ATTRIBUTE_
INFO

dwParam3 = 0

LineCallAttributeInfoEvent

CH = C1, Type = 4 (App
Controlled Recording), Address
= D’s DN, Partition = D’s
Partition, DeviceName = D’s
Name

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
939

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = A

dwConnectedID = B

dwRedirectionID = NP

dwRedirectingID = NP

LINE_CALLDEVSPECIFIC

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =
SLDSMT_RECORDING_
ENDED

dwParam2 =
DisconnectMode_Normal

dwParam3 = 0

RecordingEndedEvent,

CH = C1

A issues stopmonitoring request

NuRD (Number Matching for Remote Destination) Support

Park Monitoring
Use cases related to Park Monitoring feature are mentioned below:

Park Monitoring Feature Disabled

Setup:

The Park Monitoring message flag is disabled by default.

Cisco Unified IP phones (future version) running SIP: A(3000), B(3001)

All lines are monitered by TSP

Expected eventsAction

Application will not be notified about the New Parked call through
LINE_NEWCALL event as the park Monitoring flag is disabled.

1. A(3000) calls B(3001)

2. B(3001) receives the call and parks the call

Park Monitoring Feature Enabled

Setup:

Cisco Unified IP phones (future version) running SIP: A(3000), B(3001),C(3002)

All lines are monitered by TSP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
940

Message Sequence Charts
NuRD (Number Matching for Remote Destination) Support

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will be notified about the New Parked call through
LINE_NEWCALL event

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

Application does a LineGetCallInfo.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 2

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

1. A(3000) calls B(3001)

2. B(3001) receives the call and parks the call at 5555

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
941

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 3

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 2:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call at 5555

4. The Park Monitoring Reversion Timer expires while the call
is still parked.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
942

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 6:

Application will receive the LINE_CALLSTATE event with the
Park Status = Forwarded

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

The reason code CtiReasonforwardedNoRetrievewill be updated
in the LINECALLINFO::dwDevSpecificData.ExtendedCallInfo.
dwExtendedCallReason = CtiReasonforwardedNoRetrieve.

Scenario 3:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No Retrieve destination
configured on B(3001) as C(3002)

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked.

1. The Park Monitoring Forward No Retrieve timer expires and
now the call is forwarded to the ParkMonitoring Forward No
Retrieve Destination C(3002).

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
943

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Abandoned.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Application does a LineGetCallInfo.

Scenario 4:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. A(3000) hangs up the call.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 4

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
944

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Retrieved.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Scenario 5:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. The Park Monitoring Reversion Timer Expires while the call
is still parked.

5. C(3002) retrieves the call

Application does a LineGetCallInfo.

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 5

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled: ParkedParty = 3000

dwCalledIDName: ParkedPartyPartition = P1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
945

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 6:

Application will receive the LINE_CALLSTATE event with the
Park Status = Forwarded.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Application does a LineGetCallInfo.

Scenario 6:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No retrieve destination not
configured.

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked

6. The Park Monitoring Forward No Retrieve timer expires and
the call is forwarded to the Parkers line. LineCallInfo will contain the following:

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled: ParkedParty = 3000

dwCalledIDName: ParkedPartyPartition = P1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
946

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B

At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 6:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

At Step 7:

Application will receive the LINE_CALLSTATE event with the
Park Status = Forwarded.

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Scenario 7:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No retrieve destination
configured as self(Parkers Line)

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked

6. The Park Monitoring Reversion Timer Expires while the call
is still parked

7. The Park Monitoring Forward No Retrieve timer expires and
the call is forwarded to the Parkers line.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Parked Call Exists

Setup:

Cisco Unified IP phones (future version) running SIP: A(3000), B(3001).

B is not monitered by TSP.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
947

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 4:

Application will be notified about the Parked call through
LINE_NEWCALL event.when ever cisco TSP recives the
LINE_PARK_STATUS event for already parked call.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 2

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. Now the Line B(3001) is monitered by TSP

Shared Line Scenario

Setup:

A(3000) ,D(3003) are Cisco Unified IP phones (future version) running SIP

B(3001) and B'(3001) are shared lines for Cisco Unified IP phones (future version) running SIP

C(3002) and C'(3002) are shared lines where C is a Cisco Unified IP phone (future version) running SIP and
C' is a Cisco Unified IP Phone 7900 Series running SIP .

For the shared lines the events will be delivered to the phone which parks the call .Events will not be delivered
to the other phone though the line is shared.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
948

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Reminder.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) and B'(3001) starts ringing. B(3001) receives the
call and parks the call

4. Park Monitoring reversion timer expires while the call is still
parked.

5. D(3003) retrieves the call
At Step 5:

Application will receive the LINE_CALLSTATE event with the
Park Status = Retrieved

Application will receive the LINE_CALLSTATE event with
callstate IDLE.

Application does a LineGetCallInfo.

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName :TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 5

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
949

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

Park Status Event will be sent only to B not B'.

At Step 4:

Application will receive the LINE_CALLSTATE event with the
Park Status = Parked.

At Step 5:

Application receives the LINE_CALLSTATE event with the Park
Status = Reminder.

At Step 6:

Application receives the LINE_CALLSTATE event with the Park
Status = Forwarded.

Scenario 2:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. The Park Monitoring Forward No retrieve destination
configured as B(3001)

3. A(3000) calls B(3001)

4. B(3001) and B'(3001) starts ringing. B(3001)receives the call
and parks the call

5. The Park Monitoring Reversion Timer Expires while the call
is still parked.

6. The Park Monitoring Forward No Retrieve timer expires and
call is forwarded to B(3001).Both B(3001) and B'(3001) starts
ringing as they are shared lines.

Application receive the LINE_CALLSTATE event with callstate
IDLE.

Application does a LineGetCallInfo.

LineCallInfo contains the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Park Status Event on C'.

At Step 3:

Application is notified about the New Parked call through
LINE_NEWCALL event as the call is parked by the Normal TNP
phone.

Scenario 3:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls C(3002)

3. C(3002) and C'(3002) starts ringing. C'(3002) receives the
call and parks the call

4. D(3003) retrieves the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
950

Message Sequence Charts
Message Sequence Charts

Park Monitoring Feature Disabled

Setup:

The Park Monitoring message flag is Enabled using SLDST_SET_STATUS_MESSAGES request for line
B(3001).

A(3000), D(3003) is a Cisco Unified IP phones (future version)

Application invokes the Line_open () API on provider to monitor ParkDN

.

Expected eventsAction

Park Status Event on B:

At Step 3:

Application receives the LINE_NEW_CALL event for PARKDN.

At Step 3:

Application receives the LINE_PARK_STATUS event with the
Park Status = Parked.

At Step 4:

Application will receive the LINE_CALL_STATE event with the
Park Status = Reminder.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason :LINECALLREASON_PARKED

dwRedirectingIDName :TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 3

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 1:

1. The Park Monitoring message flag is Enabled using
SLDST_SET_STATUS_MESSAGES request for Line
B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. The Park Monitoring Reversion Timer Expires while the call
is still parked.

Persistent Connection Use Cases
The following pre-conditions apply to all persistent call use cases, unless specified:

• The provider is in IN_SERVICE state.

• All addresses and terminals are already in service.

• Device A (CTI Remote Device - Name: "CTIRDtapi", Line A1 (dn: 881000))

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
951

Message Sequence Charts
Persistent Connection Use Cases

Remote destination 1 (Name: "rd", Number: "78000")

• Device B (IP Phone - Name: "SEP001319ACCA26", Line B1 (dn: 1000))

• Device C (IP Phone - Name: "SEP00156247EE60", Line C1 (dn: 2000))

• User1 has in its control list: Devices A, B and C. All devices and lines are observed.

Table 102: Call createPersistentCall() on an Address That Is Not Configured to a Remote Terminal Device, i.e. on an IP Phone

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

COMMAND_NOT_IMPLEMENTED_
ON_DEVICE.

Caught exception
com.cisco.jtapi.PlatformException: Internal
callprocessing error :Device does not
support the command

User1 invokes CiscoAddress.
createPersistentCall ("SEP00156247EE60",
"5000", "remote") on device C.

Table 103: Call createPersistentCall()on an Address That Is Configured to a Remote Terminal Device Where Active RD Is Not Set

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_REMOTE_DEVICE_REQUEST_
FAILED_ ACTIVE_RD_NOT_SET.

Caught exception
com.cisco.jtapi.PlatformException: The
active remote destination is not set.

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

Table 104: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD Is Set. Verify That Persistent Call Is
Connected

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
true) on device A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
952

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv

CTIRDjtapi

Call answered at remote destination, dn =
78000

((CiscoAddress.
getPersistentConnection("CTIRDjtapi")).
getCall()).isPersistentCall() = true.

User1 invokes CiscoAddress.
getPersistentConnection ("CTIRDjtapi")
and verify that the connection for the
persistent call is returned and uses that to
get the Call object and confirm it is for the
persistent call.

Provider.getCalls() = nullUser1 invokes Provider.getCalls()

Address.getConnections() on line A = nullUser1 invokes Address.getConnections()
on line A.

Terminal.getTerminalConnections() on
device A = null

User1 invokes Terminal.getTerminal
Connections() on device A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
953

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Disconnect/drop the persistent call. User1
invokes either Call.drop() or
Connection.disconnect()

Table 105: Call createPersistentCall() on an Address Configured to a Remote Terminal Device Where a Persistent Call Already Exists

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_PERSISTENT_CALL_EXISTS.

Caught exception
com.cisco.jtapi.PlatformException:
Persistent Call exists.

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "6000",
"remote2") on device A.

Table 106: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD Is Set. Verify That Persistent Call Is
Connected and Then Have Remote Destination Hang Up

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"
CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000", true)
on device A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
954

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Remote destination with dn = 78000 hangs
up.

Table 107: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD = True. Verify That Persistent Call Is
Connected. Set Active RD = False and Verify That Persistent Call Is Dropped

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
955

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"
CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminal
RemoteDestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000", true)
on device A

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
956

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = false

CiscoProvTerminal
RemoteDestinationChangedEv

See persistent call gets dropped:

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000",
false) on device A.

Table 108: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD = True. Verify That Persistent Call Is
Connected. Make Incoming Customer Call to Same Remote Terminal Device

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminal
RemoteDestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000", true)
on device A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
957

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
958

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 1000,

CalledAddress = 8881000,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 8881000

GC2: CallActiveEv

GC2: ConnCreatedEv 1000

GC2: ConnConnectedEv 1000

GC2: CallCtlConnInitiatedEv 1000

GC2: TermConnCreatedEv
SEP001319ACCA26

GC2: TermConnActiveEv
SEP001319ACCA26

GC2: CallCtlTermConnTalkingEv
SEP001319ACCA26

GC2: CallCtlConnDialingEv 1000

GC2: CallCtlConnEstablishedEv 1000

GC2: ConnCreatedEv 8881000

GC2: ConnInProgressEv 8881000

GC2: CallCtlConnOfferedEv 8881000

GC2: ConnAlertingEv 8881000

GC2: CallCtlConnAlertingEv 8881000

GC2: TermConnCreatedEv CTIRDjtapi

GC2: TermConnRingingEv CTIRDjtapi

GC2: CallCtlTermConnRingingEv
CTIRDjtapi

Call.connect("SEP001319ACCA26",
"1000", "8881000")

GC2: ConnConnectedEv 8881000

GC2: CallCtlConnEstablishedEv 8881000

GC2: TermConnActiveEv CTIRDjtapi

GC2: CallCtlTermConnTalkingEv
CTIRDjtapi

Call is answered at device A

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = false.

CiscoProvTerminal
RemoteDestinationChangedEv

Both persistent call with GC1 and customer
call with GC2 are not dropped/disconnected
even though active rd = false.

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination("78000",
false) on device A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
959

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

GC2: TermConnDroppedEv
SEP001319ACCA26

GC2: CallCtlTermConnDroppedEv
SEP001319ACCA26

GC2: ConnDisconnectedEv 1000

GC2: CallCtlConnDisconnectedEv 1000

GC2: TermConnDroppedEv CTIRDjtapi

GC2: CallCtlTermConnDroppedEv
CTIRDjtapi

GC2: ConnDisconnectedEv 8881000

GC2: CallCtlConnDisconnectedEv
8881000

GC2: CallInvalidEv

Since there are no active calls on device A
and active rd is now false, the persistent
call with GC1 is now
dropped/disconnected.

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Customer call with GC2 is
disconnected/dropped. User1 invokes either
Call.drop() or Connection.disconnect() on
the call with GC2.

Table 109: Have a Persistent Call and Customer Call Connected. Invoke hold() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
960

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke hold() on the persistent call with
GC1.

Table 110: Have a Persistent Call and Customer Call Connected. Invoke startRecording() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke startRecording() on the persistent
call with GC1.

Table 111: Have a Persistent Call and Customer Call Connected. Invoke stopRecording() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke stopRecording() on the persistent
call with GC1. Make sure Selective call
recording is enabled.

Table 112: Have a Persistent Call and Customer Call Connected. Invoke conference() on the Persistent Call Where Persistent Call Is Primary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
961

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke conference() where persistent call
with GC1 is the primary call and customer
call with GC2 is the secondary call (jtapi
internally calling join() for this).

Table 113: Have a Persistent Call and Customer Call Connected. Invoke conference() on the Persistent Call Where Persistent Call Is Secondary Which Should Be
Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke conference() where customer call
with GC2 is primary call and persistent call
with GC1 is secondary call (jtapi internally
calling join() for this).

Table 114: Have a Persistent Call and Customer Call Connected. Invoke park() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke park().

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
962

Message Sequence Charts
Message Sequence Charts

Table 115: Have a Persistent Call and Customer Call Connected. Invoke transfer() on the Persistent Call Where Pc Is Primary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(Call) where persistent call
with GC1 is primary call and customer call
with GC2 is secondary.

Table 116: Have a Persistent Call and Customer Call Connected. Invoke transfer() on the Persistent Call Where Pc Is Primary to Another Dn Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(String address) where
persistent call with GC1 is primary call to
line C (dn = 2000).

Table 117: Have a Persistent Call and Customer Call Connected. Invoke transfer() on the Persistent Call Where Pc Is Secondary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(Call) where customer call
with GC2 is primary call and persistent call
with GC1 is secondary.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
963

Message Sequence Charts
Message Sequence Charts

Table 118: Have a Persistent Call and Customer Call Connected. Invoke consult() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Make consult call from device A to line C
(dn = 2000).

Table 119: Have a Persistent Call and Customer Call Connected. Invoke pickup() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke pickup("8881000") on device A.

Table 120: Have a Persistent Call and Customer Call Connected. Invoke otherPickup() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke otherPickup("8881000") on device
A.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
964

Message Sequence Charts
Message Sequence Charts

Table 121: Have a Persistent Call and Customer Call Connected. Invoke redirect() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT_ALLOWED_
ON_PERSISTENT _CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke redirect("2000") on the persistent
call.

Presentation Indication

Making a Call Through Translation Pattern
The following table describes the message sequences for the Presentation Indication scenario of making a call
through translation pattern. In the Translation Pattern admin pages, both the callerID/Name and
ConnectedID/Name get set to "Restricted".

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1, GCH = G1,

Calling = A, Called = NP,
OrigCalled = NP, LR = NP,
State = Dialtone, Origin =
OutBound, Reason = Direct

Party A goes off-hook

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
965

Message Sequence Charts
Presentation Indication

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Dialtone, Cause =
CauseNoError, Reason =Direct,
Calling = A, Called = NP,
OrigCalled = NP, LR = NP

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Dialing, Cause =
CauseNoError, Reason =Direct,
Calling = A, Called = NP,
OrigCalled = NP, LR = NP

Party A dials Party B through
Translation pattern

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A
dwCallerIDName = A's Name

dwCalledID = B

dwCalledIDName = B’s name
dwConnectedID = NP

dwConnectedIDName = NP

dwRedirectionID = NP
dwRedirectionIDName = NP

dwRedirectionID = NP
dwRedirectionIDName = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Proceeding, Cause
= CauseNoError, Reason =
Direct, Calling = A,
CallingPartyPI = Allowed,
Called = B, CalledPartyPI =
Restricted, OrigCalled = B,
OrigCalledPI = restricted, LR =
NP

Party B accepts the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
966

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP

dwRedirectionID = NP

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Ringback, Cause =
CauseNoError, Reason =Direct,
Calling = A, CallingPI =
Allowed, Called = B, CalledPI
= Restricted, OrigCalled = B,
OrigCalledPI = Restricted, LR
= NP

Party B accepts the call

(continued)

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A
dwCallerIDName = A's Name

dwCalledID = B
dwCalledIDName = B’s Name

dwConnectedID = A,
dwConnectedIDName =

A's Name,

dwRedirectingID = NP

dwRedirectingIDName = NP

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C1, State = Connected, Cause =
CauseNoError, Reason =Direct,
Calling = A, CallingPI =
Allowed, Called = B, CalledPI
= Restricted, OrigCalled = B,
OrigCalledPI = Restricted, LR
= NP

Party B answers the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
967

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_DEVSPECIFIC

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 =

StartReception

dwParam2 = IP Address

dwParam3 = Port

CallStartReceptionEvent, DH =
A, CH = C1

No changeLINE_DEVSPECIFIC1

hDevice = hCall-1

dwCallBackInstance = 0

dwParam1 =

StartTransmission

dwParam2 = IP Address

dwParam3 = Port

CallStartTransmissionEvent,
DH = A, CH = C1

LINE_DEVSPECIFIC events only get sent if the application requested them by using lineDevSpecific().Note

Blind Transfer Through Translation Pattern
The following table describes the message sequences for the Presentation Indication scenario of Blind Transfer
through Translation Pattern. In this scenario, A calls via translation pattern B, B answers, and A and B are
connected.

TAPI structuresTAPI messagesCTI messagesAction

Party AParty B does a
lineBlindTranfser() to blind
transfer call from party A to
party C via translation pattern

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
968

Message Sequence Charts
Blind Transfer Through Translation Pattern

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = B
dwCalledIDName = B’s name

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B’s name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

LINE_CALLINFO, hDevice =
hCall-1, dwCallbackInstance =
0, dwParam1 =
CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

CallPartyInfoChangedEvent,
CH = C1, CallingChanged =
False, Calling = A,

CallingPartyPI = Restricted,
CalledChanged = True, Called
= C,

CalledPartyPI = Restricted,
OriginalCalled = NULL,
OriginalCalledPI = Restricted,

LR = NULL, Cause =
BlindTransfer

Party B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
969

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = B
dwCalledIDName = B’s name

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B’s name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = IDLE dwParam2
= 0

dwParam3 = 0

CallStateChangedEvent, CH =
C2,

State = Idle, Reason = Direct,

Calling = A, CallingPartyPI =
Restricted, Called = B,
CalledPartyPI = Restricted,
OriginalCalled = B,
OrigCalledPartyPI = Restricted,
LR = NULL

Party CParty B does a
lineBlindTranfser() to blind
transfer call from party A to
party C via translation pattern
(continued)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
970

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = TRANSFER

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = NP
dwCalledIDName = NP

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B's name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_APPNEWCALL
hDevice = C

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C3,

origin = Internal_Inbound,

Reason = BlindTransfer,

Calling = A,

CallingPartyPI = Restricted,

Called = C,

CalledPartyPI = Restricted,

OriginalCalled = B,
OrigCalledPartyPI = Restricted,

LR = B,

LastRedirectingPartyPI =

Restricted

Party AParty C is offering

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
971

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED

dwCallerID = NP
dwCallerIDName = NP

dwCalledID = B
dwCalledIDName = B’s name

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B’s name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = RINGBACK
dwParam2 = 0

dwParam3 = 0

CallStateChangeEvent, CH =
C1,

State = Ringback, Reason =
Direct,

Calling = A,

CallingPartyPI = Restricted,

Called = C,

CalledPartyPI = Restricted,

OriginalCalled = B,
OrigCalledPartyPI = Restricted,

LR =B, LastRedirectingPartyPI
=

Restricted

Party CParty C is offering (continued)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
972

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwCallerIDFlags =
LINECALLPARTYID_

BLOCKED dwCallerID = NP
dwCallerIDName = NP

dwCalledID = NP
dwCalledIDName = NP

dwConnectedIDFlags =
LINECALLPARTYID_

BLOCKED dwConnectedID =
NP dwConnectedIDName =NP
dwRedirectingID = B

dwRedirectingIDName =

B's name

dwRedirectionIDFlags =
LINECALLPARTYID_

BLOCKEDdwRedirectionID =
NP dwRedirectionIDName =
NP

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = OFFERING
dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent, CH =
C3,

State = Offering, Reason =
BlindTransfer, Calling = A,

CallingPartyPI = Restricted,

Called = C,

CalledPartyPI = Restricted,

OriginalCalled = B,

OrigCalledPartyPI = Restricted,

LR =B, LastRedirectingPartyPI
=

Restricted

Redirect to Device
The following use cases are related to PSAP Callback Redirect to a device feature. For all use cases, there are
four devices: device A, B, C and C'. Devices C and C' share a line.

Scenario 1: A calls B and B redirects the call to C, C' with redirectDeviceName as C.

Expected EventsAction

LineInitialize

LineOpen on A , LineOpen on B, LineOpen on C

LineOpen on C ' with new ExtVersion

0x000D0000

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
973

Message Sequence Charts
Redirect to Device

Expected EventsAction

For A:

• LINECALLSTATE CONNECTED

• Caller = A, Called =B Connected B

For B:

• LINECALLSTATE CONNECTED

• Caller = A, Called =B Connected A

A calls B

For A:

• LINECALLSTATE_RINGBACK

For C:

• LINECALLSTATE_OFFERING /
LINECALLSTATE_ACCEPTED

Application sends CciscoLineDevSpecificRedirectEx
on B to redirect call to C and C' with the
redirectDeviceName as of C.

• PARAM: hLine

• PARAM: dwAddressID

• PARAM: hCall

• PARAM: FeaturePriority

• PARAM: m_DestDirn

• PARAM: m_SetOriginalCalledTo

• PARAM: m_FAC

• PARAM: m_CMC

• PARAM: m_RedirectBitMask

• PARAM: m_RedirectDeviceName = C

• PARAM: m_ApplicationXMLDataSize

• PARAM: m_ApplicationXMLData

• PARAM: m_callingSearchSpace

• PARAM: returnCode

For C:

• LINE_CALLSTATE CONNECTED ACTIVE

For C':

• LINE_CALLSTATECONNECTEDINACTIVE

C answers the call

Scenario 2: A calls B and B redirects the call to C, C' with invalid device name.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
974

Message Sequence Charts
Message Sequence Charts

Expected EventsAction

LineInitialize

LineOpen on A , LineOpen on B, LineOpen on C

LineOpen on C ' with new ExtVesrion

0x000D0000

For A:

• LINECALLSTATE CONNECTED

• Caller = A, Called =B Connected B

For B:

• LINECALLSTATE CONNECTED

• Caller = A, Called = B, Connected = A

A calls B

Line_Reply with Error Code: "LINEERR_
INVALADDRESS"

Application sends CciscoLineDevSpecificRedirectEx
on B to redirect call with invalid device name.

(CciscoLineDevSpecificRedirectEx)...

• PARAM: hLine

• PARAM: dwAddressID

• PARAM: hCall

• PARAM: FeaturePriority

• PARAM: m_DestDirn

• PARAM: m_SetOriginalCalledTo

• PARAM: m_FAC

• PARAM: m_CMC

• PARAM: m_RedirectBitMask

• PARAM: m_RedirectDeviceName = invDevice

• PARAM: m_ApplicationXMLDataSize

• PARAM: m_ApplicationXMLData

• PARAM: m_callingSearchSpace

• PARAM: returnCode

Scenario 3: A calls B and B redirects the call to C,C' with redirectDeviceName as of C and with
CallingSearchSpace with the value 2.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
975

Message Sequence Charts
Message Sequence Charts

Expected EventsAction

LineInitialize

LineOpen on A , LineOpen on B, LineOpen on C

LineOpen on C ' with new ExtVesrion

0x000D0000

For A:

• LINECALLSTATE CONNECTED

• Caller = A, Called =B Connected = B

For B:

• LINECALLSTATE CONNECTED

• Caller = A, Called = B Connected = A

A calls B

For A:

• LINECALLSTATE_RINGBACK

For C:

• LINECALLSTATE_OFFERING /
LINECALLSTATE_ACCEPTED

The CallingSearchSpace for device C will be set to
the CSS of B (the party which is redirecting).

Application sends CciscoLineDevSpecificRedirectEx
on B to redirect call to C and C' with the
redirectDeviceName as of C.

• PARAM: hLine

• PARAM: dwAddressID

• PARAM: hCall

• PARAM: FeaturePriority

• PARAM: m_DestDirn

• PARAM: m_SetOriginalCalledTo

• PARAM: m_FAC

• PARAM: m_CMC

• PARAM: m_RedirectBitMask

• PARAM: m_RedirectDeviceName = C

• PARAM: m_ApplicationXMLDataSize

• PARAM: m_ApplicationXMLData

• PARAM: m_callingSearchSpace=2

• PARAM: returnCode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
976

Message Sequence Charts
Message Sequence Charts

Expected EventsAction

For C:

• LINE_CALLSTATE - CONNECTED ACTIVE

For C'

• LINE_CALLSTATE -CONNECTED
INACTIVE

C answers the call

Redirect Set Original Called (TxToVM)
The following table describes the message sequences for Redirece Set Original Called (TxToVM) feature
where A calls B, B answers, and A and B are connected.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
977

Message Sequence Charts
Redirect Set Original Called (TxToVM)

Table 122: Message Sequences for Redirect Set Original Called (TxToVM)

TAPI structuresTAPI messagesCTI messagesAction

Party AParty B does lineDevSpecific
for REDIRECT_SET_
ORIG_CALLED with DestDN
= C's VMP and SetOrigCalled
= C

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = NP

dwRedirectionID = NP

LINE_CALLINFO, hDevice =
hCall-1, dwCallbackInstance =
0, dwParam1 =
CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

CallPartyInfoChangedEvent,
CH = C1, CallingChanged =
False, Calling = A,
CalledChanged = True, Called
= C, OriginalCalled = NULL,
LR = NULL, Cause = Redirect

Party B

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = NULL

dwRedirectionID = NULL

TSPI: LINE_CALLSTATE,
hDevice = hCall-1,
dwCallbackInstance = 0,
dwParam1 = IDLE dwParam2
= 0

dwParam3 = 0

CallStateChangedEvent,

CH = C2,

State = Idle,

reason = DIRECT,

Calling = A,

Called = B,

OriginalCalled = B,

LR = NULL

Party C's VMP

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwReason = REDIRECT

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C's VMP

TSPI: LINE_APPNEWCALL

hDevice = C

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C3,

origin = Internal_Inbound,

reason = Redirect,

Calling = A,

Called = C,

OriginalCalled = C,

LR = B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
978

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

Party AParty C is offering

TSPI LINECALLINFO

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C's VMP

TSPI: LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangeEvent,

CH = C1,

State = Ringback,

Reason = Direct,

Calling = A,

Called = C,

OriginalCalled = C,

LR = B

Party C

TSPI LINECALLINFO

dwOrigin = INTERNAL

dwCallerID = A

dwCalledID = C

dwConnectedID = NULL

dwRedirectingID = B

dwRedirectionID = C

TSPI: LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = OFFERING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C3,

State = Offering,

Reason = Redirect,

Calling = A,

Called = C,

OriginalCalled = C,

LR = B

Refer and Replace Scenarios

In-Dialog Refer -Referrer in Cisco Unified Communications Manager Cluster
The following table describes the message sequences for the Refer and Replaces scenario of in-dialog refer
where referer is in Cisco Unified Communications Manager cluster.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
979

Message Sequence Charts
Refer and Replace Scenarios

Table 123: Message Sequences for In-Dialog Refer -Referrer in Cisco Unified Communications

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

A-->B has a call in connected
state. The call party information
at B should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at A should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

NewCallEvent should be
{calling = B, called = C, LRP =
A, origCalled = C, reason =
REFER}

LINECALLSTATE_OFFERING

TAPI CallInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = “”

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

A gets LINECALLSTATE_

UNKNOWN | CLDSMT_

CALL_WAITING_STATE

with extended reason = REFER

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

(A) initiates REFER (B) to (C)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
980

Message Sequence Charts
Message Sequence Charts

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

LINECALLSTATE_CONNECTED

TAPI callInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = B

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

CallPartyInfoChangedEvent @
B with {calling = B, called = C,
LRP = A, origCalled = C,
reason = REFER}

TAPI callInfo

dwCallerID = B

dwCalledID = B

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = C

dwReason = DIRECT

dwOrigin = LINECALL

ORIGIN_INTERNAL

LINECALLSTATE_IDLEwith
extended REFER reason

C answers the call, and Refer is
successful

In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
The following table describes the message sequences for the Refer and Replaces scenario of in-dialog refer
where ReferToTarget redirects the call in Offering state.

Table 124: Message Sequences for In-Dialog Refer Where ReferToTarget Redirects the Call In

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

A-->B has a call in connected
state. The call party information
at B should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at A should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
981

Message Sequence Charts
In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

NewCallEvent should be
{calling = B, called = C, LRP =
A, origCalled = C, reason =
REFER}

LINECALLSTATE_OFFERING

TAPI callInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = null

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

B gets CPIC with (calling = B,
called = C, ocdpn = C, LRP =
A, reason = REFER, call state
= Ringback)

TAPI CallInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = null

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A gets LINECALLSTATE_

UNKNOWN | CLDSMT_

CALL_WAITING_STATE

with extended reason = REFER

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

(A) initiates REFER (B) to (C)

IDLE with reason = Redirect

TAPI
LINECALLSTATE_IDLE

D will get NewCallEvent with
reason = Redirect call info same
as B’s call info. (calling = B,
called = D, ocdpn = C, LRP =
C, reason = redirect)

Offering/accepted/connected

CallPartyInfoChangedEvent @
B with {calling = B, called = D,
LRP =C, origCalled = C, reason
= Redirect}

Callstate = connected

TAPI callInfo

dwCallerID = B

dwCalledID = B

dwRedirectingID = C

dwRedirectionID = D

dwConnectedID = D

dwReason = DIRECT

dwOrigin = LINECALL

ORIGIN_INTERNAL

LINECALLSTATE_IDLEwith
extended reason = REFER

(REFER considered as
successful when D answers)

C Redirects the call to D in
offering state, and D answers

In-Dialog Refer Where Refer Fails or Refer to Target Is Busy
The following table describes the message sequences for the Refer and Replaces scenario of in-dialog refer
fails or refer to target is busy.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
982

Message Sequence Charts
In-Dialog Refer Where Refer Fails or Refer to Target Is Busy

Table 125: Message Sequences for In-Dialog Refer Where Refer Fails or Refer to Target Is Busy

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

A-->B has a call in connected
state. The call party information
at B should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at A should be {calling = A,
called = B, LRP = null,
origCalled = B, reason = direct}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

Referrer (A), Referee (B,) and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

No changeA gets LINECALLSTATE_

UNKNOWN | CLDSMT_

CALL_WAITING_STATEwith
extended reason = REFER

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = B

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

(A) initiates REFER (B) to (C)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
983

Message Sequence Charts
Message Sequence Charts

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

If B goes to ringback when call
is offered to C (C does not
answer finally) it should also
receive Connected Call State
and CPIC event

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = Direct

dwOrigin = LINECALL

ORIGIN_INTERNAL

A gets
LINECALLSTATE_CONNECTED
with extended reason = REFER

(REFER considered as failed)

C is busy / C does not answer

Out-of-Dialog Refer
The following table describes the message sequences for the Refer and Replaces scenario of Out-of-Dialog
Refer.

Table 126: Message Sequences for Out-of-Dialog Refer

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

There is no preexisting call
between A and B.

There is no preexisting call
between A and B.

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
984

Message Sequence Charts
Out-of-Dialog Refer

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

B should get NewCallEvent
with call info as {calling = A,
called = B, LRP = null,
origCalled = B, reason =
REFER}

TAPI CallInfo

dwCallerID = A

dwCalledID = B

dwRedirectingID = null

dwRedirectionID = null

dwConnectedID = A

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_EXTERNAL

A initiates REFER B to (C)

Call state = connected (media
does not flow between A and B
when call goes to connected
state)

TAPI CallInfo (no change)

B answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
985

Message Sequence Charts
Message Sequence Charts

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

NewCallEvent should be
{calling = B, called = C, LRP =
A, origCalled = C, reason =
REFER} This info is exactly
same as though caller (A)
performed REDIRECT
operation (except the reason is
different here).

TAPI callInfo

dwCallerID = B

dwCalledID = C

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = B

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_INTERNAL

CallPartyInfoChangedEvent @
B with {calling = B, called = C,
LRP = A, origCalled = C,
reason = REFER}

TAPI callInfo

dwCallerID = B

dwCalledID = B

dwRedirectingID = A

dwRedirectionID = C

dwConnectedID = C

dwReason = LINECALL

REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL

ORIGIN_EXTERNAL

CiscoUnified Communications
Manager redirects the call to C

Invite with Replace for Confirmed Dialog
The following table describes the message sequences for the Refer and Replaces scenario of invite with replace
for confirmed dialog. Here, A, B, and C exist inside Cisco Unified Communications Manager. A confirmed
dialog occurs between A and B. C initiates Invite to A with replace B's dialog ID.

Table 127: Message Sequences for Invite with Replace for Confirmed Dialog

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

Call State = connected

Caller = A,

Called = B,

Connected = A,

Reason = direct,

gcid = GC1

Call State = connected,

Caller = A,

Called = B,

Connected = B,

Reason = direct,

gcid = GC1

Confirmed dialog occurs
between A and B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
986

Message Sequence Charts
Invite with Replace for Confirmed Dialog

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

NewCall at C gcid = GC2,
reason = REPLACEs,

Call state = Dialing,

Caller = C,

Called = null,

Reason = REPLACEs

C Invites A by replacing B’s
dialog

CPIC changed

Caller = C,

Called = A,

ocdpn = A,

LRP = B,

Reason = REPLACEs

CallState = connected

TAPI callinfo

Caller = C,

Called = A,

Connected = A,

Redirecting = B,

Redirection = A, reason =
UNKNOWN with extended
REPLACEs,

callID = GC2

Call State = IDLE,

extended reason = REPLACEs

GCID Changed to GC2,

Reason = REPLACEs

CPIC Caller = C,

Called = A,

ocdpn = A,

LRP = B

Reason = REPLACEs

Callstate = connected

TAPI callinfo

caller = C,

called = B,

connected = C,

redirecting = B,

redirection = A, reason =
DIRECT with extended
REPLACEs,

callID = GC2

CiscoUnified Communications
Manager joins A and C in a call
and disconnects call leg @ B

Refer with Replace for All in Cluster
The following table describes the message sequences for the Refer and Replaces scenario of refer with replace
for all in cluster. Here, a confirmed dialog exists between A and B and A and C. A initiates Refer to C with
replace B’s dialog ID.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
987

Message Sequence Charts
Refer with Replace for All in Cluster

Table 128: Message Sequences for Refer with Replace for All in Cluster

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@Referree (B)

CallState/CallInfo

@Referrer (A)

Actions

Call State = connected

Caller = A,

Called = C,

Connected = A,

Reason = direct,

gcid = GC1

Call State = connected

Caller = A,

Called = B,

Connected = A,

Reason = direct,

gcid = GC2

Call State = onhold,

GC1,

Caller = A,

Called = C,

Connected = C,

Reason = direct

CallState = connected,

GC2,

Caller = A,

Called = B,

Connected = B,

Reason = direct

Dialog between A and B and
dialog between A and C

CPIC Changed from CTI with
Caller = B,

Called = C,

Origcalled = C,

LRP = A,

Reason = TRANSFER

TAPI callinfo caller = B, called
= C, connected = B, redirecting
= A, redirection = C, reason =
direct with extended
TRANSFER. callId = GC1

GCID changed from

CTI reason = TRANSFER

CPIC Changed fromCTI Caller
= B,

Called = C,

Origcalled = C,

LRP = A,

Reason = TRANSFER

TAPI callinfo

Caller = B,

Called = B,

Connected = C,

Redirecting = A,

Redirection = C,

Reason = DIRECT with
extended reason TRANSFER.

CallId = GC1

From CTI (callState = IDLE
with reason = TRANSFER)

TAPI call state IDLE with
Reason = DIRECT with
extended reason TRANSFER

A completes Refer to C
replacing A->B’s dialog (B is
referred to target)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
988

Message Sequence Charts
Message Sequence Charts

Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station
The following table describes the message sequences for the Refer and Replaces scenario of refer with replace
for all in cluster, where replace dialog belongs to another station. In this scenario:

A is Referrer, D is Referee, and C is Refer-to-Target.

A confirmed dialog exists between A(d1) and B & C(d2) and D.

A initiates Refer to D on (d1) with Replaces (d2).

Table 129: Message Sequences for Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

CallState/CallInfo

@Referree (D)

CallState/CallInfo

@Refer-to-Target (C)

CallState/CallInfo

@B

CallState/CallInfo

@Referrer (A)

Actions

Call State = connected

Caller = C,

Called = D,

Connected = C,

Reason = direct,

gcid = GC2

Call State = connected

Caller = C,

Called = D,

Connected = D,

Reason = direct,

gcid = GC2

Call State = connected

Caller = A,

Called = B,

Connected = A,

Reason = direct,

gcid = GC1

Call State = onhold,

Caller = A,

Called = B,

Connected = B,

Reason = direct,

gcid = GC1

Dialog between A and B
and dialog betweenC and
D

GCID changed from CTI
to GC1

CPIC Changed from CTI
with

Caller = B (referee),
Called = D,

Origcalled = D,

LRP = C, Reason =
REPLACEs

TAPI callinfo

caller = B,

called = D,

connected = B,

redirecting = C,

redirection = D,

reason = DIRECT with
extended REPLACEs,
callId = GC1

From CTI

(callState = IDLE with
reason = REPLACEs.)

TAPI call state IDLE
with reason = DIRECT
with extended reason =
REPLACEs

CPIC Changed fromCTI
Caller = B,

Called = C,

Origcalled = D,

LRP = C,

Reason = REPLACEs

TAPI callinfo

Caller = B,

Called = B,

Connected = D,

Redirecting = C,

Redirection = D,

Reason = DIRECT with
extended REPLACEs,
CallId = GC1

From CTI

(callState = IDLE with
reason = REFER)

TAPI call state IDLE
with reason = DIRECT
with extended reason =
REFER

A initiates Refer to D on
(d1) with Replaces (d2)

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
989

Message Sequence Charts
Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station

Secure Conferencing

Conference with All Parties as Secure
The conference bridge includes security profile.MOH is not configured. A, B, and C get registered as Encrypted.

TAPI structuresTAPI messagesCTI messagesAction

Party AA calls B; B answers the call

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = A

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C1, GCH = G1, Calling = A,
Called = B, OrigCalled = B, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct

SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = A, CH = C1

SecurityStaus = Encrypted

Party B

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = A
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C2, GCH = G1, Calling = A,
Called = B, OrigCalled = B, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct

SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus = Encrypted

Party BB does lineSetUpConference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
990

Message Sequence Charts
Secure Conferencing

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = A
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus =
NotAuthenticated

Party BB calls C; C answers the call

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T2

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = B

dwCalledID = C

dwConnectedID = C
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C3, GCH = G2, Calling = A,
Called = B, OrigCalled = B, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct

SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = B, CH = C3

SecurityStaus = Encrypted

Party C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
991

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = C

dwCallID = T2

dwOrigin = INTERNAL

dwReason = DIRECT

dwCallerID = B

dwCalledID = C

dwConnectedID = B
dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CallStateChangedEvent, CH =
C4, GCH = G2, Calling = B,
Called = C, OrigCalled = C, LR
=NP, State = Connected, Origin
= OutBound, Reason = Direct
SecurityStaus =
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = C, CH = C4

SecurityStaus = Encrypted

Party BB completes conf

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectingID = NP

Devspecific Data :

CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus = Encrypted

Hold or Resume in Secure Conference
Conference bridge includes security profile. MOH gets configured. A, B, and C represent secure phones and
exist in conference with overall call security status as secure.

TAPI structuresTAPI messagesCTI messagesAction

Party AA does lineHold

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
992

Message Sequence Charts
Hold or Resume in Secure Conference

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = A

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus =
NotAuthenticated

Party B

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo =
CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = B, CH = C2,

SecurityStaus =
NotAuthenticated

Party C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
993

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine =

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo =
NotAuthenticated

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus =
NotAuthenticated

Party AA does lineResume

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = A

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus = Encrypted

Party B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
994

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = B

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = B

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = B, CH = C2,

SecurityStaus = Encrypted

Party C

LINECALLINFO (hCall-1)

hLine =

dwCallID = T1

dwOrigin = CONFERENCE

dwReason = UNKNOWN

dwCallerID = NP

dwCalledID = NP

dwConnectedID = NP
dwRedirectionID = NP

dwRedirectionID = NP

Devspecific Data :
CallSecurityInfo = Encrypted

LINE_CALLDEVSPECIFIC

hDevice = C

dwCallbackInstance = 0

dwParam1 =
SLDSMT_LINECALLINFO_
DEVSPECIFICDATA

dwParam2 =
SLDST_CALL_SECURITY_STATUS

dwParam3 = 0

CtiCallSecurityStatusUpdate,

LH = C, CH = C4,

SecurityStaus = Encrypted

Secure Monitoring and Recording

Silent Monitoring
Set up:

User is in “Allow Monitoring” Group

BIB on B is set to ON

A, A1 – Customer Phones

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
995

Message Sequence Charts
Secure Monitoring and Recording

B, B1– Agent phones

C, C1 – Supervisor phones

All Lines are Opened with Ext Version – 0x000A0000

Expected resultAction

Silent Monitored Call is created in Non-Secure Mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

New call will be fired on C

Line_CallDevSpecific(dwparam1 =DevSpecificData, dwparam2
= CallAttributeInfo) will be fired to B and C

CallReason = LINECALLREASON_DIRECT

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeType = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Not Authenticated

CallReason = LINECALLREASON_DIRECT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

Extended Call Reason = “CtiReasonSilentMonitoring”

CallAttributeType = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

LineInitialize.

Device A,B and C is Non-Secure

LineOpen on A,B and C

A calls B;B answers the Call

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on B

LineGetCallInfo on C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
996

Message Sequence Charts
Message Sequence Charts

Expected resultAction

CallReason = LINECALLREASON_UNKNOWNVaraint 1 : Monitor Customer, Agent and Supervisor Lines after
Monitoring Session is Started.

Start Monitoring Lines from Other Application or
Close Agent and Supervisor and Reopen the same.

Note

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
997

Message Sequence Charts
Message Sequence Charts

Basic Silent Monitoring Scenario in Secure Mode

Expected resultAction

Silent Monitored Call is created in Secure Mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

New call will be fired on C

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C.

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Encrypted

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

LineInitialize.

Device A,B and C is Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on B

LineGetCallInfo on C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
998

Message Sequence Charts
Basic Silent Monitoring Scenario in Secure Mode

Silent Monitoring Scenario on Non-Secure Call in Secure Mode

Expected resultAction

Monitoring Session will be started and the Media is setup in
Secure Mode

Events delivered will be same as use case 8.13.6.2.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= OverallSecurityStatus) will be fired to C.

SRTP info is not Available

security Indicator = MEDIA_NOT_ENCRYPTED

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Not Authenticated

SRTP info will be available

security Indicator = MEDIA_ENCRYPT_KEYS_AVAILABLE

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

Same Events as above

LineInitialize.

Device A is not Secure

Device B and C is Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is non Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on B

LineGetCallInfo on C

Variant : A is Secure

Call on A is Hold and

Non-Secure MOH is Inserted

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
999

Message Sequence Charts
Silent Monitoring Scenario on Non-Secure Call in Secure Mode

Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure

Expected resultAction

Call between B and C will be Non-Secure

No SRTP Events will be fired

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

security Indicator = MEDIA_NOT_ENCRYPTED

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

LineInitialize.

Device A and B is not Secure

Device C is Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is non Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on C

Silent Monitoring Scenario on Secure Call From Supervisor Which Is Non-Secure

Expected resultAction

• New Call will be Fired on C.
• Call on C will go to Disconnected State
• Request fails with new Error Code
LINEERR_SECURITY_CAPABILITIES_MISMATCH.

Request fails as the Supervisor Security Capabilities
doesn’t meet or exceed the Security status of Agent
(B)

Note

LineInitialize.

Device A and B is Secure

Device C is Not Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1000

Message Sequence Charts
Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure

Transfer of Monitored Call From Supervisor to Other Supervisor

Expected resultAction

Call between B and C will be in Secure Mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

SRTP info will be available

security Indicator = MEDIA_ENCRYPT_KEYS_AVAILABLE

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

LINE_REPLY (dwRequestId, 0) is returned

CallSecurityStatus = Encrypted

LineInitialize.

Device A,B and C is Secure

Device C1 is not Secure

LineOpen on A,B,C and C1

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

LineGetCallInfo on C

lineDevSpecifc(CCiscoLineDevSpecificSetStatusMsgs) with
DevSpecificStatusMsgsFlag =
DEVSPECIFIC_SILENT_MONITORING_TERMINATED on
C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1001

Message Sequence Charts
Transfer of Monitored Call From Supervisor to Other Supervisor

Expected resultAction

Transfer is successful andMonitoring Session will be Terminated.

Call on C1 will be Disconnected with new Cause Code.

Line_CallDevSpecific will be fired for B

dwparam1 = SLDSMT_MONITORING_ENDED,

dwparam2 = LINEDISCONNECTMODE_INCOMPATIBLE.

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx,

dwparam3 = LINEDISCONNECTMODE_INCOMPATIBLE)
will be fired for C.

Transfer is successful and Monitoring Session will not be
disturbed.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C1

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C1’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C1’s DN, Partition = C1’s Partition

Device Name = C1’s Device Name

Transaction ID = XXXX

Call Security Status = Encrypted

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

C Transfers to C1

Variant : C1 is Secure

LineGetCallInfo on B

LineGetCallInfo on C1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1002

Message Sequence Charts
Message Sequence Charts

Transfer of Call From One Customer to Other

Expected resultAction

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

Call between B and C will be in Secure Mode

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C.

Transfer is successful and Monitoring Session isn’t disturbed.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= SLDST_SECURITY_STATUS_INFO) will be fired to B and
C.

SRTP info will not be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C1’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Not Authenticated

SRTP info will be available

Security Indicator = MEDIA_ENCRYPT_KEYS_AVAILABLE

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

LineInitialize.

Device A,B and C is Secure

Device A1 is not Secure

LineOpen on A,B,C and A1

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input.

A Transfers to A1

LineGetCallInfo on B

LineGetCallInfo on C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1003

Message Sequence Charts
Transfer of Call From One Customer to Other

Park on Supervisor

Expected resultAction

Call between B and C is setup with Secure mode

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C.

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C.

Park Operation is successful and overCallSecurity Status is
degraded to Not-Authenticated

LINE_REPLY (dwRequestId, 0) is returned

UnPark operation is Successful and Monitoring session is
terminated.

Call on C1 is disconnected as C1doesn’t have Secure Capabilities.

Line_CallDevSpecific will be fired for B

dwparam1 = SLDSMT_MONITORING_ENDED dwparam2 =
LINEDISCONNECTMODE_INCOMPATIBLE

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx, dwparam3 =
LINEDISCONNECTMODE_INCOMPATIBLE) will be fired
for C.

Terminated Event is not Reported

LineInitialize

Device A,B and C is Secure

Device C1 non secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

C parks the call

lineDevSpecifc(CCiscoLineDevSpecificSetStatusMsgs) with
DevSpecificStatusMsgsFlag =
DEVSPECIFIC_SILENT_MONITORING_TERMINATED on
C

C1 Unparks the call

Varaint : if LineDevSpecific for receiving Terminated Event is
not set

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1004

Message Sequence Charts
Park on Supervisor

Silent Monitoring on Conferenced Call

Expected resultAction

Silent Monitoring Call between B and C is setup with Secure
mode.

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= OverallSecurityStatus) will be fired to C.

Call Security Status = Not Authenticated

LineInitialize

Device A and B1 is not Secure

Device C and B is Secure

LineOpen on A,B,B1 and C

A, B and B1 are in Conference

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1005

Message Sequence Charts
Silent Monitoring on Conferenced Call

Conference on Monitored Call

Expected resultAction

LineInitialize.

Device A, B and C is not Secure

Device C1 is Secure

LineOpen on A,B,C and D

A calls B;B answers the Call

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

C creates conference with C1

LineGetCallInfo on B

LineGetCallInfo on C

LineGetCallInfo on C1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1006

Message Sequence Charts
Conference on Monitored Call

Expected resultAction

Monitoring Request is successful and the Session is started

Conference is created with A , C and C1

Line_CallDevSpecific (dwparam1 =DevSpecifcData, dwparam2
= OverallSecurityStatus) will be fired to C1.

Call Security Status = Not Authenticated

SRTP info will not be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain CFB’s info.

CallAttributeTye = CallAttribute_SilentMonitorCall

Call Security Status = Not Authenticated

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1007

Message Sequence Charts
Message Sequence Charts

Conference on Monitored Call

Expected resultAction

Monitoring Request is successful and the Session is started

Monitoring Session is ended and C and C1will be in direct simple
call.

Line_CallDevSpecific will be fired for B.

dwparam1 = SLDSMT_MONITORING_ENDED,

dwparam2 = LINEDISCONNECTMODE_INCOMPATIBLE

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx,

Dwparam3 = LINEDISCONNECTMODE_INCOMPATIBLE)
will be fired for C

LineInitialize

Device A, B and C is Secure

Device C1 is not Secure

LineOpen on A,B,C and C1

A calls B;B answers the Call

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

lineDevSpecifc (CCiscoLineDevSpecificSetStatusMsgs) with
DevSpecificStatusMsgsFlag =
DEVSPECIFIC_SILENT_MONITORING_TERMINATED on
C

C creates and Completes conference with C1

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1008

Message Sequence Charts
Conference on Monitored Call

Supervisor Holds the Call

Expected resultAction

Monitoring session is started

Media will be stopped

Media is started.Call on C will be INACTIVE (RIU Call)

Monitoring session is Terminated.

Line_CallDevSpecific will be fired for B

dwparam1 = SLDSMT_MONITORING_ENDED,

dwparam2 = LINEDISCONNECTMODE_INCOMPATIBLE

Call on C1 will be Disconnected with new Cause Code
LINEDISCONNECTMODE_INCOMPATIBLE

Line_DevSpecific (dwparam1 =
SLDSMT_MONITORING_TERMINATED, dwparam2 =
TransactionID – xxxx,

dwparam3 = LINEDISCONNECTMODE_INCOMPATIBLE)
will be fired for C

LineInitialize

Device A, B and C is Secure

Device C1 is Secure

LineOpen on A,B,C and C1

C and C1 are shared lines

A calls B; B answers the Call

C issues LineDevSpecific (Start Monitoring) with A’s permanent
lineID, silent monitoring mode and NoTone as input

C holds the call

C1 resumes the call

Variant: C1 is not Secure and
DEVSPECIFIC_SILENT_MONITORING_TERMINATED filter
is enabled on C

Recording
Set up

User is in Allow Recording group

A is Customer Device

B is Agent

C is Recording Device

BIB on B is set to on.

Recording Type on B is Application Invoked

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1009

Message Sequence Charts
Supervisor Holds the Call

C is configured as the recording device for B

Basic Recording Scenario

Expected resultAction

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to on B

CallReason = LINECALLREASON_DIRECT

Devspecific part will contain the following

CallAttributeTye = ‘CallAttribute_RecordedCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = 0

Call Security Status = Not Authenticated

LineInitialize

Device A,B and C is not-Secure

LineOpen on A and B

A calls B;B answers the Call

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

CallReason = LINECALLREASON_UNKNOWNVariant 1 : Monitor the Customer and Agent Lines after the
Recording Session is Started.

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1010

Message Sequence Charts
Basic Recording Scenario

Basic Recording Scenario in Secure Mode

Expected resultAction

Recording session is started in secure mode

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired on B

SRTP info will be available (for A-B Call)

Devspecific part will contain the following:

CallAttributeTye = CallAttribute_RecordedCall

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = 0

Call Security Status = Encrypted

LineInitialize

Device A,B and C is Secure

LineOpen on A and B

A calls B;B answers the Call

A to B call is Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1011

Message Sequence Charts
Basic Recording Scenario in Secure Mode

Recording Scenario on Non-Secure Call in Secure Mode

Expected resultAction

Recording session is started in secure mode

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B

SRTP Info is not available

Devspecific part will contain the following:

CallAttributeTye = CallAttribute_RecordedCall

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = 0

Call Security Status = Not Authenticated

LineInitialize

Device A is not Secure

Device B and C is Secure

LineOpen on A and B

A calls B;B answers the Call

A to B call is non Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

Recording Scenario on Non-Secure Call Using Secure Recording Profile/Device

Expected resultAction

Recording Request will Fail with existing error code

LINEERR_OPERATIONFAILED

Recording Failed as the Recording Device Security
Capabilities doesn’t meet or exceed the Security status
of B

Note

LineInitialize

Device A and B is Secure

Device C is Not Secure

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1012

Message Sequence Charts
Recording Scenario on Non-Secure Call in Secure Mode

Recording Scenario When Agent Holds the Call

Expected resultAction

Recording Session is started

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B

Call between B and C will be Non-Secure

Media between B and C is ended

Line_CallDevSpecific (dwparam1 = RecordingEnded) will be
fired for B

Recording Session will be started

Media between B and C is started

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B

Recording Session will be started

LineInitialize

Device A and B is not Secure

Device C is Secure

LineOpen on A and B

A calls B;B answers the Call

A to B call is non Secure

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineHold on Call on B

B resumes the Call

Recording option – Automatic Call Recording EnabledNote

B Resumes the Call

Recording and Monitoring
This section describes Silent Monitoring and Recording on Agent Call in Secure Mode.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1013

Message Sequence Charts
Recording Scenario When Agent Holds the Call

Both Silent Monitoring and Recording on Agent Call in Secure Mode

Expected resultAction

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1014

Message Sequence Charts
Both Silent Monitoring and Recording on Agent Call in Secure Mode

Expected resultAction

LineInitialize

Device A,B,C and D are Secure

D is configured as Recording Device on B

LineOpen on A,B and C

A calls B;B answers the Call

A to B call is Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

LineGetCallInfo on B

LineGetCallInfo on C

Silent Monitored Call is created in Secure Mode

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as
inputLine_CallDevSpecific (dwparam1 =MonitoringStarted) will
be fired for B.

New call will be fired on C

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

Line_CallDevSpecific(dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE) will be fired for the
call on C

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Encrypted

SRTP info will be available

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Encrypted

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1015

Message Sequence Charts
Message Sequence Charts

Expected resultAction

Recording session is started in secure mode

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for B.

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired on B

SRTP info will be available (SRTP info for the call Between B
and A)

Devspecific part will contain the following:

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

CallAttributeTye = CallAttribute_RecordedCall

Address = D’s DN, Partition = D’s Partition

Device Name = D’s Device Name

Transaction ID = 0

Call Security Status = Encrypted

B issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for A-B call

LineGetCallInfo on B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1016

Message Sequence Charts
Message Sequence Charts

Recording Silent Monitored Call on Supervisor

Expected resultAction

LineInitialize

Device A and B is not Secure

Device C and D is Secure

D is the Recording Device

D is configured as Recording on C

LineOpen on A, B and C

A calls B;B answers the Call

A to B call is non Secure

C issues LineDevSpecific (Start Monitoring) with B’s permanent
lineID, silent monitoring mode and NoTone as input

LineGetCallInfo on B

LineGetCallInfo on C

C issues LineDevSpecific (Start Recording,
BothLocalAndRemote) for B-C call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1017

Message Sequence Charts
Recording Silent Monitored Call on Supervisor

Expected resultAction

Line_CallDevSpecific (dwparam1 = MonitoringStarted) will be
fired for B

New call will be fired on C (Silent Monitoring call)

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to B and C

SRTP info will not be available

CallAttributeInfo in devspecific part of LineCallInfo of B will
contain C’s info.

CallAttributeTye = ‘CallAttribute_SilentMonitorCall’

Address = C’s DN, Partition = C’s Partition

Device Name = C’s Device Name

Transaction ID = XXXX

Call Security Status = Unauthenticated

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeInfo in devspecific part of LineCallInfo of C will
contain B’s info

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallSecurityStatus = Not Authenticated

Recording Session is started

Line_CallDevSpecific (dwparam1 = RecordingStarted) will be
fired for C

Line_CallDevSpecific(dwparam1 = DevSpecifcData, dwparam2
= CallAttributeInfo) will be fired to C

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1018

Message Sequence Charts
Message Sequence Charts

Expected resultAction

SRTP info will not be available

Security Indicator = MEDIA_NOT_ENCRYPT

CallAttributeTye = CallAttribute_SilentMonitorCall_Target

Address = B’s DN, Partition = B’s Partition

Device Name = B’s Device Name

Transaction ID = XXXX

CallAttributeTye = ‘CallAttribute_RecordedCall’

Address = D’s DN, Partition = D’s Partition

Device Name = D’s Device Name

Transaction ID = 0

Call Security Status = Not Authenticated

LineGetCallInfo on C

Shared Lines-Initiating a New Call Manually
The following table describes the message sequences for Shared Lines-Initiating a new call manually where
Party A and Party A’ represent shared line appearances. Also, Party A and Party A’ are idle.

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-1

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

State = Dialtone,

Origin = OutBound,

Reason = Direct,

RIU = false

1. Party A goes off-hook

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1019

Message Sequence Charts
Shared Lines-Initiating a New Call Manually

TAPI structuresTAPI messagesCTI messagesAction

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALTONE

dwParam2 = UNAVAIL

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

RIU = false

Party A’1. Party A goes off-hook

LINECALLINFO (hCall-2)

hLine = A’

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A’

dwCalledID = NP

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_APPNEWCALL

hDevice = A’

dwCallbackInstance = 0

dwParam1 = 0

dwParam2 = hCall-2

dwParam3 = OWNER

NewCallEvent,

CH = C1,

GCH = G1,

Calling = A’,

Called = NP,

OrigCalled = NP,

LR = NP, S

tate = Dialtone,

Origin = OutBound,

Reason = Direct,

RIU = true

No changeLINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialtone,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

RIU = true

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1020

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

Party A2. Party A dials Party B

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = DIALING

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Dialing,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = NP,

OrigCalled = NP,

LR = NP,

RIU = false

Party A’

NoneNoneNone

Party A3. Party B accepts call

No changeIgnoredCallPartyInfoChangedEvent,

CH = C1,

CallingChanged = False,

Calling = A,

CalledChanged = true,

Called = B,

Reason = Direct,

RIU = false

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1021

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = PROCEEDING

dwParam2 = 0

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 =

CALLERID, CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP,

RIU = false

No changeLINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = RINGBACK

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP,

RIU = false

Party A’3. Party B accepts call
(continued)

No changeIgnoredCallPartyInfoChangedEvent,

CH = C1,

CallingChanged = False,

Calling = A’,

CalledChanged = true,

Called = B,

Reason = Direct,

RIU = true

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1022

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

LINECALLINFO (hCall-2)

hLine = A’

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A’

dwCalledID = B

dwConnectedID = NP

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 =

CALLERID, CALLEDID

dwParam2 = 0

dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Proceeding,

Cause = CauseNoError,

Reason = Direct,

Calling = A’,

Called = B,

OrigCalled = B,

LR = NP,

RIU = true

No changeLINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

CallStateChangedEvent,

CH = C1, State = Ringback,

Cause = CauseNoError,

Reason = Direct,

Calling = A’, Called = B,

OrigCalled = B,

LR = NP, RIU = true

Party A4. Party B answers call

LINECALLINFO (hCall-1)

hLine = A

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A

dwCalledID = B

dwConnectedID = B

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = ACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-1

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0, dwParam3 = 0

CallStateChangedEvent,

CH = C1,

State = Connected,

Cause = CauseNoError,

Reason = Direct,

Calling = A,

Called = B,

OrigCalled = B,

LR = NP,

RIU = false

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1023

Message Sequence Charts
Message Sequence Charts

TAPI structuresTAPI messagesCTI messagesAction

Party A’

LINECALLINFO (hCall-2)

hLine = A’

dwCallID = T1

dwOrigin = OUTBOUND

dwReason = DIRECT

dwCallerID = A’

dwCalledID = B

dwConnectedID = B

dwRedirectionID = NP

dwRedirectionID = NP

LINE_CALLSTATE

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTED

dwParam2 = INACTIVE

dwParam3 = 0

LINE_CALLINFO

hDevice = hCall-2

dwCallbackInstance = 0

dwParam1 = CONNECTEDID

dwParam2 = 0, dwParam3 = 0

CallStateChangedEvent, CH =
C1,

State = Connected,

Cause = CauseNoError,

Reason = Direct,

Calling = A’,

Called = B,

OrigCalled = B,

LR = NP,

RIU = true

SRTP

Media Terminate by Application (Open Secure CTI Port or RP)
• Negotiate version

• Sends LineOpen with extension version as 0x8007000

• Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

• Send CCiscoLineDevSpecificUserControlRTPStream

• Now, the CTI port or RP gets registered as secure port

• Make call from secure IP phone to the CTI port or RP port

• Answer the call from application

• SRTP indication gets reported as LineDevSpecific event

• SRTP key information get stored in LINECALLINFO::devSpecifc for retrieval

Media Terminate by TSP Wave Driver (Open Secure CTI Port)
• Negotiate version

• Sends LineOpen with extension version as 0x4007000

• Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

• Send CciscoLineDevSpecificSendLineOpen

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1024

Message Sequence Charts
SRTP

• Now, the CTI port gets registered as secure port

• Make call from secure IP phone to the CTI port

• Answer the call from application

• SRTP indication gets reported as LineDevSpecific event

• SRTP key information get stored in LINECALLINFO::devSpecifc for retrieval

Support for Cisco IP Phone 6900 Series
Use cases related to Cisco Unified IP Phone 6900 Series support feature are mentioned below:

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When User Is
Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior when User is
added to new user Group.

Description

A -Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 Phone with Roll Over Mode

User is added to New User Group.

Application does Line Initialize

Test Setup

Lines on the Cisco Unified IP Phone 7931 will be enumerated.

Application would be able to Open Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 and it would be able to control and perform call operations on phone.

Expected Results

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When User Is
Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior when User is
added to new user Group.

Description

A -Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll Over Mode

Step 1: Application does Line Initialize

Step 2: User is added to New User Group.

Test Setup

Step 1: Lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 will not be
enumerated

Application will not be notified about the device A and it will not be able to monitor.

Step 2: Application will be receiving PHONE_CREATE and LINE_CREATE events for the Device
and lines on that Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode.

NowApplications would be able toMonitor and control Cisco Unified IP Phone 6900 Series/Cisco
Unified IP Phone 7931.

Expected Results

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1025

Message Sequence Charts
Support for Cisco IP Phone 6900 Series

Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User Is Added to New User Group

Testing Transfer scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
when User is added to new user Group.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Variants: Application Opens only Line A on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931

Test Setup

Call on A will go to OnHold State.

New call will be created on Line B.

Application then has to complete Transfer using DTAL feature.

Variants: Applications would not be able to Complete Transfer from Application as the Line B is
not monitored.

Expected Results

Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User Is Added to New User Group

Testing Conference scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
when User is added to New User Group.

Description

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1026

Message Sequence Charts
Message Sequence Charts

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D are two SCCP phones

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize

C calls A,A answers

SetupConference on A.

Test Setup

Call on A will go to OnHold State.

New call will be created on Line B.

Application then has to complete Conference using Join Across Lines feature.

Expected Results

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

Call on A will go to OnHoldPendingTransfer/OnHoldPendingConference.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or DTAL feature.

Expected Results

Test the same Scenario with Conference

LineCompleteTransfer with Mode as Conference to complete Conference

Variants

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1027

Message Sequence Charts
Message Sequence Charts

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 When User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -Roll Over to any Line

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

Call on A will go to OnHoldPendingTransfer/OnHoldPendingConference.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or DTAL feature.

Expected Results

Test the same Scenario with Conference

LineCompleteTransfer with Mode as Conference to complete Conference

Variants

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 when User is added to New User Group and different Roll Over Mode.

Description

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1028

Message Sequence Charts
Message Sequence Charts

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

SetupTransfer Request will fail with error "LINEERR_CALLUNAVAIL".Expected Results

Test the same Scenario with SetupConferenceVariants

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Test Setup

Call on A will go to OnHoldPendingTransfer/Conference State.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or DTAL feature.

Expected Results

Test the same Scenario with SetupConferenceVariants

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1029

Message Sequence Charts
Message Sequence Charts

LineMakeCall Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing LineMakeCall Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN" or "Roll Over to Any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

LineMakeCall on A.

Test Setup

LineMakeCall Operation will fail with error "LINEERR_CALLUNAVAIL".

Roll Over Doesn't Happen to second line as the roll over is only for Outbound Calls.

Expected Results

LineUnPark Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User Is Added to New User Group

Testing LineUnPark Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 When User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode -Roll Over within same DN" or "Roll Over to Any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

LineUnPark on A.(tires to retrieve the available Parked Call from Park DN)

Test Setup

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1030

Message Sequence Charts
Message Sequence Charts

LineUnPark Operation will fail with error "LINEERR_CALLUNAVAIL".

Roll Over Doesn't Happen to second line as the roll over is only for Outbound Calls.

Expected Results

EM Login/Logout Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing EM Log In/Out Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 When User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

EM Profile is logged onto the Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

Test the Use Case from UseCase#1 to UseCase#10

Test Setup

Same as the Use Case tested.Expected Results

Manual Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing Existing Call Events on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
when User is added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -Roll Over to any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press Transfer Button on Cisco Unified IP Phone 6900 Series and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Transfer from Phone A

Variant: Monitor Phones after Transfer is completed from Phone.

Test Setup

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1031

Message Sequence Charts
Message Sequence Charts

Step 4:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

When consult call is created on the same Line; Call will be on
ONHOLDPENDINGTRANSFER state.

Note

Step 5:

Both the calls on A and B will go to IDLE state.

C and D will be in Simple Call.

Variant: Same as this Use Case

Expected Results

Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior When User is
added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press conference Button on Cisco Unified IP Phone 6900 Series and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Conference from Phone

Variant: Monitor Phones after Conference is completed from Phone.

Test Setup

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1032

Message Sequence Charts
Message Sequence Charts

Step 4:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

When consult call is created on the same Line; Conference Model is created as today
on Non-Cisco Unified IP Phone 6900 Series.

Note

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Variant: Same as this Use Case.

Expected Results

Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User Is Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior When User is
added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press conference Button on Cisco Unified IP Phone 6900 Series Phone and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Conference from Phone

Variant: Monitor Phones after Conference is completed from Phone.

Test Setup

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1033

Message Sequence Charts
Message Sequence Charts

Step 4:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

When consult call is created on the same Line; Conference Model is created as today
on Non-Cisco Unified IP Phone 6900 Series Phone.

Note

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Variant: Same as this Use Case.

Expected Results

SetupConference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User Is Added to New User Group

Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 behavior When User is
added to New User Group and different Roll Over Mode.

Description

User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll
Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger : 1

Application does Line Initialize; Application opens all the lines on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

C calls A,A answers

Step 1: SetupTransfer on A.

Step 2: Complete Conference From Phone.

Test Setup

Step 1:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Expected Results

BWC on Cisco Unified IP Phone 7931 in Non Roll Over Mode When User Is Removed From New User Group

Testing Cisco Unified IP Phone 7931 Phone behavior in Non Roll Over Mode When User is
removed from New User Group.

Description

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1034

Message Sequence Charts
Message Sequence Charts

User is Removed from New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with
Non-Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode -"Non Roll Over Mode"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize

Test Setup

Lines on the Cisco Unified IP Phone 7931 will be enumerated.

Application would be able to Open Cisco Unified IP Phone 7931 with Non-Roll Over Mode and
it would be able to control and perform call operations on Phone.

Expected Results

Acquire Device on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When
User Is Added to New User Group

Testing Behavior of Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 on Super
Provider when User is added to new user Group.

Description

A -Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 with Roll Over Mode

User is Added to New User Group.

Step 1: Application does Line Initialize

Step 2: LineDevSpecific to Acquire Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931.

Step 3: User is removed from New User Group.

Test Setup

Step 2: Application will be receiving PHONE_CREATE and LINE_CREATE events for the Device
and lines on that Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode.

Step 3: Application will be receiving LINE_REMOVE and PHONE_REMOVE for the Cisco
Unified IP Phone 7931 and Application will no longer be able to monitor or control that device.

Expected Results

Support for Cisco Unified IP Phone 6900 and 9900 Series Use
Cases

The use cases related to Support for Cisco Unified IP Phone 6900 and 9900 Series are provided below:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1035

Message Sequence Charts
Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases

Check Max Calls Information

Events, Requests, and ResponsesAction

LineInitialize successful

MaxCalls = 4 in LineDevCaps:DevSpecific

Application calls LineInitialize

Application calls LineGetDevCaps, and checks Max Calls field.

Check Busy Trigger Information

.

Events, Requests, and ResponsesAction

LineInitialize successful

BusyTrigger = 2 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks busy trigger field.

Check Line Instance

Events, Requests, and ResponsesAction

LineInitialize successful

LineInstanceNumber = 1 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks line instance field.

Check Line Label

.

Events, Requests, and ResponsesAction

LineInitialize successful

LineLable = label_2000 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks line label field.

Check Voice Mail Pilot

.

Events, Requests, and ResponsesAction

LineInitialize successful

VoiceMailPilot = 5000 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks Voice Mail Pilot
field.

Check Registered IP Address of the Device or Line

.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1036

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

LineInitialize successful

RegisteredIPv4Address & RegisteredIPv6Address available in
LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks IP address field.

PhoneInitialize successful

RegisteredIPv4Address & RegisteredIPv6Address available in
PhoneDevCaps:DevSpecific

Variance: Perform PhoneInitialize and check PhoneGetDevCpas
to check IP address field.

Check Consult Rollover Information of the Line

ConsultRollOver is true for the device

.

Events, Requests, and ResponsesAction

LineInitialize successful

ConsultRollOver flag is true in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks consult roll over
field.

PhoneInitialize successful

ConsultRollOver flag is true in PhoneDevCaps:DevSpecific.

Variance: Perform PhoneInitialize and check PhoneGetDevCpas
to check consult roll over field.

PhoneInitialize successful

ConsultRollOver flag is false in PhoneDevCaps:DevSpecific.

Variance: Phone does not support rollover

Perform PhoneInitialize and check PhoneGetDevCpas to check
consult roll over field.

Check JAL or DTAL Information of the Line

JAL or DTAL is true for the device.

Events, Requests, and ResponsesAction

LineInitialize successful

JoinAcrossLine and DirectTransferAcrossLine flag is true in
LineDevCaps:DevSpecific.

Application does LineInitialize

Application calls LineGetDevCaps, and checks JAT/DTAL field.

PhoneInitialize successful

JoinAcrossLine and DirectTransferAcrossLine flag is true in
PhoneDevCaps:DevSpecific.

Variance: Perform PhoneInitialize and check PhoneGetDevCpas
to check consult roll over field.

PhoneInitialize successful

JoinAcrossLine and DirectTransferAcrossLine flag is false in
PhoneDevCaps:DevSpecific.

Variance: Phone does not support jal/dtal

Perform PhoneInitialize and check PhoneGetDevCpas to check
JAT/DTAL field.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1037

Message Sequence Charts
Message Sequence Charts

Handle Voice Mail Pilot Change

Voice Mail Pilot number is changed to 6000.

Events, Requests, and ResponsesAction

LineInitialize successful

VoiceMailPilot = 5000 in LineDevCaps:DevSpecific

Application does LineInitialize

Application calls LineGetDevCaps, and checks Voice Mail Pilot
field.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating Voice Mail Pilot is changed.

Voice Mail Pilot number is changed to 6000.

VoiceMailPilot = 6000 in LineDevCaps:DevSpecificApplication calls LineGetDevCaps, and checks Voice Mail Pilot
field.

Variance: also applies to Line Label

Check IP Address When Device Is Unregistered or Registered

It is assumed that phone uses static IP address and is already registered.

Events, Requests, and ResponsesAction

Initializesuccessful

RegisteredIPv4Address & RegisteredIPv6Address available in
LineDevCaps:DevSpecific, and RegisteredIPAddressMode is
IPAddress_IPv4_IPv6.

Application calls LineInitialize

Application calls LineGetDevCaps, and checks IP address field.

Phone or line goes out of service.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating registered IP address information is changed.

Reset device

The same RegisteredIPv4Address & RegisteredIPv6Address
available in LineDevCaps:DevSpecific, but
RegisteredIPAddressMode is IPAddress_Unknown.

Application calls LineGetDevCaps, and checks IP address field.

Phone or line back in service.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating registered IP address information is changed.

Device re-registered with CUCM.

The same RegisteredIPv4Address and RegisteredIPv6Address
available in LineDevCaps:DevSpecific, but
RegisteredIPAddressMode is set to IPAddress_IPv4_IPv6.

Application calls LineGetDevCaps, and checks IP address field.

LineDevSpecific (SLDSMT_LINE_PROPERTY_CHANGED)
indicating registered IP address is changed

New IPAddress will be in devSpecific when application queries
LineGetDevCap. .

Variance: Phone uses DHCP and new IP address is obtained for
registering.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1038

Message Sequence Charts
Message Sequence Charts

Swap or Cancel
Use cases related to Swap or Cancel feature are mentioned below:

Connected Transfer

Device A, B, C where A is a Cisco Unified IP Phone (future version)..

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ C is on hold

A ‡ B is connected,

For A:

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-3 DIALTONE

A press transfer

Call-3 goes IDLEA picks "Active Calls"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1039

Message Sequence Charts
Swap or Cancel

Expected eventsAction

For A:

Both calls go IDLE

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

A picks call (A‡C) and presses transfer to complete transfer

Connected Transfer on Phones with Shared Lines

Device A, B, C, A' where A and A' are sharedline.

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1040

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

A ‡ C is on hold

A ‡ B is connected,

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A':

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED_INACTIVE

Caller = A, Called = B Connected B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1041

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A and A':

All calls go IDLE

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

User performs connected transfer on Cisco Unified IP phone
(future version)

Connected Transfer: Initiate From Phone, Complete From CTI

Device A, B, C .

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ C is on hold

A ‡ B is connected,

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1042

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A and A':

All calls go IDLE

For B1:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

Application sends either CompleteTransfer or DirectTransfer on
A

Consult Transfer: Resume Primary Call (Implicit Cancel)

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A setup consult transfers to C

And C answer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1043

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A press resume to resume A‡ B call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1044

Message Sequence Charts
Message Sequence Charts

Consult Transfer: Swap Calls

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

A ‡B

A setup consult transfer to C

And C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A:

The scenario will look exactly the same when resume primary
call.

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A press Swap

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1045

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A:

Calls go IDLE

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = C

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = B

A press "Transfer" to complete transfer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1046

Message Sequence Charts
Message Sequence Charts

Consult Transfer on Phone: Swap Calls; CTI Sends SetupTransfer on Connected Call

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

A ‡ B

A setup consult transfer to C

And C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1047

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

The scenario will look exactly the same when resume primary
call.

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A press Swap

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Request succeeds as phone cancels existing feature plan and allow
CTI request to go through.

Application calls LineSetupTransfer on A's connected call (A‡B)
to initiate transfer

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1048

Message Sequence Charts
Message Sequence Charts

Consult Transfer: Swap and Cancel

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGTRANSFER

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

A ‡ B

A setup consult transfer to C

And C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1049

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

The scenario will look exactly the same when resume primary
call.

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A press Swap

No TSP event since it is handled during swap operationA presses Cancel

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1050

Message Sequence Charts
Message Sequence Charts

RoundTable Connected Conference

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A puts call on hold

A creates new call to C, C answer

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGCONFENRENCE

Caller = A, Called = C Connected C

Call-3

DIALTONE

A presses "Conference"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1051

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C, connected = C

Call-3

IDLE

For B:

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C, connected = C

For C:

For A:

CONNECTED

CONFERENCED

Caller = A, called = C, connected = C

CONFERENCED

Caller = C, called = B, connected = B

A picks active call (A‡ C) on phone UI, and presses "Conference"
to complete the conference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1052

Message Sequence Charts
Message Sequence Charts

RoundTable Connected Conference: Cancel

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A puts call on hold

A creates new call to C, C answers

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, CONFERENCED

Caller = A, Called = C Connected C

Call-3

LINE_CALLSTATE

param1 = x100, ONHOLDPENDINGCONFENRENCE

Caller = A, Called = C Connected C

Call-4

DIALTONE

A presses "Conference"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1053

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

Call-3 / Call-4

IDLE

A picks "Active Calls"

For A:

Call-1

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A presses Cancel softkey

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1054

Message Sequence Charts
Message Sequence Charts

Set Up Consult Conference From RT, Then Swap and Complete Conference From RT

Expected eventsAction

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

A ‡ B

A sets up conference to C, C answer

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x100, HOLD

Caller = A, Called = C Connected C

A presses "Swap"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1055

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C, connected = C

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C, connected = C

For C:

For A:

CONNECTED

CONFERENCED

Caller = A, called = C, connected = C

CONFERENCED

Caller = C, called = B, connected = B

A presses "Conference" to complete conference

Set Up Consult Conference From RT, Then Swap and Cancel From Phone with Shared Line Scenario

A and A’ are shared lines..

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1056

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

For A'

CONNECTED INACTIVE

Caller = A, celled = B, connected = B

CONNECTED INACTIVE

Caller = A, celled = C, connected = C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

A ‡ B

A sets up conference to C, C answers

For A:

The scenario looks the same when primary call resumes

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A presses "Swap"

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1057

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected = C

A presses "Cancel"

For A'

Call-1

LINE_CALLSTATE

CONNECTED INACTIVE

Caller = A, Called = B Connected = B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected = C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1058

Message Sequence Charts
Message Sequence Charts

Set Up Consult Conference From RT: Resume Primary Call (Implicit Cancel)

Expected eventsAction

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

A ‡ B

A sets up conference to C, C answer

For A'

CONNECTED INACTIVE

Caller = A, celled = B, connected = B

CONNECTED INACTIVE

Caller = A, celled = C, connected = C

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1059

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

For A:

Call-1

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

param1 = x400, HOLD

Caller = A, Called = C Connected C

A resumes A‡B call

For B:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

param1 = x100, CONNECTED

Caller = A, Called = C, Connected = A

User Is Removed From Standard Supports Connected Xfer/Conf Group

Expected eventsAction

RT PHONE/LINE is enumerated to APPUser is in Standard Supports Connected Xfer/Conf group

RT phone A is in user's control list

Application does LineInitialize

APP receives PHONE_REMOVE / LINE_REMOVERemove user from "Standard Supports Connected Xfer/Conf"
user group

User Is Removed From Standard Supports Connected Xfer/Conf Group

Expected eventsAction

RT PHONE/LINE is enumerated to APPUser is in Standard Supports Connected Xfer/Conf group

RT phone A is in user's control list

Application does LineInitialize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1060

Message Sequence Charts
Message Sequence Charts

Expected eventsAction

APP receives PHONE_REMOVE / LINE_REMOVERemove user from Standard Supports Connected Xfer/Conf user
group

User Is Removed From Standard Supports Connected Xfer/Conf Group While Line Is Open

Expected eventsAction

RT PHONE/LINE is enumerated to APPuser is in "Standard Supports Connected Xfer/Conf" group

RT phone A is in user's control list

Application does LineInitialize

SuccessfulApp sends LineOpen to open line on Cisco Unified IP phone
(future version) phone

TSP sends LINE_CLOSE

APP receives LINE_REMOVE

Remove user from Standard Supports ConnectedXfer/Conf group

User Is Added to Standard Supports Connected Xfer/Conf Group

Expected eventsAction

RT PHONE/LINE is not enumerated to APPuser is not in "Standard Supports Connected Xfer/Conf" group

RT phone A is in user's control list

Application does LineInitialize

APP receives PHONE_CREATE / LINE_CREATEAdd user to Standard Supports Connected Xfer/Conf group

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1061

Message Sequence Charts
Message Sequence Charts

Unrestricted Unified CM
Table 130: Application Tries Secure Connection to Unrestricted Unified CM During Upgrade

Events, requests and responsesAction

LineInitialize successful

All lines associated are enumerated.

OutOfService Events for all the Devices/Lines.

***TSP will internally try to Connect CTI in Secure mode.

As CTI is upgraded to Non-secure, the Connection Fails and
applications are not notified.

Application has to disable “Secure Connection to CTI Manager”
on the Security tab in TSP UI to setup connection to CTI/CUCM.

CUCM – Restricted UCM

TSP is configured to connect Secure

Application calls LineInitialize

*** Upgrade CUCM to Unrestricted Unified CM

CCM/CTI services restarted

Table 131: Application Tries Secure Connection to Unrestricted Unified CM After Upgrade

Events, requests and responsesAction

LineInitialize successful

All lines associated are enumerated.

LineShutDown successful

LineInitialize successful.

No lines are enumerated to application.

CUCM – Restricted UCM

TSP is configured to connect Secure

Application calls LineInitialize

Application calls LineShutdown

*** Upgrade CUCM to Unrestricted UCM

Application calls LineInitialize

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1062

Message Sequence Charts
Unrestricted Unified CM

Table 132: Registering Secure CTI Port with Unrestricted Unified CM CTI Manager

Events, requests and responsesAction

LineInitialize successful

All lines associated to end users are enumerated.

LineReply – with error -LINEERR_OPERATIONUNAVAIL

CUCM – Unrestricted UCM

Setup Non-Secure Connection

Application calls LineInitialize

Register CTI Port in Secure Mode

• LineOpen – with Ext – 80070000
• LineDevspecific –
CciscoLineDevSpecificUserSetSRTPAlgorithmID

Table 133: Registering Secure CTI Port with Unrestricted Unified CM CTI Manager

Events, requests and responsesAction

LineInitialize successful

All Lines Associated are Enumerated.

LineReply – success

LINE_CLOSE for the CTI Port

Setup:

• Node 1 – UnRestricted UCM
• Node 2 – Restricted UCM – Secure

CTI Port – Device Pool – with Node 1 as High Priority CM.

TSP is configured to connect to CTI Manager of Node 2.

Set up Secure Connection

Application calls LineInitialize

Register CTI Port in Secure Mode

• LineOpen – with Ext – 80070000
• LineDevspecific –
CciscoLineDevSpecificUserSetSRTPAlgorithmID

• LineDevSpecific
-CCiscoLineDevSpecificUserControlRTPStream

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1063

Message Sequence Charts
Message Sequence Charts

LineHold Enhancement
Prerequisites

Pre-conditions to all persistent call use cases, unless specified otherwise:

• Device A (IP Phone, Line A1 (dn: 1000))
• Device B (IP Phone, Line B1 (dn: 2000))
• The content id corresponding to VoH stream is contentID1
• User1 has in its control list: Devices A and B. All devices and lines are observed
• Provider is opened (lineInitializeEx successfully executed)
• All relevant lines are opened with Extension version 0x000D0000 and in service

Table 134: Basic Case - Hold with ContentID to Be Played

TAPI StructuresTAPI MessagesAction

CallInfo on A:

CallerID: 1000

CalledID: 2000

ConnectedID: 2000

At A:

LINE_CALLSTATE dwParam1 = 0x00000100

(CONNECTED)

At B:

LINE_CALLSTATE dwParam1 = 0x00000100

(CONNECTED)

Create Call:

LineMakeCall() on Line-A w ith DestAddress="DN
of B" and B answers the Call

At A:

LINE_CALLSTATE dwParam1 = 0x00000400

(LINECALLSTATE_ONHOLD)

Application issues CCiscoLineDevSpecificHoldEx
with ContentID = contentID1 on hCall1(call on A1)

*** Call will be placed on Hold and VoH stream
selected is played to B.

Whisper Coaching

Setup
Customer Phone – IP Phone A

Agent Phone – IP Phone B

Supervisor Phone – IP Phone C

Application monitoring all lines on all devices

New extension is negotiated when application opens lines

Application Initiates a Whisper Coaching Session
Service Parameter Setting: Observed Target = false, Observed Connected Parties = true

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1064

Message Sequence Charts
LineHold Enhancement

Table 135: Application Initiates a Whisper Coaching Session

Events, Requests, and ResponsesAction

At A:

CONNECTED

Calling = A, Called = B, Connected = B

At B:

CONNECTED

Calling = A, Called = B, Connected = A

A initiates call to B and B answers

At B:

LineDevSpecific(SLDST_START_CALL_MONITORING)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

Media events are not received at B.Note

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

C issues CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_LocalOnly

Application Updates the Monitoring Mode
Service Parameter Setting: Observed Target = true, Observed Connected Parties = false

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1065

Message Sequence Charts
Application Updates the Monitoring Mode

Table 136: Application Updates the Monitoring Mode (Silent to WhisperCoaching) and Then Updates the Monitoring Mode (WhisperCoaching to Silent)

Events, Requests, and ResponsesAction

At A:

CONNECTED

Calling = A, Called = B, Connected = B

At B:

CONNECTED

Calling = A, Called = B, Connected = A

A initiates call to B and B answers

At B:

LineDevSpecific(SLDST_START_CALL_MONITORING)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_START_RECEPTION)

C issues CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1066

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Whisper_Coaching,
PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Whisper_Coaching,
PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C issues CciscoLineDevSpecificMonitoringUpdateMode with:

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_BothLocalAndRemote

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1067

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C issues CciscoLineDevSpecificMonitoringUpdateMode with:

mode = MonitorMode_Silent

tone = PlayToneDirection_NoLocalOrRemote

Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the
Call

Additional Setup: Agent shared line IP Phone B

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1068

Message Sequence Charts
Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the Call

Table 137: Agent Holds the Customer Call with Whisper Coaching, Then Agent’s Shared Line Resumes the Call

Events, Requests, and ResponsesAction

At B:

ONHOLD

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At B’:

ONHOLD

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_STOP_RECEPTION)

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

B holds the call

At B:

CONNECTED

At B’:

CONNECTED, INACTIVE

At C:

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

B resumes the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1069

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED, INACTIVE

LineDevSpecific(SLDSMT_MONITORING_ENDED)

At B’:

CONNECTED

At C:

IDLE

B holds the call

B resumes the call

Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor
Additional Setup: IP Phone D

Table 138: Agent Transfers a Whisper Coaching Call, Monitoring Call Goes Idle at the Supervisor

Events, Requests, and ResponsesAction

At B:

ONHOLDPENDTRANSFER

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = B, Called = D, Connected = D

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

B setup transfer to D and D answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1070

Message Sequence Charts
Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor

Events, Requests, and ResponsesAction

At B:

IDLE

IDLE

At C:

IDLE

B complete transfer to D

Application Updates the Monitoring Mode (WhisperCoaching to Silent)
Additional Setup: IP Phone D

Table 139: Application Updates the Monitoring Mode (WhisperCoaching to Silent) After the Agent Conferences the Whisper Coaching Call

Events, Requests, and ResponsesAction

At B:

CONFERENCE

Calling = A, Called = B, Connected = B

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONFERENCE

Calling = B, Called = D, Connected = D

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

A initiates Call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

B setup conference to D and D answers

B complete conference to D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1071

Message Sequence Charts
Application Updates the Monitoring Mode (WhisperCoaching to Silent)

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONFERENCE

Calling = A, Called = B, Connected = B

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONFERENCE

Calling = B, Called = D, Connected = D

At C:

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_MONITORING_MODE_UPDATED,
MonitorMode_Silent, PlayToneDirection_RemoteOnly)

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C issues a CciscoLineDevSpecificMonitoringUpdateMode with:

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1072

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_SilentMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

IDLE

IDLE

At C:

No change in callInfo and no additional events

B issues a lineRemoveFromConference to drop D.

Supervisor Holds/Resumes the Whisper Coaching Monitoring Session
Additional Setup: IP Phone D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1073

Message Sequence Charts
Supervisor Holds/Resumes the Whisper Coaching Monitoring Session

Table 140: Supervisor Holds/Resumes the Whisper Coaching Monitoring Session

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

ONHOLD

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_STOP_TRANSMISION)

LineDevSpecific(SLDSMT_STOP_RECEPTION)

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

C holds the call

At C:

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

C resumes the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1074

Message Sequence Charts
Message Sequence Charts

Supervisor Transfers the Whisper Coaching Session to Another Supervisor
Additional Setup: Supervisor IP Phone D

Table 141: Supervisor Transfers the Whisper Coaching Session to Another Supervisor

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

ONHOLDPENDTRANSFER

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = C, Called = D, Connected = D

At D:

CONNECTED

Calling = C, Called = D, Connected = C

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

C setup transfers the call to D, D answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1075

Message Sequence Charts
Supervisor Transfers the Whisper Coaching Session to Another Supervisor

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = D, partition = D’s Partition, deviceName = D’s device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

IDLE

IDLE

At D:

CONNECTED

Calling = C, Called = D

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

C complete transfers the call

Supervisor Conferences the Whisper Coaching Session to Another Supervisor
Additional Setup: Supervisor IP Phone D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1076

Message Sequence Charts
Supervisor Conferences the Whisper Coaching Session to Another Supervisor

Table 142: Supervisor Conferences the Whisper Coaching Session to Another Supervisor

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

CONFERENCE

ONHOLDPENDCONF

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = C, Called = D, Connected = D

At D:

CONNECTED

Calling = C, Called = D, Connected = C

A initiates call to B and B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

C setup conferences the call to D and D answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1077

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = CFB, partition = CFB Partition,

deviceName = CFB device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

CONFERENCE

Calling = C, Called = B/B’s Name, Connected = CFB

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CONNECTED

Calling = C, Called = D, Connected = D

At D:

CONFERENCE

Calling = C, Called = D, Connected = D

CONNECTED

CONNECTED

Calling = D, Called = CFB, Connected = CFB

C complete conferences the call

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1078

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = D, partition = D’s Partition, deviceName = D’s device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

At C:

IDLE

IDLE

IDLE

At D:

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = B, partition = B’s Partition, deviceName = B’s device

transactionID = xxxx,

tone = PlayToneDirection_RemoteOnly

C drops the call

D issues a CciscoLineDevSpecificMonitoringUpdateModewith:

permLineId = B permLineId

mode = MonitorMode_Silent

tone = PlayToneDirection_RemoteOnly

Application Initiates a Whisper Coaching Session Second Application on a Different Client Opens
All Lines

Additional Setup: Supervisor IP Phone D

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1079

Message Sequence Charts
Application Initiates a Whisper Coaching Session Second Application on a Different Client Opens All Lines

Table 143: Application Initiates a Whisper Coaching Session, Second Application on a Different Client Opens All Lines

Events, Requests, and ResponsesAction

At B (Application 1):

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C (Application 1):

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

A initiates Call to B, B answers

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_RemoteOnly

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1080

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B (Application 2):

CONNECTED

devSpecific

CallAttributeBitMask = TSPCallAttribute_WhisperMonitorCall

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

At C (Application 2):

CONNECTED

CallAttributeBitMask =
TSPCallAttribute_WhisperMonitorCall_Target

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

Second application opens all lines

Secure R & M with Whisper Coaching Supports
• Overall security status of the monitoring call either silent or whisper must be same. See Secure monitoring
use cases.

• Overall security status of the monitoring call must not change if monitor mode is updated either from
silent to whisper or vice versa.

Application Initiates a Secure Whisper Coaching Session
Additional Setup: All devices are secure

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1081

Message Sequence Charts
Secure R & M with Whisper Coaching Supports

Table 144: Application Initiates a Secure Whisper Coaching Session

Events, Requests, and ResponsesAction

At A:

CONNECTED

Calling = A, Called = B, Connected = B

At B:

CONNECTED

Calling = A, Called = B, Connected = A

A initiates call to B and B answers

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1082

Message Sequence Charts
Message Sequence Charts

Events, Requests, and ResponsesAction

At B:

LineDevSpecific(SLDST_START_CALL_MONITORING)

CONNECTED

devSpecific

type = CallAttribute_WhisperMonitorCall

dn = C, partition = C’s Partition, deviceName = C’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CallSecurityStatus = OverallCallSecurityStatus_Encrypted

Media events are not received at B and SRTP keys are
not available.

Note

At C:

LineDevSpecific (dwparam1 = DevSpecificData,

dwparam2 = SLDST_SRTP_INFO, dwParam3 =
MEDIA_ENCRYPT_KEYS_AVAILABLE)

SRTP keys are available

CONNECTED

Calling = C, Called = B/B’s Name

Connected = “”/Whisper, Redirection = “”/Whisper,

Redirecting = “”/Whisper,

devSpecific

type = CallAttribute_WhisperMonitorCall_Target

dn = B, partition = B’s Partition, deviceName = B’s device

transactionId = xxxx,

tone = PlayToneDirection_RemoteOnly

CallSecurityStatus = OverallCallSecurityStatus_Encrypted

LineDevSpecific(SLDSMT_START_TRANSMISION)

LineDevSpecific(SLDSMT_START_RECEPTION)

C issues a CciscoLineDevSpecificStartCallMonitoring with:

permLineId = B permLineId

mode = MonitorMode_Whisper_Coaching

tone = PlayToneDirection_LocalOnly

Application Updates the Monitoring Mode on an Agent Call That Is on Hold
The application updates the monitoring mode on an agent call that is on hold as follows:

1. A initiates Call to B and B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1083

Message Sequence Charts
Application Updates the Monitoring Mode on an Agent Call That Is on Hold

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

3. B puts the call on hold

4. C issues CciscoLineDevSpecificMonitoringUpdateMode with:

• mode = MonitorMode_Silent

• tone = PlayToneDirection_RemoteOnly

5. LINE_REPLY returns LINEERR_INVALCALLSTATE

Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware
Version That Does Not Support Media Mixing

The application initiates Whisper Coaching where the agent is a SIP device with older firmware version that
does not support media mixing as follows:

1. A initiates Call to B and B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

3. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Application Updates the Monitoring Mode Where the Agent Is a SIP Device with Older Firmware
Version That Does Not Support Media Mixing

The application updates the monitoring mode where the agent is a SIP device with older firmware version
that does not support media mixing as follows:

1. A initiates Call to Band B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Silent

• tone = PlayToneDirection_RemoteOnly

3. C issues a CciscoLineDevSpecificMonitoringUpdateMode with:

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1084

Message Sequence Charts
Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware Version That Does Not Support Media Mixing

4. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a
Conference

The application updates the monitoring mode on a monitoring call at the supervisor that is in a conference as
follows:

1. A initiates Call to Band B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Silent

• tone = PlayToneDirection_RemoteOnly

3. C setups or completes the call to D and D answers.

4. C issues a CciscoLineDevSpecificMonitoringUpdateMode with:

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

5. LINE_REPLY returns LINEERR_OPERATIONUNAVAIL

Application Initiates Whisper Coaching on an Agent That Is Already Playing an Agent Greeting
The application initiates Whisper Coaching on a agent that already is playing an agent greeting as follows:

1. A initiates Call to Band B answers

2. B issues a CCiscoLineDevSpecificStartSendMediaToBIBRequest with:

• DN = IVR DN

• timeout = 30

3. C issues a CciscoLineDevSpecificStartCallMonitoring with:

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

4. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Application Initiates Agent Greeting on a Call That Already Has a Whisper Coaching Session
The application initiates Agent Greeting on a call that already has a Whisper Coaching session as follows:

1. A initiates Call to Band B answers

2. C issues a CciscoLineDevSpecificStartCallMonitoring with:

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1085

Message Sequence Charts
Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a Conference

• permLineId = B permLineId

• mode = MonitorMode_Whisper_Coaching

• tone = PlayToneDirection_RemoteOnly

3. B issues a CCiscoLineDevSpecificStartSendMediaToBIBRequest with:

• DN = IVR DN

• timeout = 30

4. LINE_REPLY returns LINEERR_RESOURCEUNAVAIL

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1086

Message Sequence Charts
Message Sequence Charts

A P P E N D I X B
Cisco Unified TAPI Interfaces

This appendix contains a listing of APIs that are supported and not supported.

• Cisco Unified TAPI Version 2.1 Interfaces, on page 1087

Cisco Unified TAPI Version 2.1 Interfaces
Core Package

The following table lists each TAPI interface

Table 145: Compliance to TAPI 2.1

CommentsCisco TAPI supportAPI/Message/Structure

TAPI Line Functions

YeslineAccept

YeslineAddProvider

YeslineAddToConference

YeslineAnswer

YeslineBlindTransfer

YeslineCallbackFunc

YeslineClose

NolineCompleteCall

YeslineCompleteTransfer

NolineConfigDialog

NolineConfigDialogEdit

YeslineConfigProvider

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1087

CommentsCisco TAPI supportAPI/Message/Structure

YeslineDeallocateCall

YeslineDevSpecific

YeslineDevSpecificFeature

YeslineDial

YeslineDrop

YeslineForward

NolineGatherDigits

YeslineGenerateDigits

YeslineGenerateTone

YeslineGetAddressCaps

YeslineGetAddressID

YeslineGetAddressStatus

NolineGetAppPriority

YeslineGetCallInfo

YeslineGetCallStatus

YeslineGetConfRelatedCalls

NolineGetCountry

YeslineGetDevCaps

NolineGetDevConfig

NolineGetIcon

YeslineGetID

YeslineGetLineDevStatus

YeslineGetMessage

YeslineGetNewCalls

YeslineGetNumRings

YeslineGetProviderList

YeslineGetRequest

YeslineGetStatusMessages

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1088

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

YeslineGetTranslateCaps

YeslineHandoff

YeslineHold

YeslineInitialize

YeslineInitializeEx

YeslineMakeCall

YeslineMonitorDigits

NolineMonitorMedia

YeslineMonitorTones

YeslineNegotiateAPIVersion

YeslineNegotiateExtVersion

YeslineOpen

YeslinePark

NolinePickup

YeslinePrepareAddToConference

YeslineRedirect

YeslineRegisterRequestRecipient

NolineReleaseUserUserInfo

NolineRemoveFromConference

YeslineRemoveProvider

NolineSecureCall

NolineSendUserUserInfo

YeslineSetAppPriority

NolineSetAppSpecific

NolineSetCallData

NolineSetCallParams

YeslineSetCallPrivilege

NolineSetCallQualityOfService

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1089

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

NolineSetCallTreatment

NolineSetCurrentLocation

NolineSetDevConfig

NolineSetLineDevStatus

NolineSetMediaControl

NolineSetMediaMode

YeslineSetNumRings

YeslineSetStatusMessages

NolineSetTerminal

YeslineSetTollList

YeslineSetupConference

YeslineSetupTransfer

YeslineShutdown

NolineSwapHold

YeslineTranslateAddress

YeslineTranslateDialog

NolineUncompleteCall

YeslineUnhold

YeslineUnpark

TAPI Line Messages

YesLINE_ADDRESSSTATE

YesLINE_APPNEWCALL

YesLINE_CALLINFO

YesLINE_CALLSTATE

YesLINE_CLOSE

YesLINE_CREATE

YesLINE_DEVSPECIFIC

YesLINE_DEVSPECIFICFEATURE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1090

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

YesLINE_GATHERDIGITS

YesLINE_GENERATE

YesLINE_LINEDEVSTATE

YesLINE_MONITORDIGITS

NoLINE_MONITORMEDIA

YesLINE_MONITORTONE

YesLINE_REMOVE

YesLINE_REPLY

YesLINE_REQUEST

TAPI Line Structures

YesLINEADDRESSCAPS

YesLINEADDRESSSTATUS

YesLINEAPPINFO

YesLINECALLINFO

YesLINECALLLIST

YesLINECALLPARAMS

YesLINECALLSTATUS

NoLINECALLTREATMENTENTRY

YesLINECARDENTRY

YesLINECOUNTRYENTRY

YesLINECOUNTRYLIST

YesLINEDEVCAPS

YesLINEDEVSTATUS

NoLINEDIALPARAMS

YesLINEEXTENSIONID

YesLINEFORWARD

YesLINEFORWARDLIST

YesLINEGENERATETONE

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1091

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

YesLINEINITIALIZEEXPARAMS

YesLINELOCATIONENTRY

NoLINEMEDIACONTROLCALLSTATE

NoLINEMEDIACONTROLDIGIT

NoLINEMEDIACONTROLMEDIA

NoLINEMEDIACONTROLTONE

YesLINEMESSAGE

YesLINEMONITORTONE

YesLINEPROVIDERENTRY

YesLINEPROVIDERLIST

NoLINEREQMEDIACALL

YesLINEREQMAKECALL

NoLINETERMCAPS

YesLINETRANSLATECAPS

YesLINETRANSLATEOUTPUT

TAPI Phone Functions

YesphoneCallbackFunc

YesphoneClose

NophoneConfigDialog

YesphoneDevSpecific

NophoneGetButtonInfo

NophoneGetData

YesphoneGetDevCaps

YesphoneGetDisplay

NophoneGetGain

NophoneGetHookSwitch

NophoneGetIcon

NophoneGetID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1092

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

NophoneGetLamp

YesphoneGetMessage

YesphoneGetRing

NophoneGetStatus

YesphoneGetStatusMessages

NophoneGetVolume

YesphoneInitialize

YesphoneInitializeEx

YesphoneNegotiateAPIVersion

NophoneNegotiateExtVersion

YesphoneOpen

NophoneSetButtonInfo

NophoneSetData

YesphoneSetDisplay

NophoneSetGain

NophoneSetHookSwitch

NophoneSetLamp

NophoneSetRing

YesphoneSetStatusMessages

NophoneSetVolume

YesphoneShutdown

TAPI Phone Messages

YesPHONE_BUTTON

YesPHONE_CLOSE

YesPHONE_CREATE

NoPHONE_DEVSPECIFIC

YesPHONE_REMOVE

YesPHONE_REPLY

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1093

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

YesPHONE_STATE

TAPI Phone Structures

NoPHONEBUTTONINFO

YesPHONECAPS

NoPHONEEXTENSIONID

YesPHONEINITIALIZEEXPARAMS

YesPHONEMESSAGE

NoPHONESTATUS

YesVARSTRING

TAPI Assisted Telephony Functions

NotapiRequestDrop

NotapiRequestMediaCall

TAPI Call Center Functions

NolineAgentSpecific

NolineGetAgentActivityList

NolineGetAgentCaps

NolineGetAgentGroupList

NolineGetAgentStatus

NolineProxyMessage

NolineProxyResponse

NolineSetAgentActivity

NolineSetAgentGroup

NolineSetAgentState

TAPI Call Center Messages

NoLINE_AGENTSPECIFIC

NoLINE_AGENTSTATUS

NoLINE_PROXYREQUEST

TAPI Call Center Structures

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1094

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

NoLINEAGENTACTIVITYENTRY

NoLINEAGENTACTIVITYLIST

NoLINEAGENTCAPS

NoLINEAGENTGROUPENTRY

NoLINEAGENTGROUPLIST

NoLINEAGENTSTATUS

NoLINEPROXYREQUEST

Wave Functions

YeswaveInAddBuffer

YeswaveInClose

NowaveInGetDevCaps

NowaveInGetErrorText

YeswaveInGetID

NowaveInGetNumDevs

YeswaveInGetPosition

NowaveInMessage

YeswaveInOpen

YeswaveInPrepareHeader

NowaveInProc

YeswaveInReset

YeswaveInStart

NowaveInStop

YeswaveInUnprepareHeader

NowaveOutBreakLoop

YeswaveOutClose

YeswaveOutGetDevCaps

NowaveOutGetErrorText

YeswaveOutGetID

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1095

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

CommentsCisco TAPI supportAPI/Message/Structure

NowaveOutGetNumDevs

NowaveOutGetPitch

NowaveOutGetPlaybackRate

NowaveOutGetPosition

NowaveOutGetVolume

NowaveOutMessage

YeswaveOutOpen

NowaveOutPause

YeswaveOutPrepareHeader

NowaveOutProc

YeswaveOutReset

NowaveOutRestart

NowaveOutSetPitch

NowaveOutSetPlaybackRate

NowaveOutSetVolume

YeswaveOutUnprepareHeader

YeswaveOutWrite

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1096

Cisco Unified TAPI Interfaces
Cisco Unified TAPI Interfaces

A P P E N D I X C
Troubleshooting Cisco Unified TAPI

This appendix contains information about troubleshooting Cisco Unified Communication manager. It contains
the following sections:

• TSP Trace of Internal Messages, on page 1097
• TSP Operation Verification, on page 1097
• Version Compatibility, on page 1098
• Cisco TSP Readme, on page 1098
• Unsupported CTI Events for SIP Phones, on page 1098

TSP Trace of Internal Messages
Procedure

Step 1 Choose Start > Settings > Control Panel and select Phone and Modem Options.
Step 2 Click Advanced tab and select the CiscoTSP 0xx and click Configure button.
Step 3 Click Trace tab. Select Trace On check box and select 1. TSP Trace to trace the TSP internal messages.

Select Error to just log errors in the TSP Select Detailed to log internal messages for debugging purposes.
Select 2. CTI Trace to trace the messages sent between CTI and TSP. Select 3. TSPI Trace to trace the
requests and events that are sent between TSP and TAPI.

Step 4 Set up a Directory that is the path for the trace log. For example, c:\Temp No. of Files: Setting this to a value
greater than or equal to 1 enables rolling log files. For example, a value of 10 will cause up to 10 log files to
be used in a cyclic fashion. Max lines/file: specifies the maximum number of trace statements that will be
written to each log file. For example, a value of 1000 will cause up to 1000 trace statements to be written to
each log file.

TSP Operation Verification
To verify the TSP operation on the machine where the TSP is installed, use the Microsoft Windows Phone
Dialer Application. Find this application in the C:\Program Files\Windows NT directory under the name
dialer.exe. When the program is run, a dialog box displays that asks which line and address the user wants to
use to connect. If there are no lines in the Line drop down list, then a problem may exist between the TSP and

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1097

the Cisco Unified Communications Manager. If lines are available, choose one of the lines, keep the Address
set to zero (0) and click OK. Enter a Number to dial, and a call should be placed to that number. If call is
successful, you know that the TSP is operational on the machine where the TSP is installed. If problems are
encountered with installation and setup of Remote TSP, this test represents a good way to verify whether the
TSP is operating properly and that the problem is with the configuration and setup of Remote TSP.

Version Compatibility
Cisco recommends that the TSP client should always use the plug-in that is downloaded from corresponding
Cisco Unified Communications Manager server.

Cisco TSP Readme
The Cisco Unified Communications Manager TSP readme file is copied to the client PC when TSP plug-in
is installed.

Unsupported CTI Events for SIP Phones
The following CTI events are not generated for SIP phones. Third party applications that expect these call
events should use SCCP phones:

• CallOpenLogicalChannelEvent

• CallRingEvent

• DeviceLampModeChangedEvent

• DeviceModeChangedEvent

• DeviceDisplayChangedEvent

• DeviceFeatureButtonPressedEvent

• DeviceKeyPressedEvent

• DeviceLampModeChangedEvent

• DeviceRingModeChangedEvent

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1098

Troubleshooting Cisco Unified TAPI
Version Compatibility

A P P E N D I X D
Cisco Unified TAPI Operations-by-Release

• Cisco Unified TAPI Operations-by-Release, on page 1099

Cisco Unified TAPI Operations-by-Release
The following tables list new, changed, and “under consideration or review” features for Cisco Unified TAPI
by Cisco Unified Communications Manager release.

• API Interfaces

• TAPI Line Functions

• TAPI Line Messages

• TAPI Line Structures

• TAPI Phone Functions

• TAPI Phone Messages

• TAPI Phone Structures

Table legend:

s: supported, N: not supported, M: Modified, UCR: Under Consideration or Review.

Table 146: API Interfaces

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

ssssssssssssssssssss
CTI Manager and
Support for fault
tolerance

ssssssssssssssssssss
Support for Cisco
CallManager Extension
Mobility

ssssssssssssssssssssSupport for Multiple
CiscoTSP

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1099

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

ssssssssssssssssMsss(Redirect Support for)
Blind Transfer

ssssssssssssssssssss

Support for swap hold
and setup transfer with
the lineDevSpecific()
function

ssssssssssssssssssssSupport for
lineForward()

ssssssssssssssssssss

Support to Reset the
Original Called Party
upon Redirect with the
lineDevSpecific function

sssssssssssssssssNNN

Support to Set the
Original Called Party
upon Redirect with the
lineDevSpecific function

sssssssssssssssssssMLine In-Service or
Out-of-Service

sssssssssssssssssssN

Support for multiple
languages in the
CiscoTSP installation
program and in the
CiscoTSP configuration
dialogs

sssssssssssssssssMNNUser Deletion from
Directory

ssssssssssssssssssNNOpening Two Lines on
One CTI Port Device

ssssssssssssssssssNNSupport for linePark and
lineUnpark

ssssssssssssssssssNN
Support for monitoring
Call Park Directory
Numbers using lineOpen

sssssssssssssssssMNNCall Reason
Enhancements

ssssssssssssssssssNNDevice Data Passthrough

sssssssssssssssssNNNCiscoTSP Auto Update

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1100

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

sssssssssssssssssNNNMultiple Calls per Line
Appearance

sssssssssssssssssNNNShared Line Appearance

sssssssssssssssssNNNSelect Calls

ssssssssssssssssMNNNTransfer Changes

sssssssssssssssssNNNDirect Transfer

ssssssssssssssssMNNNConference Changes

sssssssssssssssssNNNJoin

sssssssssssssssssNNNPrivacy Release

sssssssssssssssssNNNBarge and cBarge

sssssssssssssssssNNNDynamic Port
Registration

sssssssssssssssssNNNMedia Termination at
Route Points

sssssssssssssssssNNNQoS support

sssssssssssMsssssNNNSupport for Presentation
Indication

ssssssssssssssssNNNNWindows 2003 Support

sssssssssssssNNNNNNNUnicode Support

ssssssssssssNNNNNNNNSRTP support

ssssssssssssNNNNNNNNPartition Support

ssssssssssssNNNNNNNNSuperProvider
Functionality

ssssssssssssNNNNNNNNSecurity (TLS) support

ssssssssssssssssNNNNFAC/CMC Support

ssssssssssssssssNNNNCTI Port Third Party
Monitoring

ssssssssssssNNNNNNNNAlternate Script Support

ssssssssssssNNNNNNNNSIP Features
Refer/Replaces

ssssssssssssNNNNNNNNSIP URI

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1101

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

ssssssssssssNNNNNNNNSIP phone support

ssssssssssssNNNNNNNN

Change Notification of
SupetProvider and
CallParkDN Monitoring
flags

ssssssssssssNNNNNNNN3XX

sssssssssssNNNNNNNNNIntercom Support

sssssssssssNNNNNNNNNSecure Conferencing
Support

sssssssssssNNNNNNNNNMonitoring & Recording

sssssssssssNNNNNNNNNArabic and Hebrew
Language Support

sssssssssssNNNNNNNNNDo-Not-Disturb Support

sssssssssssNNssNNNNNConferenceEnhancement

ssssssssssNssNNNNNNNJoin AcrossLine (SCCP)

sssssssssNNNNNNNNNNNJoin AcrossLine (SIP)

sssssssssNNNNNNNNNNNLocale Infrastructure
Enhancement

sssssssssNNNNNNNNNNNDo-Not-Disturb
Rejection

sssssssssNNNNNNNNNNNCall Party Normalization

sssssssssNNNNNNNNNNNClick-To-Conference

ssssssssNNNNNNNNNNNNIPv6 Support on Linux

ssssssssssNsNssNNNNNWindows Vista Support

ssssssssNNNNNNNNNNNNEnhanced MWI

ssssssssNNNNNNNNNNNNDirect Transfer Across
Lines

ssssssssNNNNNNNNNNNNSupport for > 100DNs

ssssssssNNNNNNNNNNNN
Swap/Cancel support on
Cisco Unified IP Phone
8900 and 9900 Series

ssssssssNNNNNNNNNNNNDrop Any Party

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1102

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

ssssssssNNNNNNNNNNNNPark Reversion

ssssssssNNNNNNNNNNNNConditional Reset

ssssssssNNNNNNNNNNNNLogical Partition

ssssssssNNNNNNNNNNNNAssisted DPark

ssssssssNNNNNNNNNNNNCisco Unified IP Phone
6900 Series Support

ssssssssNNNNNNNNNNNNDevice State Server

sssssssNNNNNNNNNNNNN

Exposing Busy Trigger /
Line Number / Voice
Mail Pilot / Line Label /
New call outbound
rollover/

Consult call
rollover/JAL/DTAL flag
and IP address (IPv4 &
IPv6) of the device

ssssssNNNNNNNNNNNNNNHunt List Support

ssssssNNNNNNNNNNNNNNCall Intercept Support

ssssssNNNNNNNNNNNNNNExternal Call Control
(ECC) Support

ssssssNNNNNNNNNNNNNNCall Control Discover
(CCD) Support

ssssssNNNNNNNNNNNNNNExtensionMobility Cross
Cluster (EMCC) Support

ssssssNNNNNNNNNNNNNNCall Pickup Support

ssssssNNNNNNNNNNNNNNEnd-To-End Call Tracing

ssssssNNNNNNNNNNNNNNSecure Monitoring
Support

ssssssNNNNNNNNNNNNNNUnified B2B link support

ssssssNNNNNNNNNNNNNNiSAC Codec Support

ssssssNNNNNNNNNNNNNNNew TSP Client with
remote silent installation

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1103

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

ssssssNNNNNNNNNNNNNN
New Cisco TSP Wave
Driver (Cisco RTP
Library)

sssssNNNNNNNNNNNNNNNAgent Greeting

sssssNNNNNNNNNNNNNNNAgent Zip Tone

sssssNNNNNNNNNNNNNNNEarly Offer

sssssNNNNNNNNNNNNNNNExtension Mobility
Memory Optimization

sssssNNNNNNNNNNNNNNNOther-Device State
Notification

ssssNNNNNNNNNNNNNNNNEnergy Wise

ssssNNNNNNNNNNNNNNNNWhisper Coaching

ssssNNNNNNNNNNNNNNNNFIPS Compliant (UCR
2008 support)

ssssNNNNNNNNNNNNNNNN
Password Expiry and
Account Lockout (UCR
2008 support)

ssssNNNNNNNNNNNNNNNNSupport for Codian SIP
MCU

sssssNNNNNNNNNNNNNNNTSPNative 64Bit support

ssssNNNNNNNNNNNNNNNNTSP Native 64Bit SRTP
support

ssssNNNNNNNNNNNNNNNN
Support for multiple calls
per line on RTLite
Phones

sNNNNNNNNNNNNNNNNNNNSingle Sign On

sssNNNNNNNNNNNNNNNNNURI Dialing

sssNNNNNNNNNNNNNNNNN
Recording Enhancement
(Device Based
Recording)

sssNNNNNNNNNNNNNNNNNHunt Pilot Connected
Number

sssNNNNNNNNNNNNNNNNNNative Queuing

sssNNNNNNNNNNNNNNNNNCIUSSession Persistency

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1104

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.19.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TSP Features

sssNNNNNNNNNNNNNNNNN
CTI Remote Device
(Cisco Extend &
Connect)

ssNNNNNNNNNNNNNNNNNN
CTI Remote Device -
Extend Mode for CSF
Removed

ssNNNNNNNNNNNNNNNNNN
CTI Remote Device -
ADR (Application Dial
Rule) Support

ssNNNNNNNNNNNNNNNNNN
CTI Remote Device -
Remote Destination
Reachability Support

ssNNNNNNNNNNNNNNNNNNCTI Remote Device -
DTMF Support

sNNNNNNNNNNNNNNNNNNNCTI Remote Device
-Persistent Call

sNNNNNNNNNNNNNNNNNNNCTI Remote Device
-Announcement Call

sNNNNNNNNNNNNNNNNNNNCTIRemoteDevice -Call
Forwarding

sNNNNNNNNNNNNNNNNNNNCTI Remote Device -
NuRD

sNNNNNNNNNNNNNNNNNNN
CTI Remote Device -
Mobility Interaction
Support

sNNNNNNNNNNNNNNNNNNNCTI Video Support

sNNNNNNNNNNNNNNNNNNNGateway Recording

sNNNNNNNNNNNNNNNNNNN

CCMSymmetric
Encryption
Enhancements
-AsymmetricEncryption

sNNNNNNNNNNNNNNNNNNNVideo on Hold

Table 147: TAPI Line Functions

10.09.19.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1TAPI Line Functions

ssssssssssssssssMsssLineAddToConference

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1105

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.19.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1TAPI Line Functions

ssssssssssssssssMsssLineCompleteTransfer

sMMMMMsMMsMMsssMMssMLineDevSpecific

ssssssssssssssssssssLineForward

MsssssssssssssssssssLineMakeCall

ssssssssssssssssssNNLinePark

ssssssssssssssssssNNLineUnpark

ssssssssssssssssNNNNLineRedirect

ssssssssssssssssNNNNLineBlindTransfer

sssssssssssNNNNNNNNNLineDevSpecificFeature

ssssssssNNNNNNNNNNNNLineRemoveFromConference

Table 148: TAPI Line Messages

10.09.19.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1TAPI Line Messages

sssssssssssssssssssMLINE_ADDRESSSTATE

sssMMMsMMMMMMssssssMLINE_CALLINFO

MssssssssssssssMMsssLINE_CALLSTATE

ssssssssssssssssssssLINE_REMOVE

MsMMsMMsssMMsssMssssLINE_DEVSPECIFIC

sssssssssssNNNNNNNNNLINE_DEVSPECIFICFEATURE

MsssMMsMssMMsssMssssLINE_CALLDEVSPECIFIC

Table 149: TAPI Line Structures

10.09.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TAPI Line Structures

MsssssssssssssMMssMLINEADDRESSCAPS

MsssssssssssssMMsssLINECALLSTATUS

MssssssssssssssssssLINEFORWARD

MssssssssssssssssssLINEFORWARDLIST

MMssMMMssMMMssssMssLINEDEVCAPS

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1106

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

10.09.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TAPI Line Structures

sssssssssMsMsssssssLINEDEVSTATUS

MssMMMMMMMMssssssssLINECALLINFO

MssssssssssssssssssLINECALLPARAMs

Table 150: TAPI Phone Functions

10.09.08.68.58.07.1.37.1.27.06.16.05.15.04.34.24.14.03.33.23.1TAPI Phone Functions

sssssssssssMsssssNNPhoneDevSpecific

sssssssssssssssssNNPhoneGetStatus

Table 151: TAPI Phone Messages

10.09.08.68.58.07.1.37.1.27.06.16.05.25.15.04.34.24.14.03.33.23.1TAPI Phone Messages

ssssssssssssssssssssPHONE_REMOVE

MsssMMssssssssssssssPHONE_DEVSPECIFIC

Table 152: TAPI Phone Structures

10.09.08.68.58.07.1.37.1.27.06.16.05.25.15.04.34.24.14.03.33.23.1TAPI Phone Structures

MsssMMssssssssssssssPHONECAPS

ssssssssssssssssssNNPHONESTATUS

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1107

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1108

Cisco Unified TAPI Operations-by-Release
Cisco Unified TAPI Operations-by-Release

A P P E N D I X E
CTI Supported Devices

• CTI Supported Devices, on page 1109

CTI Supported Devices
The following table provides information about CTI supported devices.

Table legend:

s: supported, N: not supported, NA: Not Applicable.

Table 153: CTI Supported Device Matrix

CommentsSIPSCCPDevice/Phone model

Limitations for this device
described in the JTAPI
Developers Guide 4.1(3)

NsAnalog Phone

End of Software Maintenance
Release 2001

NsCisco 12 S

Not a CTI supported deviceNANACisco Unified IP Phone 3911

SIP requires firmware 9.1(1)ssCisco Unified IP Phone 6901

SIP requires firmware 9.1(1)ssCisco Unified IP Phone 6911

phoneSetDisplay() interface is
not supported. SIP requires
firmware 9.1(1)

ssCisco Unified IP Phone 6921

phoneSetDisplay() interface is
not supported. SIP requires
firmware 9.1(1)

ssCisco Unified IP Phone 6941

phoneSetDisplay() interface is
not supported. SIP requires
firmware 9.1(1)

ssCisco Unified IP Phone 6945

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1109

CommentsSIPSCCPDevice/Phone model

phoneSetDisplay() interface is
not supported. SIP requires
firmware 9.1(1)

ssCisco Unified IP Phone 6961

ssCisco Unified IP Phone 7821

ssCisco Unified IP Phone 7841

ssCisco Unified IP Phone 7906

ssCisco Unified IP Phone 7911

End of Software Maintenance
Release 2010

NsCisco Unified IP Phone 7914
Sidecar

ssCisco Unified IP Phone 7915
Sidecar

ssCisco Unified IP Phone 7916
Sidecar

NsCisco Unified IP Phone 7921

NsCisco Unified IP Phone 7925
and 7925-EX

CTI supported only if rollover
is disabled. Starting 7.1 this
device is supported when
corresponding role is added to
user.

NsCisco Unified IP Phone 7931

End of Software Maintenance
Release 2011

NsCisco Unified IP Phone 7936

NsCisco Unified IP Phone 7937

End of Software Maintenance
Release 2011

NsCisco Unified IP Phone 7940

ssCisco Unified IP Phone 7941

End of Software Maintenance
Release 2009

ssCisco Unified IP Phone
7941G-GE

ssCisco Unified IP Phone 7942

ssCisco Unified IP Phone 7945

End of Software Maintenance
Release 2011

NsCisco Unified IP Phone 7960

ssCisco Unified IP Phone 7961

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1110

CTI Supported Devices
CTI Supported Devices

CommentsSIPSCCPDevice/Phone model

End of Software Maintenance
Release 2009

ssCisco Unified IP Phone
7961G-GE

ssCisco Unified IP Phone 7962

ssCisco Unified IP Phone 7965

End of Software Maintenance
Release 2009

ssCisco Unified IP Phone 7970

End of Software Maintenance
Release 2009

ssCisco Unified IP Phone 7971

ssCisco Unified IP Phone 7975

End of Software Maintenance
Release 2011

NsCisco Unified IP Phone 7985

8811 phones are CTI controlledsNCisco Unified IP Phone 8811

NsCisco Unified IP Phone 8941

NsCisco Unified IP Phone 8945

phoneSetDisplay() interface is
not supported

sNCisco Unified IP Phone 8961

phoneSetDisplay() interface is
not supported

sNCisco Unified IP Phone 9951

phoneSetDisplay() interface is
not supported

sNCisco Unified IP Phone 9971

For details on the limitations of
this device, see
http://www.cisco.com/en/US/docs/voice_ip_comm/cucm/jtapi_dev/4_1_3/developer/jtdevch1.html#wp1029269

NsCisco ATA 186

CTI support added in 8.5(1).
phoneSetDisplay() interface is
not supported. XSI interface is
not supported. Silent
Monitoring/Recording is not
supported.

sNCisco Cius

ssCisco IP Communicator

CTI support added in 8.5(1)ssCisco Unified Personal
Communicator -Softphone
Mode

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1111

CTI Supported Devices
CTI Supported Devices

http://www.cisco.com/en/US/docs/voice_ip_comm/cucm/jtapi_dev/4_1_3/developer/jtdevch1.html#wp1029269

CommentsSIPSCCPDevice/Phone model

Refer to the device model under
remote control to determine CTI
support. Click-to-Answer
requires device speakerphone
support.

NANACisco Unified Personal
Communicator -Remote
Desktop Control Mode

CTI support added in 8.5(2)sNCisco Unified Communications
Integration for Microsoft Office
Communicator/Lync -Softphone
Mode

Refer to the device model under
remote control to determine CTI
support. Click-to-Answer
requires device speakerphone
support.

NANACiscoUnified Communications
Integration for Microsoft Office
Communicator/Lync -Remote
Desktop Control Mode

Not a CTI supported deviceNANACisco Web Communicator for
Quad -Softphone Mode

Refer to the device model under
remote control to determine CTI
support. Click-to-Answer
requires device speakerphone
support.

NANACisco Web Communicator for
Quad -RemoteDesktop Control
Mode

Not a CTI supported deviceNANACiscoUnified Communications
Integration for WebEx Connect
-Softphone Mode

Refer to the device model under
remote control to determine CTI
support. Click-to-Answer
requires device speakerphone
support.

NANACiscoUnified Communications
Integration for WebEx Connect
-RemoteDesktop ControlMode

NsCisco VGC Phone

Not a CTI supported deviceNANAVG224

For details on the limitations of
this device, see
http://www.cisco.com/en/US/docs/voice_ip_comm/cucm/jtapi_dev/4_1_3/developer/jtdevch1.html#wp1029269

NsVG248

CTI supported virtual deviceNANACTI Port

CTI supported virtual deviceNANACTI Route Point

CTI supported virtual deviceNANACTI Route Point (Pilot)

Not a CTI supported deviceNANAISDN BRI Phone

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1112

CTI Supported Devices
CTI Supported Devices

http://www.cisco.com/en/US/docs/voice_ip_comm/cucm/jtapi_dev/4_1_3/developer/jtdevch1.html#wp1029269

CommentsSIPSCCPDevice/Phone model

Not supported by CTI——Cisco Spark remote device

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1113

CTI Supported Devices
CTI Supported Devices

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
1114

CTI Supported Devices
CTI Supported Devices

I N D E X

A

Arabic language 28
AVAudio32.dll 305

B

button press monitoring 291

C

call control 9
CCiscoLineDevSpecificFeature class 391
CCiscoLineDevSpecificSetStatusMsgs 356
CCiscoLineDevSpecificStartSendMediaToBIBRequest 382
CCiscoLineDevSpecificStopSendMediaToBIBRequest 383
Cisco Unified CallManager JTAPI 1087, 1099

classes and interfaces 1087, 1099
Cisco Unified TSP 110, 124, 125, 126, 128, 130, 133, 134, 136, 137, 138,

139, 140
configuration settings 124, 125, 126, 128, 130, 133, 134, 136

Advanced tab (figure) 134
CTI Manager tab (figure) 126
CTI Manager tab (table) 126
general tab (figure) 124
Language tab (figure) 136
overview 124
Trace tab (figure) 133
user tab (figure) 125
user tab (table) 125
Wave tab (table) 128, 130

installing 110
managing 137
reinstalling 138
removing 139
uninstalling the wave driver 139, 140
upgrading 138

CiscoLineDevSpecificMsgWaiting class 349, 350
classes 346, 349, 350, 353, 355, 358, 359, 360, 362, 363, 382, 383

Audio Stream Control 353
CCiscoLineDevSpecificJoin 363
CCiscoLineDevSpecificPortRegistrationPerCall 360
CCiscoLineDevSpecificRedirectResetOrigCalled 359
CCiscoLineDevSpecificRedirectSetOrigCalled 363
CiscoLineDevSpecific 346

classes (continued)
CiscoLineDevSpecificUserControlRTPStream 353
Join 363
Message Waiting 349
Message Waiting Dirn 350
Port Registration per Call 360
Redirect Reset Original Called ID 359
Redirect Set Original Called ID 363
Set Status Messages 355
Setting RTP Parameters for Call 362
Start Send Media To BIB 382
Stop Send Media To BIB 383
Swap-Hold/SetupTransfer 358

CloseLine 451
Cluster Support 6, 67
Code samples 447, 448, 451

CloseLine 451
MakeCall 447
OpenLine 448

conferences 38, 87
secure 87

CTI 6, 7, 8, 10
call survivability 7
Cisco TAPI application failure 8
Cisco Unified CallManager failure 7
manager 6
manager failure 8
port 10
route point 10

CTI supported devices 1109

D

directory change notification handling 54
do not disturb 55

do not disturb-reject 55
Do Not Disturb (DND) 54, 391

E

examples 447, 448, 451
CloseLine 451
MakeCall 447
OpenLine 448

Extension Mobility 63

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
IN-1

extensions 317, 395
Cisco line device specific TAPI functions 317
Cisco phone device specific TAPI functions 395

F

fault tolerance 6, 67
forwarding enhancement 67
functions 274

phone functions 274

H

Hebrew language 28

I

installation 94
intercom 71

L

languages 28
Arabic and Hebrew 28

line device structures 217, 228, 229, 231, 239, 240, 242, 248, 250, 251,
252, 257, 259, 263, 264, 265, 267, 268, 269, 270, 271, 272

LINEADDRESSCAPS 217
LINEADDRESSSTATUS 228
LINEAPPINFO 229
LINECALLINFO 231
LINECALLLIST 239
LINECALLPARAMS 240
LINECALLSTATUS 242
LINECARDENTRY 248
LINECOUNTRYENTRY 250
LINECOUNTRYLIST 251
LINEDEVCAPS 252
LINEDEVSTATUS 257
LINEEXTENSIONID 259
LINEFORWARD 259
LINEFORWARDLIST 263
LINEGENERATETONE 263
LINEINITIALIZEEXPARAMS 264
LINELOCATIONENTRY 265
LINEMESSAGE 267
LINEMONITORTONE 268
LINEPROVIDERENTRY 269
LINEPROVIDERLIST 269
LINEREQMAKECALL 270
LINETRANSLATECAPS 271
LINETRANSLATEOUTPUT 272

line functions 146, 147, 148, 149, 150, 151, 152, 155, 156, 157, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,

line functions (continued)
175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 198

lineAccept 146
lineAddProvider 146
lineAddToConference 147
lineAnswer 148
lineBlindTransfer 148
lineCallbackFunc 149
lineClose 150
lineCompleteTransfer 150
lineConfigProvider 151
lineDeallocateCall 152
lineDevSpecific 152
lineDial 155
lineDrop 156
lineForward 157
lineGenerateDigits 159
lineGenerateTone 160
lineGetAddressCaps 161
lineGetAddressID 162
lineGetAddressStatus 163
lineGetCallInfo 163
lineGetCallStatus 164
lineGetConfRelatedCalls 164
lineGetDevCaps 164, 165
lineGetID 166
lineGetLineDevStatus 167
lineGetMessage 167
lineGetNewCalls 168
lineGetNumRings 169
lineGetProviderList 170
lineGetRequest 171
lineGetStatusMessages 172
lineGetTranslateCaps 172
lineHandoff 173
lineHold 174
lineInitialize 175
lineInitializeEx 176
lineMakeCall 177
lineMonitorDigits 178
lineMonitorTones 178
lineNegotiateAPIVersion 179
lineNegotiateExtVersion 180
lineOpen 181
linePark 182
linePrepareAddToConference 183
lineRedirect 185
lineRegisterRequestRecipient 185
lineRemoveProvider 187
lineSetAppPriority 188
lineSetCallPrivilege 189
lineSetNumRings 190
lineSetStatusMessages 191
lineSetTollList 192
lineSetupConference 193

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
IN-2

INDEX

line functions (continued)
lineSetupTransfer 194
lineShutdown 194
lineTranslateAddress 195
lineTranslateDialog 196
lineUnhold 198
lineUnpark 198

line messages 200, 201, 202, 203, 207, 208, 211, 212, 213, 214, 215, 216
LINE_ADDRESSSTATE 200
LINE_APPNEWCALL 201
LINE_CALLINFO 202
LINE_CALLSTATE 203
LINE_CLOSE 207
LINE_CREATE 207
LINE_DEVSPECIFIC 208
LINE_GENERATE 211
LINE_LINEDEVSTATE 212
LINE_MONITORTDIGITS 213
LINE_MONITORTONE 213
LINE_REMOVE 214
LINE_REPLY 215
LINE_REQUEST 216

lines 143
line functions 143

M

MakeCall 447
messages 199, 290, 405

device specific messages 405
line messages 199
LINE_DEVSPECIFIC 405
phone messages 290

monitor privilege 286
monitoring call park directory numbers 11
multiple Cisco Unified TSPs 11

O

OpenLine 448
owner privilege 286

P

phone functions 275, 276, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287,
288, 290

phoneCallbackFunc 275
phoneClose 276
phoneDevSpecific 276
phoneGetDevCaps 276
phoneGetDisplay 277
phoneGetLamp 278
phoneGetMessage 278
phoneGetRing 279
phoneGetStatus 280

phone functions (continued)
phoneGetStatusMessages 281
phoneInitialize 282
phoneInitializeEx 283
phoneNegotiateAPIVersion 285
phoneOpen 286
phoneSetDisplay 287
phoneSetStatusMessages 288
phoneShutdown 290

phone messages 291, 294, 295, 296
PHONE_BUTTON 291
PHONE_CLOSE 294
PHONE_CREATE 294
PHONE_REMOVE 295
PHONE_REPLY 296
PHONE_STATE 296

phone structure 298
PHONECAPS 298

phone structures 300, 301
PHONEINITIALIZEEXPARAMS 300
PHONEMESSAGE 301

phones 25
SIP 25

S

secure conferencing 87
silent install 94
SIP phones 25
structures 216, 298

line device 216
phone structures 298

T

translation pattern 102
TSP 110, 124, 125, 126, 128, 130, 133, 134, 136, 137, 138, 139, 140

configuration settings 124, 125, 126, 128, 130, 133, 134, 136
Advanced tab (figure) 134
CTI Manager tab (figure) 126
CTI Manager tab (table) 126
general tab (figure) 124
Language tab (figure) 136
overview 124
Trace tab (figure) 133
user tab (figure) 125
user tab (table) 125
Wave tab (table) 128, 130

installing 110
managing 137
reinstalling 138
removing 139
uninstalling the wave driver 139, 140
upgrading 138

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
IN-3

INDEX

W

wave driver 139, 140
uninstalling 139, 140

wave functions 306, 307, 308, 309, 310, 311, 312, 313, 314, 315
waveInAddBuffer 306
waveInClose 306
waveInGetID 307
waveInGetPosition 307
waveInOpen 308
waveInPrepareHeader 309
waveInReset 310
waveInStart 310
waveInUnprepareHeader 310

wave functions (continued)
waveOutClose 311
waveOutGetDevCaps 311
waveOutGetID 312
waveOutGetPosition 312
waveOutOpen 313
waveOutPrepareHeader 314
waveOutReset 314
waveOutUnprepareHeader 315
waveOutWrite 315

X

xsi object pass through 107

Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
IN-4

INDEX

	Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager Release 12.5(1)
	Contents
	Overview
	Cisco Unified Communications Manager Interfaces
	Provisioning Interfaces
	Administrative XML
	Cisco Extension Mobility

	Device Monitoring and Call Control Interfaces
	Cisco TAPI and Media Driver
	Cisco JTAPI
	Cisco Web Dialer

	Serviceability Interfaces
	Serviceability XML
	SNMP/MIBs

	Routing Rules Interface

	Cisco Unified TSP Overview
	Cisco Unified TSP Concepts
	Basic TAPI Applications
	Cisco TSP Components
	Cisco Media Drivers
	TAPI Debugging
	CTI Manager (Cluster Support)
	Cisco Unified Communications Manager Failure
	Call Survivability
	CTI Manager Failure
	Cisco Unified TAPI Application Failure

	LINE_CALLDEVSPECIFIC Event Support for RTP Events
	QoS
	Presentation Indication (PI)
	Call Control
	CTI Port
	Dynamic Port Registration
	CTI Route Point
	Media Termination at Route Point
	Monitoring Call Park Directory Numbers
	Multiple Cisco Unified TSPs
	CTI Device/Line Restriction

	Development Guidelines

	New and Changed Information
	Cisco Unified Communications Manager, Release 12.5(1)
	Features Supported in Previous Releases
	Cisco Unified Communications Manager, Release 11.5(1)
	Cisco Unified Communications Manager, Release 11.0(1)
	Cisco Unified Communications Manager Release 10.5(2)
	Cisco Unified Communications Manager Release 10.0(1)
	Cisco Unified Communications Manager Release 9.1(1)
	Cisco Unified Communications Manager Release 9.0(1)
	Cisco Unified Communications Manager Release 8.6(1)
	Cisco Unified Communications Manager Release 8.5(1)
	Cisco Unified Communications Manager Release 8.0(1)
	Cisco Unified Communications Manager Release 7.1(3)
	Cisco Unified Communications Manager Release 7.1(2)
	Cisco Unified Communications Manager Release 7.0(1)
	Cisco Unified Communications Manager Release 6.1(x)
	Cisco Unified Communications Manager Release 6.0(1)
	Cisco Unified Communications Manager Release 5.1
	Cisco Unified Communications Manager Release 5.0
	Cisco Unified Communications Manager Release 4.x
	Cisco Unified Communications Manager Releases Prior to 4.x

	Features Supported by TSP
	3XX
	Additional Features Supported on SIP Phones
	AES 256 Algorithm IDs
	Agent Greeting
	Agent Zip Tone
	Alternate Script
	Arabic and Hebrew Language
	Barge and cBarge
	Call Control Discovery
	Calling Party IP Address
	Calling Party Normalization
	Call PickUp
	Call Queuing Feature Support
	Call Recording and Call Recording Enhancement
	Call Recording for SIP or TLS Authenticated calls
	CallFwdAll Notification
	Cisco Unified TSP Auto Update
	CIUS Session Persistency
	Click to Conference
	CCMEncryption Enhancements
	Conference Enhancements
	CTI Port Third-Party Monitoring Port
	CTI Remote Device
	Application Dial Rule Support
	DTMF Support
	Extend Mode Support for CSF Is Removed
	Remote Destination Reachability Verification
	Persistent Connection
	Announcement Call
	NuRD (Number Matching for Remote Destination) Support
	Mobility Interaction Support

	Call Forwarding
	CTI Video Support
	Default CTI IP Addressing for Devices
	Device State Server
	Direct Transfer
	Direct Transfer Across Lines
	Directory Change Notification
	Do Not Disturb
	Do Not Disturb-Reject
	Drop-Any-Party
	Early Offer
	Media Driver Support for Early Offer
	TAPI Application Message Flow for Early Offer Call

	End-to-End Call Trace
	EnergyWise DeepSleep Mode Support
	Extension Mobility
	Extension Mobility Cross Cluster
	Extension Mobility Memory Optimization Option
	External Call Control
	FIPS Compliance
	Conference Changes
	Forced Authorization Code and Client Matter Code
	Forwarding
	Gateway Recording
	Hold Reversion
	Hunt List
	Hunt Pilot Connected Number
	Hunt Group Login Status
	Intercom
	IPv6
	Transfer Changes
	Join
	Join Across Lines (SCCP)
	Join Across Lines (SIP)
	Line-Side Phones That Run SIP
	Localization Infrastructure Changes
	Logical Partitioning
	Message Waiting Indicator Enhancement
	Microsoft Windows Vista
	Monitoring Call Park Directory Numbers
	Multiple Calls Per Line Appearance
	New Cisco Media Driver
	Other-Device State Notification
	Park Monitoring
	Partition
	Password Expiry Notification
	Password Expired
	Account Lock

	Privacy Release
	Redirect to Device
	Redirect and Blind Transfer
	lineRedirect
	lineDevSpecific -redirect reset Original Called ID
	lineDevSpecific -redirect set Original Called ID
	lineDevSpecific -redirect FAC CMC
	lineBlindTransfer
	lineDevSpecific -blind transfer FAC CMC

	Refer and Replaces for Phones That Are Running SIP
	Ringback on SIP 183 for Transfers
	Secure Conference
	Secure RTP
	Presentation Indication
	Secure TLS
	Support for RSHA12 Algorithm

	Secured Monitoring and Recording
	Select Calls
	Conference Changes
	Transfer Changes
	Set the Original Called Party Upon Redirect
	Shared Line Appearance
	Silent Install
	Silent Monitoring
	SIP URL Address
	Presentation Indication
	Change Notification of SuperProvider and CallPark DN Monitoring Flags
	Super Provider
	SuperProvider
	Support for Cisco Unified IP Phone 6900 and 9900 Series
	Support for 100 + Directory Numbers
	Swap and Cancel Softkeys
	Translation Pattern
	Presentation Indication
	Change Notification of SuperProvider and CallPark DN Monitoring Flags
	Unicode
	Unrestricted Unified CM
	URI Dialing
	Video On Hold Support
	Whisper Coaching
	XSI Object Pass Through

	Cisco Unified TAPI Installation
	Required Software
	Supported Windows Platforms
	Installing the Cisco Unified CM TSP Client
	Cisco TSP Client Interaction with Windows Services
	Installation Setup Screen
	Configure TSP Instance
	Configure Secure TSP Instance
	Cisco Media Driver Selection
	Cisco Wave Driver for Windows XP, Vista, 2003, 2008
	Cisco Wave Driver for Windows 7

	Verifying the Cisco Wave Driver
	AutoUpgrade
	Update Credentials
	Cisco TSP Notifier
	Multi-Language Settings
	Installation Completed
	Reinstall or Add a New Instance
	Upgrading CiscoTSP
	Downgrade or Uninstall of Cisco TSP

	Silent Installation of Cisco Unified CM TSP
	Upgrading Unified CM TSP Client to Release 8.5(1) Using Silent Installation

	Using Cisco TSP
	Program Group and Program Elements
	Modifying Cisco TSP Configuration

	Cisco Unified CM TSP Configuration Settings
	General
	User
	CTI Manager
	Security
	Configuring Cisco Media Driver and Cisco Wave Driver
	Trace
	Advanced
	Language

	Verify the Cisco Unified CM TSP Installation
	Managing the Cisco Unified CM TSP
	Reinstall the Cisco Unified TSP
	Upgrade the Cisco Unified TSP
	Remove Cisco Unified TSP From the Provider List
	Uninstall the Cisco TSP Client
	Uninstall the Cisco Wave Driver
	Uninstall the Cisco Wave Driver for Windows 2003
	Uninstall the Cisco Wave Driver for Windows 2008

	Auto Update for Cisco Unified TSP Upgrades
	Auto Update Behavior

	Cisco TSP Behavior on Windows Upgrade

	Basic TAPI Implementation
	Overview
	TAPI Line Functions
	lineAccept
	lineAddProvider
	lineAddToConference
	lineAnswer
	lineBlindTransfer
	lineCallbackFunc
	lineClose
	lineCompleteTransfer
	lineConfigProvider
	lineDeallocateCall
	lineDevSpecific
	lineDevSpecificFeature
	lineDial
	lineDrop
	lineForward
	lineGenerateDigits
	lineGenerateTone
	lineGetAddressCaps
	lineGetAddressID
	lineGetAddressStatus
	lineGetCallInfo
	lineGetCallStatus
	lineGetConfRelatedCalls
	lineGetDevCaps
	lineGetID
	lineGetLineDevStatus
	lineGetMessage
	lineGetNewCalls
	lineGetNumRings
	lineGetProviderList
	lineGetRequest
	lineGetStatusMessages
	lineGetTranslateCaps
	lineHandoff
	lineHold
	lineInitialize
	lineInitializeEx
	lineMakeCall
	lineMonitorDigits
	lineMonitorTones
	lineNegotiateAPIVersion
	lineNegotiateExtVersion
	lineOpen
	linePark
	linePrepareAddToConference
	lineRedirect
	lineRegisterRequestRecipient
	lineRemoveFromConference
	lineRemoveProvider
	lineSetAppPriority
	lineSetCallPrivilege
	lineSetNumRings
	lineSetStatusMessages
	lineSetTollList
	lineSetupConference
	lineSetupTransfer
	lineShutdown
	lineTranslateAddress
	lineTranslateDialog
	lineUnhold
	lineUnpark

	TAPI Line Messages
	LINE_ADDRESSSTATE
	LINE_APPNEWCALL
	LINE_CALLDEVSPECIFIC
	LINE_CALLINFO
	LINE_CALLSTATE
	LINE_CLOSE
	LINE_CREATE
	LINE_DEVSPECIFIC
	LINE_DEVSPECIFICFEATURE
	LINE_GATHERDIGITS
	LINE_GENERATE
	LINE_LINEDEVSTATE
	LINE_MONITORDIGITS
	LINE_MONITORTONE
	LINE_REMOVE
	LINE_REPLY
	LINE_REQUEST

	TAPI Line Device Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINEAPPINFO
	LINECALLINFO
	LINECALLLIST
	LINECALLPARAMS
	LINECALLSTATUS
	LINECARDENTRY
	LINECOUNTRYENTRY
	LINECOUNTRYLIST
	LINEDEVCAPS
	LINEDEVSTATUS
	LINEEXTENSIONID
	LINEFORWARD
	LINEFORWARDLIST
	LINEGENERATETONE
	LINEINITIALIZEEXPARAMS
	LINELOCATIONENTRY
	LINEMESSAGE
	LINEMONITORTONE
	LINEPROVIDERENTRY
	LINEPROVIDERLIST
	LINEREQMAKECALL
	LINETRANSLATECAPS
	LINETRANSLATEOUTPUT

	TAPI Phone Functions
	phoneCallbackFunc
	phoneClose
	phoneDevSpecific
	phoneGetDevCaps
	phoneGetDisplay
	phoneGetLamp
	phoneGetMessage
	phoneGetRing
	phoneGetStatus
	phoneGetStatusMessages
	phoneInitialize
	phoneInitializeEx
	phoneNegotiateAPIVersion
	phoneOpen
	phoneSetDisplay
	phoneSetStatusMessages
	phoneShutdown

	TAPI Phone Messages
	PHONE_BUTTON
	PHONE_CLOSE
	PHONE_CREATE
	PHONE_REMOVE
	PHONE_REPLY
	PHONE_STATE

	TAPI Phone Structures
	PHONECAPS Structure
	PHONEINITIALIZEEXPARAMS
	PHONEMESSAGE
	PHONESTATUS
	VARSTRING

	Wave Functions
	waveInAddBuffer
	waveInClose
	waveInGetID
	waveInGetPosition
	waveInOpen
	waveInPrepareHeader
	waveInReset
	waveInStart
	waveInUnprepareHeader
	waveOutClose
	waveOutGetDevCaps
	waveOutGetID
	waveOutGetPosition
	waveOutOpen
	waveOutPrepareHeader
	waveOutReset
	waveOutUnprepareHeader
	waveOutWrite

	Cisco Device-Specific Extensions
	Cisco Line Device Specific Extensions
	LINEDEVCAPS
	LINECALLINFO
	Details
	Parameters

	LINECALLPARAMS
	LINEDEVSTATUS
	Detail
	Parameters

	CCiscoLineDevSpecific
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Message Waiting
	Class Detail
	Parameters

	Message Waiting Dirn
	Class Detail
	Parameters

	Message Summary
	Class Detail
	Parameters

	Message Summary Dirn
	Class Detail
	Parameters

	Audio Stream Control
	Class Detail
	Parameters

	Set Status Messages
	Description
	Class Detail
	Parameters

	Swap-Hold/SetupTransfer
	Class Details
	Parameters

	Redirect Reset Original Called ID
	Description
	Class Details
	Parameters

	Port Registration per Call
	Class Details
	Parameters

	Setting RTP Parameters for Call
	Class Details
	Parameters

	Redirect Set Original Called ID
	Class Details
	Parameters

	Join
	Class Details
	Parameters

	Set User SRTP Algorithm IDs
	Class Detail
	Supported Algorithm Constants
	Parameters

	Explicit Acquire
	Class Details
	Parameters

	Explicit De-Acquire
	Class Details
	Parameters

	Redirect FAC CMC
	Class Detail
	Parameters

	Blind Transfer FAC CMC
	Class Detail
	Parameters

	CTI Port Third Party Monitor
	Class Detail
	Parameters

	Send Line Open
	Class Detail

	Set Intercom SpeedDial
	Class Detail
	Parameters

	Intercom Talk Back
	Class Detail

	Redirect with Feature Priority
	Detail
	Parameters

	Start Call Monitoring
	Class Detail
	Parameters
	Return Values

	Start Call Recording
	Class Detail
	Parameters
	Return Values

	StopCall Recording
	Class Detail
	Parameters
	Return Values

	Set IPv6 Address and Mode
	Class Detail
	Parameters

	Set RTP Parameters for IPv6 Calls
	Class Detail
	Parameters

	Direct Transfer
	Class Detail
	Parameters

	RegisterCallPickUpGroupForNotification
	Class Detail
	Parameters

	UnRegisterCallPickUpGroupForNotification
	Class Details
	Parameters

	CallPickUpRequest
	Class Details
	Parameters

	Start Send Media to BIB
	Description
	Class Detail
	Parameters

	Stop Send Media to BIB
	Description
	Class Detail
	Parameters

	Agent Zip Tone
	Description
	Class Detail
	Parameters

	Early Offer
	Enable Feature
	Description
	Class Detail
	Parameters

	UpdateMonitorMode
	Description
	Class Detail
	Parameters

	Add Remote Destination
	Remove Remote Destination
	Update Remote Destination
	lineHold Enhancement
	Message Details
	Parameters

	Cisco Line Device Feature Extensions
	CCiscoLineDevSpecificFeature
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses

	Do-Not-Disturb
	Class Detail
	Parameters

	Do-Not-Disturb Change Notification Event
	Message Details
	Parameters

	Cisco Phone Device-Specific Extensions

	CCiscoPhoneDevSpecific
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Device Data PassThrough
	Class Detail
	Parameters

	Set Status Msgs
	Class Detail
	Parameters

	Set Unicode Display
	Class Detail
	Parameters

	Explicit Acquire
	Class Details
	Parameters

	Explicit Deacquire
	Class Details
	Parameters

	Request Call RTP Snapshot
	Class Details
	Parameters

	Hunt Group Login Status
	Class Detail
	Parameter
	Enumeration

	Redirect Enhancement
	Class Details
	Parameters
	Constants

	Phone State Event
	Parameters

	Messages
	Announcement Events
	Start Transmission Events
	Start Reception Events
	Stop Transmission Events
	Stop Reception Events
	Existing Call Events
	Open Logical Channel Events
	LINECALLINFO_DEVSPECIFICDATA Events
	Call Tone Changed Events
	Line Property Changed Events
	Phone Property Changed Events
	Monitoring Started Event
	Monitoring Ended Event
	Recording Started Event
	Recording Ended Event
	Recording Failure Event
	Silent Monitoring Session Terminated Event
	Media to BIB Started Event
	Media to BIB Ended Event
	Get IP and Port Event
	MultiMedia Streams Data Notification Event
	Monitor Mode Update Event

	Cisco TSP Media Driver
	Cisco Rtp Library Components
	TAPI Application Support
	CiscoTSP and Cisco Rtp Library Interaction
	Codec Advertisement

	Typical TAPI Application Message Flow

	EpAPI Functions
	EpApiInit
	EpApiInitByDefault
	EpApiClose
	EpLocalAddressGetAll
	EpLocalAddressPortGet
	EpLocalAddressPortGetByFamily
	EpLocalAddressPortGetByIdx
	EpLocalAddrPortFree
	EpOpenById
	EpClose
	EpGetStreamHandle
	EpStreamStart
	EpStreamStop
	EpStreamRead
	EpStreamWrite
	EpStreamCodecInGet
	EpStreamCodecInSet
	EpStreamCodecOutGet
	EpStreamCodecOutSet
	EpApiTraceLevelSet
	EpApiGetLastError

	EpApi Error Codes
	Callback Function
	Data Structures
	RTPADDR
	RTPSIL
	RTPCODEC

	Trace Options
	Trace Level
	Trace Callback Function

	Known Problems or Limitations

	Cisco Unified TAPI Examples
	MakeCall
	OpenLine
	CloseLine

	Message Sequence Charts
	Abbreviations
	3XX
	Agent Greeting
	Configuration
	Procedure

	Agent Zip Tone
	Configuration
	Application Issues the Play Tone Request on a CTI Port with PlayToneDirection -Local/Remote
	Configuration

	Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent (Shared Line). PlayToneDirection -Local
	Configuration

	Conference Scenario: PlayToneDirection -local.
	Configuration

	Application Issues the Play Tone Request When the Call Is Established Between Customer and Agent Agent Puts the Call on Hold. PlayToneDirection -Remote
	Configuration

	Announcement Call
	Blind Transfer
	Call Control Discovery
	Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster2 with PSTN Failover Rule Not Set
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A(1900) and B(1901) on Cluster 1 B Redirects to Phone C(1000) on Cluster2 with PSTN Failover Rule Set
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 with PSTN Failover Rule
	Configuration
	Procedure

	Call Initiated From TAPI From Phone A and B on Cluster 1 B Sets Up Conference to Phone C(1000) on Cluster 2 with PSTN Failover Rule
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A on Cluster 1 to Phone B on Cluster 2 Over SAF Trunk
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Redirects to Phone C(1000) on Cluster 2 Over SAF Trunk
	Configuration
	Procedure

	Basic Call Initiated From TAPI From Phone A and B on Cluster 1 B Transfers to Phone C(1000) on Cluster 2 Over SAF Trunk
	Configuration
	Procedure

	CallFwdAll Notification
	Application Pressed CFwdAll on TAPI Monitored Device
	TAPI Monitored Device Goes Off Hook
	Application Monitors Off Hook Device
	Application Monitors Device After User Presses CFwdAll
	User Presses CFwdAll Softkey After Device Is Off Hook
	User Presses CFwdAll Softkey on a Multiline Device
	User Presses CFwdAll on a Multiline Device by Selecting a Line
	Shared Line Scenario on Pressing CFwdAll Softkey
	Cancellation of CFwdAll

	Calling Party IP Address
	Basic Call
	Consultation Transfer
	Consultation Conference
	Redirect

	Calling Party Normalization
	Incoming Call From PSTN to End Point
	Incoming Call From National PSTN to CTI-Observed End Point
	Incoming Call From International PSTN to CTI-Observed End Point
	Outgoing Call From CTI-Observed End Point to PSTN Number
	Outgoing Call From CTI-Observed End Point to National PSTN Number
	Outgoing Call From CTI-Observed End Point to International PSTN Number

	Call PickUp
	Registering CallPickUpGroup for Notification
	Configuration
	UnRegistering CallPickUpGroup for Notification
	Re-Registering CallPickUpGroup for Notification
	Registering/UnRegistering CallPickUpGroup for Notification with Invalid Information
	CallPickUp After Enabling Auto Call Pickup Enabled
	CallPickUp with Auto Call Pickup Enabled Disabled
	CallPickUp with Multiple Calls Available
	CallPickupGroup Changed for a Device on AdminPage
	CallPickUpGroup Partition or DN Information Updated
	CallPickUpGroup Is Deleted

	Call Queuing
	FailOver or FailBack Scenario
	GroupCallPickup
	Configuration

	OtherCallPickup
	Configuration

	DirectCallPickup
	CallPickup (Negative Use Case)
	Configuration

	GroupCallPickup with SuperSet Call PickupDN
	Configuration

	Group or Direct CallPickup with Invalid DN

	Call Recording for SIP or TLS Authenticated calls
	CCMEncryption Enhancements
	CIUS Session Persistency
	Notify the Line Application and Expose the Changed IP Address
	Notify the Phone Application and Expose the Changed IP Address

	Click to Conference
	Drop Party by Using Click-2-Conference
	Drop Entire Conference by Using Click-2-Conference Feature

	Conference Enhancements
	Noncontroller Adding Parties to Conferences
	Chaining Two Ad Hoc Conferences Using Join

	CTI Remote Device
	CTI RD Call Forwarding
	Video Capabilities and Multimedia Information
	Direct Transfer Across Lines
	Do Not Disturb-Reject
	Application Enables DND-R on a Phone
	Normal Feature Priority
	Feature Priority - Emergency

	Drop Any Party
	Early Offer
	Application Dynamically Registers CTI Port with Early Offer Support
	Configuration
	Application Dynamically Registers CTI Port Without Early Offer Support
	Configuration

	Application Dynamically Registers IPV6 CTI Port with Early Offer Support
	Configuration

	Mutiple Applications Dynamically Register CTI Port/RP
	Configuration

	Multiple Applications Dynamically Register CTI Port/RP with Early Offer Support
	Configuration

	Application Statically Registers CTI Port with Early Offer Support and Then Disable the Early Offer Support
	Configuration

	Application Statically Registers CTI Port with Out Early Offer Support and Then Enables Early Offer Support
	Configuration

	Application Registers CTI Port with Legacy Wave Driver and Enables Early Offer Support
	Configuration

	Application Registers CTI Port with New Cisco Wave Driver and Enables Early Offer Support
	Configuration

	Mutiple Applications Statically Register CTI Port
	Configuration

	End-To-End Call Trace
	Direct Call Scenario: Variation 1
	Direct Call Scenario: Variation 2
	Consult Transfer Scenario: Variation 1
	Consult Transfer Scenario: Variation 2
	Blind Transfer Scenario
	Redirect Scenario
	Shared Line Scenario
	Shared Line Scenario with Barge
	Call Park Scenario: Variation 1
	Call Park Scenario: Variation 2
	3-Party Conference Call Scenario
	Three-Party Conference Drop Down to Two-Party Call Scenario
	Conference Chaining Scenario Using Join
	Transfer Call Scenario via QSIP Without Path Replacement
	Transfer Call Scenario via QSIP with Path Replacement
	Hunt List Scenario
	Call Pickup Scenario: Variation 1
	Call Pickup Scenario: Variation 2

	EnergyWise Deep Sleep Mode Use Cases
	Verify EnergyWisePowerSavePlus Reason Code in LINEDEVSTATE Message
	Verify EnergyWisePowerSavePlus Reason Code in PhoneState Suspend
	Verify Reason EnergyWisePowerSavePlus Reason Code in LineDevstate/Phone State Message
	Verify Call Manager Failure Reason Code in LineDevstate/Phone State Message
	Verify DeviceUnregister Reason Code in LineDevstate/Phone State Event
	Verify CTILinkFailure Reason Code in LineDevstate/Phone State Message

	Extension Mobility Cross Cluster
	TAPI Application Does LineInitializeEx and EMCC User Logs Into a Device
	TAPI Application Does LineInitializeEx and EMCCUser Logs Out of a Device
	Application Does PhoneInitializeEx and EMCC User Logs In to a Device
	TAPI Application Does PhoneInitializeEx and EMCC User Logs Out of a Device
	EMCC User Logs in to a Device From Cluster 2 (Visiting Cluster)
	EMCC User Logs Out of a Device From Cluster 2 (Visiting Cluster)
	EMCC User Logs In to a Device with LineH Configured
	EMCC User Logs Out of a Device with LineH Configured
	EMCC User Logs In to a DeviceH Configured for Multiple Lines (LineH)
	EMCC User Logs In to a Device with LineH Configured and Administrator Removes the Device From Application Control List
	EMCC User Logs In and Out of a Device with LineH Configured and Administrator Removes the Device From Application Control List
	EMCC User Logs in to a Device with LineH Configured and EM_Profile Not Included in Application Control List
	EMCC User Logs In to a DeviceV and EM_Profile Is Removed by Administrator From Application Control List
	EMCC User Logs In to a Device Then Application Does Provider Open
	EMCC User Logs In to a DeviceV in Visiting Cluster and Administrator Adds the EM_Profile to Application Control List

	Extension Mobility Memory Optimization Option
	Common Configuration
	Use Cases

	External Call Control
	Basic Call Initiated From TAPI with External Call Control on Translation Pattern and CEPM Returns Reject
	Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Divert with Modified Calling and Called Parties
	Basic Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties
	Conference Call Initiated From TAPI Using External Call Control on Translation Pattern and CEPM Returns Continue with Modified Calling and Called Parties in the Consult Call
	Call Is Redirected to a Hunt List of Chaperones and Chaperone Enables Call Recording and Conferences in the Called Party

	Forced Authorization and Client Matter Code Scenarios
	Manual Call to a Destination That Requires an FAC
	Manual Call to a Destination That Requires Both FAC and CMC
	lineMakeCall to a Destination That Requires an FAC
	lineMakeCall to a Destination That Requires Both FAC and CMC
	Timeout Waiting for FAC or Invalid FAC

	Gateway Recording
	Hunt List
	Basic Hunt List Call
	Hunt List Call Moved to Next Member
	Hunt List Calls FWNA and FWNA Is Not Configured on HuntPilot
	Hunt List Call FWNA with FWNA to B
	Hunt List Call Dropped When Hunt List Is Busy and FWB Is Not Configured
	Hunt List Call Is Forwarded When Hunt List Is Busy and FWB Is Configured to B
	HuntList Call Redirected When in ACCEPT State
	Hunt List Call Redirected When in Connected State
	Hunt List Call Member Is CTI or RP Port
	Hunt List Call Moved to Different Line Group Members and Answered by CTI Port
	Hunt List Call Is Redirected to Another Hunt List
	Hunt List Call Is Consult Transferred to Another Line
	Hunt List Call Direct Transferred to Another Line
	Hunt List Call Is Conferenced to Another Line
	Hunt List Call Is Joined to Another Line
	Hunt List Call Is Conferenced to Another Hunt List After LG11 Answers
	Hunt List Call Conferenced to the Same Hunt List and Completes Conference Before Hunt List Agent Answers
	Hunt List Basic Call with SharedLine
	Hunt List Basic Call with DND-R Configured on LG1
	Hunt List Call Put in Conference via Join Operation
	Hunt List Call Is Picked Up From Pickup Group -G-Pickup Auto Pick Pp Is Enabled
	Hunt List Call Is Picked Up From Pickup Group When LG1 Is in Pickup Group 1 -Auto Pickup Disabled
	Hunt List Call Is Picked Up From Pickup Group When HP2 Is in Pickup Group 2 -Auto Pick Up Enabled
	Conferenced Hunt List Call Becomes Two-Party Call
	Hunt List Broadcast Scenario (Broadcast Option Is Configured on HP1)
	Hunt List Call Is Involved in c-Barge Conference
	Hunt List Feature Interact with Four-Party Conference

	Hunt Pilot Connected Number Feature
	Caller Consult Transfer Call to Another Hunt List

	Hunt Group Login Status
	Intercom
	Application Invoking Speeddial
	Agent Invokes Talkback
	Change the SpeedDial

	IPv6 Use Cases
	Join Across Lines
	Logical Partitioning
	Manual Outbound Call
	Monitoring and Recording
	Monitoring a Call
	Automatic Recording
	Application-Controlled Recording

	NuRD (Number Matching for Remote Destination) Support
	Park Monitoring
	Persistent Connection Use Cases
	Presentation Indication
	Making a Call Through Translation Pattern
	Blind Transfer Through Translation Pattern

	Redirect to Device
	Redirect Set Original Called (TxToVM)
	Refer and Replace Scenarios
	In-Dialog Refer -Referrer in Cisco Unified Communications Manager Cluster
	In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
	In-Dialog Refer Where Refer Fails or Refer to Target Is Busy
	Out-of-Dialog Refer
	Invite with Replace for Confirmed Dialog
	Refer with Replace for All in Cluster
	Refer with Replace for All in Cluster Replace Dialog Belongs to Another Station

	Secure Conferencing
	Conference with All Parties as Secure
	Hold or Resume in Secure Conference

	Secure Monitoring and Recording
	Silent Monitoring
	Basic Silent Monitoring Scenario in Secure Mode
	Silent Monitoring Scenario on Non-Secure Call in Secure Mode
	Silent Monitoring Scenario on Non-Secure Call From Supervisor Which Is Secure
	Silent Monitoring Scenario on Secure Call From Supervisor Which Is Non-Secure
	Transfer of Monitored Call From Supervisor to Other Supervisor
	Transfer of Call From One Customer to Other
	Park on Supervisor
	Silent Monitoring on Conferenced Call
	Conference on Monitored Call
	Conference on Monitored Call
	Supervisor Holds the Call
	Recording
	Basic Recording Scenario
	Basic Recording Scenario in Secure Mode
	Recording Scenario on Non-Secure Call in Secure Mode
	Recording Scenario on Non-Secure Call Using Secure Recording Profile/Device
	Recording Scenario When Agent Holds the Call
	Recording and Monitoring
	Both Silent Monitoring and Recording on Agent Call in Secure Mode
	Recording Silent Monitored Call on Supervisor

	Shared Lines-Initiating a New Call Manually
	SRTP
	Media Terminate by Application (Open Secure CTI Port or RP)
	Media Terminate by TSP Wave Driver (Open Secure CTI Port)

	Support for Cisco IP Phone 6900 Series
	Support for Cisco Unified IP Phone 6900 and 9900 Series Use Cases
	Swap or Cancel
	Unrestricted Unified CM
	LineHold Enhancement
	Whisper Coaching
	Setup
	Application Initiates a Whisper Coaching Session
	Application Updates the Monitoring Mode
	Agent Holds the Customer Call with Whisper Coaching Then Agent S Shared Line Resumes the Call
	Agent Transfers a Whisper Coaching Call Monitoring Call Goes Idle at the Supervisor
	Application Updates the Monitoring Mode (WhisperCoaching to Silent)
	Supervisor Holds/Resumes the Whisper Coaching Monitoring Session
	Supervisor Transfers the Whisper Coaching Session to Another Supervisor
	Supervisor Conferences the Whisper Coaching Session to Another Supervisor
	Application Initiates a Whisper Coaching Session Second Application on a Different Client Opens All Lines
	Secure R & M with Whisper Coaching Supports
	Application Initiates a Secure Whisper Coaching Session
	Application Updates the Monitoring Mode on an Agent Call That Is on Hold
	Application Initiates Whisper Coaching Where the Agent Is a SIP Device with Older Firmware Version That Does Not Support Media Mixing
	Application Updates the Monitoring Mode Where the Agent Is a SIP Device with Older Firmware Version That Does Not Support Media Mixing
	Application Updates the Monitoring Mode on a Monitoring Call at the Supervisor That Is in a Conference
	Application Initiates Whisper Coaching on an Agent That Is Already Playing an Agent Greeting
	Application Initiates Agent Greeting on a Call That Already Has a Whisper Coaching Session

	Cisco Unified TAPI Interfaces
	Cisco Unified TAPI Version 2.1 Interfaces

	Troubleshooting Cisco Unified TAPI
	TSP Trace of Internal Messages
	TSP Operation Verification
	Version Compatibility
	Cisco TSP Readme
	Unsupported CTI Events for SIP Phones

	Cisco Unified TAPI Operations-by-Release
	Cisco Unified TAPI Operations-by-Release

	CTI Supported Devices
	CTI Supported Devices

	INDEX
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	O
	P
	S
	T
	W
	X

